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Abstract

Introduction Pharmacovigilance (PV) detects, assesses, and prevents adverse events (AEs) and other drug-related problems 

by collecting, evaluating, and acting upon AEs. The volume of individual case safety reports (ICSRs) increases yearly, but it 

is estimated that more than 90% of AEs go unreported. In this landscape, embracing assistive technologies at scale becomes 

necessary to obtain a higher yield of AEs, to maintain compliance, and transform the PV professional work life.

Aim The aim of this study was to identify areas across the PV value chain that can be augmented by cognitive service solu-

tions using the methodologies of contextual analysis and cognitive load theory. It will also provide a framework of how to 

validate these PV cognitive services leveraging the acceptable quality limit approach.

Methods The data used to train the cognitive service were an annotated corpus consisting of 20,000 ICSRS from which we 

developed a framework to identify and validate 40 cognitive services ranging from information extraction to complex deci-

sion making. This framework addresses the following shortcomings: (1) needing subject-matter expertise (SME) to match 

the artificial intelligence (AI) model predictions to the gold standard, commonly referred to as ‘ground truth’ in the AI space, 

(2) ground truth inconsistencies, (3) automated validation of prediction missing context, and (4) auto-labeling causing inac-

curate test accuracy. The method consists of (1) conducting contextual analysis, (2) assessing human cognitive workload, (3) 

determining decision points for applying artificial intelligence (AI), (4) defining the scope of the data, or annotated corpus 

required for training and validation of the cognitive services, (5) identifying and standardizing PV knowledge elements, (6) 

developing cognitive services, and (7) reviewing and validating cognitive services.

Results By applying the framework, we (1) identified 51 decision points as candidates for AI use, (2) standardized the process 

to make PV knowledge explicit, (3) embedded SMEs in the process to preserve PV knowledge and context, (4) standardized 

acceptability by using established quality inspection principles, and (5) validated a total of 126 cognitive services.

Conclusion The value of using AI methodologies in PV is compelling; however, as PV is highly regulated, acceptability will 

require assurances of quality, consistency, and standardization. We are proposing a foundational framework that the industry 

can use to identify and validate services to better support the gathering of quality data and to better serve the PV professional.

Key Points for Decision Makers 

As individual case safety report volumes increase, artifi-

cial intelligence can be a means to help mitigate complex 

decision making for pharmacovigilance professionals.

At various decision points in the PV process, cognitive 

services were identified and developed to assist pharma-

covigilance users. These services were validated using 

a framework leveraging the Acceptance Quality Limit 

method, to ensure appropriate performance and quality 

control.
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1 Introduction

The World Health Organization defines pharmacovigilance 

(PV) as “the science and activities relating to the detection, 

assessment, understanding, and prevention of adverse effects 

or any other drug-related problem” [1]. PV is governed by 

legislation and must not only collect, collate, and evaluate 

adverse events (AEs) that are reported, but also has the regu-

latory expectation to evaluate these reports and understand 

drug-event causality both at the patient and population level.

The pharmaceutical industry has continued to work 

through growing volumes of AE data. In an 8-year period 

(1998–2005), the number of serious event reports that the 

FDA received increased 2.6-fold, and reports of deaths 

increased 2.7-fold [2]. The increase in volumes is faced 

globally, and despite these growing numbers there is still 

extensive underreporting of spontaneous AEs. A strategy to 

overcome underreporting is to explore and mine new data 

sources. One such potential area could be social media and 

health-related social networks, which many adults are using 

to discuss health information. Applications such as Twit-

ter, have several hundred million users; within this applica-

tion and other health-related social networks, users often 

discuss their health-related experiences, such as the use of 

prescription drugs, side effects, and treatments, which makes 

social networks unique sources of patient health informa-

tion. Although unique, AEs through these channels are often 

missing information, are brief, lack structure, and use infor-

mal language [3]. Further research from Dr. Ola Caster et al. 

suggests that using Social Digital Media doesn’t appear to 

add anything to what is already known from spontaneous 

and clinical trial AEs [4].

A more promising external data source could be elec-

tronic health records (EHRs), which generally provide 

more holistic and thorough representations of patient 

health that can include clinical narratives. This source of 

data can help improve AE detection through additional 

information within the narrative texts, such as symptoms, 

disease status, severity, and confounding factors [5]. 

Although EHRs are considered a robust source of health 

information, it is estimated that only 1% of AEs within 

EHRs are reported to federal databases [6]. These data 

sources have differing value for PV, nevertheless, they rep-

resent additional, and expanding, stores of knowledge that 

could house the presence of impactful AEs.

This growing body of available digitized data is coupled 

with regulatory initiatives that are expanding the range of 

activities that fall within the remit of PV, for example, the 

trend to analyze more real-world data that is available in the 

public domain [7]. Despite the environment and the shift-

ing regulatory initiatives, integration of these data sources 

would likely disrupt the traditional methods of spontaneous 

or clinical reporting [8].

To manage the increase in AE data thus far, the pharma-

ceutical industry has been scaling operations by leveraging a 

combination of increasing human resources and outsourcing; 

however, the transcription and data entry tasks required to 

process these data remain largely manual in nature.

There is a need to identify assistive technologies that 

provide the automation of repetitive tasks involved with 

the collection and collation of AEs, as well as providing 

support and evidence to enhance complex decision making 

within PV. New technology options should be able to auto-

mate mundane activities, harness and provide a synthesized 

view of the growing amount of data, and provide evidence 

of recommendations to a PV professional.

We propose that using artificial intelligence (AI) can 

reduce the manual effort associated with transcription and 

data entry to allow greater focus on scientific and medical 

evaluation of AEs, work that ultimately brings greater value 

to the patient.

2  Objectives

The aim of this study was to identify areas across the PV 

value chain that can be augmented by cognitive service solu-

tions using the methodologies of contextual analysis and 

cognitive load theory. It will also provide a framework of 

how to validate these PV cognitive services leveraging the 

acceptable quality limit (AQL) approach.

3  Methods

3.1  Background

AI is a subfield of computer science in which a computer 

system is taught to perform tasks that normally require 

human intelligence. Natural language processing (NLP) is 

the ability of a computer system to understand and inter-

pret human language. Machine learning is an area of AI that 

gives computer systems the ability to learn without explicitly 

being programed. Cognitive services, are the combination of 

both NLP and machine learning algorithms that aim to solve 

specific tasks that would otherwise require human intelli-

gence. In order to develop cognitive services, an annotated 

corpus, or data used to teach the cognitive service, must be 

prepared and created. These terms can be referenced within 

the glossary.
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3.2  Glossary

Annotated corpus: the data used to teach a cognitive service 

the syntactic and semantic patterns of a language.

Artificial intelligence (AI): is a subfield of computer sci-

ence in which a computer system is taught to perform tasks 

that normally require human intelligence.

Cognitive services: the combination of both natural lan-

guage processing and machine learning algorithms that aim 

to solve specific tasks that would otherwise require human 

intelligence.

Machine learning: a subfield of AI that learns patterns 

from data without explicitly being programmed

Natural language processing (NLP): the ability of a com-

puter system to understand and interpret human language.

3.3  Identi�cation of Cognitive Services

The research began with identifying cognitive services; the 

cognitive services focused on were related to the intake, 

collection, and collation of safety information. The identi-

fication process can also extend to services outside of this 

scope of work. A critical decision was how to best leverage 

machine learning algorithms to develop cognitive services 

that would be beneficial for the end user within receipt, 

triage, data entry, and assessment steps of individual case 

safety report (ICSR) processing. To achieve this, a user-cen-

tered design method called a contextual analysis was used 

to research the end users. A contextual analysis consists of 

an interviewer observing and interviewing a user about their 

role, breaking down their functions into the tasks being per-

formed, and the PV decisions that were being made. Some 

of the benefits of contextual analysis were insights into the 

behavioral aspect of an end user, an understanding of the 

issues an end user faced, and why those issues existed. This 

knowledge helped narrow the scope of the cognitive ser-

vices that were being developed by designing technologies 

to diagnose the underlying issues rather than the effects of 

those issues.

Following this, the tasks that the PV professionals were 

performing were analyzed utilizing cognitive load theory. 

Cognitive load theory illustrates and categorizes cogni-

tive load, or the effort that it takes to commit something to 

working memory. There are three types of cognitive load: (1) 

intrinsic, the cognitive load imposed by the characteristics 

of information; (2) extraneous, the cognitive load imposed 

on how the information is presented to the user; and (3) ger-

mane, the cognitive load effort that contributes to the con-

struction of schemas, or patterns of organizational thought 

[9]. Using both contextual analysis and cognitive load theory 

the cognitive services for PV use were identified.

3.4  Development of the Cognitive Services

3.4.1  Speci�cation of the Annotated Corpus

After identification of the cognitive services, the corpus of 

training data was planned. An annotated corpus is the data 

used to teach a cognitive service the syntactic and semantic 

patterns of a language to help identify and extract the data 

points of interest to the PV process. Volume is necessary 

to train a successful cognitive service, so 20,000 ICSRs, 

(approximately 50,000 source documents), consisting of ini-

tial and follow-up cases, were selected from Celgene Cor-

poration’s Global Drug Safety database records from the 

years 2015–2016. The ICSRs selected needed to be both 

diverse and representative of the data and incorporate factors 

ranging from (1) report type (spontaneous, clinical/market 

study, medical literature), (2) source country, (3) number 

of unique preferred terms, (4) number of unique reported 

terms, (5) length of the reported term, (6) seriousness of the 

ICSR, (7) seriousness of the AE, (8) seriousness category 

of the AE, (9) number of unique suspect products, and (10) 

expectedness value for the Investigator’s Brochure (IB), 

Company Core Data Sheet (CCDS), Summary of Product 

Characteristics (SmPC), and Prescribing Information (PI) 

into consideration. The sampling strategy ensured appropri-

ate diversification and representation of possible values for 

each factor. This approach resulted in a corpus whose report 

type broke down into 63% spontaneous, 27% clinical/mar-

ket study, and 10% medical literature ICSRs; 105,397 total 

unique reported terms; and whose ICSR seriousness broke 

down into 50% serious and 50% non-serious ICSRs.

Fig. 1  Annotated sentence. An example of an annotated sentence, in which PV concepts are labeled by their relevant annotations. Concepts can 

have multiple annotations as long as they fall within the annotation definitions



112 R. Mockute et al.

3.4.2  Building and Allocating an Annotated Corpus

Once the corpus is specified, it must then be prepared into 

electronic format, and its relevant data labeled. Documents 

were made electronic, or machine readable, by manual tran-

scription, and then all appropriate metadata were tagged 

in a manual annotation process. An annotation is labeled 

metadata, to ensure consistent annotations across docu-

ments and users a standardized PV annotation dictionary 

was created. This dictionary consisted of a breakdown of 

122 PV concepts and information ranging from regulatory 

clock start date to reporter causality and served as a way to 

make PV knowledge explicit to the cognitive services. To 

see an example of a sentence with PV specific annotations 

see Fig. 1.

Once the annotated corpus was developed, the training set 

was allocated into different groups for training (80%), tun-

ing, or model refining (10%), and testing (10%) the cognitive 

services. The purpose of the training data is to teach the cog-

nitive services, the tuning data to optimize the parameters of 

those services, the testing data to create a feedback loop for 

errors and evaluate the services in a real-world setting [10]. 

Without subdividing the annotated corpus into independent 

groups, the services would be measured on data that they 

had been previously exposed to, thus rendering the predic-

tive performance overly positive. As it would in practice, 

a true performance understanding would measure how the 

service would perform on new data [10].

Fig. 2  Recall vs precision. For this example the cognitive service’s 

purpose is to identify triangles. The figure on the left would indicate 

a service with high recall, because it is identifying all of the triangles; 

however, it identifies some circles as triangles as well. The figure on 

the right would indicate a service with high precision, in that it is not 

identifying all of the triangles that exist, but the elements that it is 

identifying as triangles, are correct

Fig. 3  Calculating  F1 score. 

Delineation of how the  F1 

score is measured and a visual 

representation of the parameters 

are for true positives, false posi-

tives, false negatives, and true 

negatives
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3.4.3  Measuring Performance

A cognitive service was considered successfully trained 

when it reached an  F1 score of 75% or higher. This evalu-

ative score was the pre-determined minimum threshold for 

each cognitive service to be effective in a real-world set-

ting. An  F1 score is the combined measure of both precision 

and recall and is a common measure for evaluating machine 

learning algorithms [11, 12]. Precision, also referred to as 

positive predictive value (PPV), is the ability of a service to 

correctly identify elements. The risk of having a very high 

precision is that the service may not capture all of the correct 

elements, but those elements it does capture will be cap-

tured correctly. This translates to the service as having many 

false negatives (FNs), or elements that should have been 

identified but were not predicted. On the other hand, recall, 

also referred to as sensitivity, is ensuring that the totality of 

results is identified correctly. The shortcoming of having a 

very high recall rate is that although the service may clas-

sify all of the instances of identifying an element, it may 

classify some incorrectly. A high recall will run the risk of 

many false positives (FPs), or elements that were predicted 

by the service that should not have been [13], see Fig. 2 for 

a visual representation of how high precision and high recall 

differ in practice. A cognitive service must therefore have 

a balance of both precision and recall to be truly effective. 

True positives (TPs) are entities that are predicted correctly 

or elements that are predicted positive and are actually posi-

tive, and true negatives (TNs) are elements that are labeled 

as negative and are actually negative; refer to Fig. 3 for how 

to calculate  F1, TP, TN, FP, and FNs; and refer to Fig. 4 for 

an annotated example indicating a TP, FP, and FN.

During training development, the PV SME would review 

100% of the FP and FN results from the testing data, and for 

binary classification services (e.g. ICSR detection), all of the 

TN results as well. The review process would entail the SME 

referencing the annotations, metadata, or original source 

documents used to train the cognitive service and provid-

ing feedback to the developer as to whether the predicted 

FP, FN, or TN results were correctly classified. Often, the 

data showed trends that the SME could link back to industry 

rules or company-specific guidance, which the developers 

would use to help further train the service. This was done to 

accurately reflect what the measurement of the service was, 

and to decrease the chances of the services failing during the 

cognitive service approval process.

3.5  Validation of Cognitive Services

3.5.1  What is the Framework?

As multiple cognitive services were developed to the desired 

threshold, there needed to be a process to validate and ensure 

the services’ quality within a regulated environment. To 

achieve this, a framework was created to have a structured 

and consistent approach to quality assurance. This frame-

work utilized the Acceptable Quality Limit (AQL) method, 

a sampling method that is commonly used in manufacturing. 

Our framework is a derivative of the AQL method and it is 

customized to address the nuances of a PV environment.

Fig. 4  Comparison of annotations and cognitive service predictions. A holistic view of how annotations and predictions are compared during the 

review process and classified on the basis of their accuracy
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3.5.2  Why Did We Use Acceptable Quality Limit?

Validation has been the means by which stakeholders ensure 

that processes or products are performing at the quality level 

claimed for them [14]. Currently, there are no regulatory 

guidelines that delineate how AI should be validated before 

being introduced into a PV environment. There were high 

volumes of cognitive service outputs, so to be practical and 

scalable, a sampling approach to quality review was taken. 

GMP regulations provide a number of requirements for 

sample sets of validation: samples must represent the batch 

under analysis, the sampling plan must result in statistical 

confidence, and the batch must meet its predetermined speci-

fications [15]. One of the sampling methods that meets these 

requirements and is recognized by the US Food and Drug 

Administration, was the American National Standards Insti-

tute/American Society for Quality Z1.4 standard, or the AQL 

method. AQL is used when a buyer is inspecting batches of 

goods delivered by a supplier. In its entirety, AQL defines 

the maximum number of components that can be rejected 

for the buyer to accept the whole batch [16]. It was adopted 

for our study because the method is scalable, reproducible, 

and customizable, and can be done without complicated sta-

tistics. In our study, we have used this concept to confirm, 

through inspection based on AQL sampling, that the cogni-

tive service predictions met the acceptability criteria after 

they achieved the threshold  F1 score of 75% or higher.

3.5.3  Determination of AQL Parameters

To apply AQL, one of the first decisions to make is to define 

what needs to be measured. TPs were the measurement used 

to determine if the cognitive services had high quality out-

puts. TPs were the combination of both the cognitive service 

prediction and the ground truth, or gold standard annotation 

correctly identifying an output. A TP result was incorrect 

when both the prediction and ground truth did not correctly 

classify the PV concept, for an example, see Fig. 5.

The next decision to make is to define the AQL, or the tol-

erance for nonconforming parts. This was the worst quality 

of cognitive services that would be considered acceptable. 

Current guidance outlines the defect attributes, their cat-

egories, and their associated tolerance percentages as (1) 

critical defects (0%), defects that can pose a threat to user 

safety or cause a product to be unusable; (2) major defects 

(2.5%), defects that would result in products being returned 

because they adversely affect product performance but do 

not pose a safety risk; and (3) minor defects (4%), defects 

that are unacceptable at high levels but are generally small 

or insignificant issues that can be fixed [16]. Our cognitive 

services were developed in tandem with PV professionals, 

and the services were only reviewed for quality once they 

achieved a minimum  F1 score of 75% within the training 

phase. Because of the integration of the SME within the 

process and the reviews occurring once the service was per-

forming at a certain accuracy, the decision was to classify 

defective outputs as minor, with a 4% acceptance quality 

threshold.

After defining the tolerance, AQL requires an appropriate 

inspection level to be chosen. The options for general levels 

of inspection are levels I, II, and III. For most instances, 

level II is the recommended use, but level I may be used 

when less discrimination is needed, such as in the case of 

a vendor with a positive history, and level III may be used 

when quality needs to be more stringent. There are four 

special levels (S1 through S4) that can also be used when 

sample sizes are required to be small and sampling risks can 

Fig. 5  Review of an incorrect true positive. An example of an incor-

rect true positive wherein both the prediction and annotation classi-

fied back-pain incorrectly

Fig. 6  Defining acceptable quality limit (AQL) parameters. The step 

by step process of defining AQL parameters, in order to perform 

quality review
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be tolerated [16, 17]. Because we had no previous history 

with these services, general inspection level II was deemed 

best for our purposes.

The last parameter to consider is lot size. For each cogni-

tive service, the lot size was determined by the number of 

TPs that existed within the annotated corpus. The lot size 

varied for each cognitive service on the basis of the prev-

alence of annotations and commonness of a concept. For 

review, the entirety of the TPs for a single cognitive service 

were randomized to remove any potential bias. After rand-

omization, an appropriate sample size was selected on the 

basis of the lot size, inspection level, and AQL percentage 

using the AQL graph. In the instances in which the amount 

of data was small and the total number of TPs was less 

than 150, a 100% review of the TPs was conducted instead 

of using the AQL method, using the same 4% acceptance 

threshold. This was based on the need to ensure quality of 

the cognitive services and was also deemed within the work 

capacity of the team. To view a visual representation in how 

to determine AQL parameters refer to Fig. 6.

3.5.4  Execution of the Framework

During quality review, the predicted TPs were assessed and 

marked as either correct or incorrect. Quality review of TPs 

was performed by PV professionals who received an excel 

output of the cognitive services’ TP, FP, FN, TN classifica-

tion results. To ensure high quality review and to support 

decision making, the PV professionals also had access to the 

annotated corpus replete with annotations, and the metadata 

of the annotated corpus pulled from the legacy database. To 

expedite the review process, the surrounding verbiage from 

which the prediction was made was provided to help give 

context. If the cognitive service TP errors did not exceed 

the rejection limit, the cognitive service was approved. If 

the service failed, it was returned to the developer for retun-

ing, after which an additional AQL was performed. Before 

defining and using this framework for our quality review 

purposes, a 100% review of TPs was conducted. This was 

determined to be too time consuming, so a statistical sam-

pling approach was adopted.

4  Results

As a result of this research, 51 decision points were identi-

fied as candidates for AI use that could help PV profession-

als in their decision making. A framework for validation 

has been developed resulting in the validation of 43 cog-

nitive services for spontaneous reports, 45 cognitive ser-

vices for clinical trial cases, and 38 cognitive services for 

medical literature cases, for a total of 126 validated cognitive 

services.

The 51 decision points that were identified were deter-

mined through contextual analysis and classifying the tasks 

identified at contextual analysis into their respective cog-

nitive loads. Within the ingestion and data collation steps, 

intrinsic cognitive load was identified at several points 

when (1) ICSRs had to be routed and classified on the basis 

of their inherent details, and identified as to whether they 

needed follow-up by referring to their contents; (2) at the 

data collection step, case information had to be manually 

collected from multiple sections of source documents and 

entered into an external database; (3) at coding, PV profes-

sionals required extensive training and a thorough under-

standing of taxonomy; (4) strict regulatory timelines had 

to be adhered to and understood; (5) at triage, safety infor-

mation needed to be classified, and demanded a medical 

background to evaluate key features of a case.

This process also identified extraneous cognitive load, 

specifically during (1) the intake of ICSRs, where infor-

mation arrived in a multitude of formats and needed to 

be assessed and processed for quality; (2) ingestion when 

information had to be identified as duplicate or not, and any 

information that was entered into the PV database had to be 

either unique or correctly linked to its associated data; (3) 

prioritizing and processing the perpetual influx of cases that 

needed to be both processed and continuously prioritized to 

ensure that timelines were met and workload was balanced.

After evaluation of the cognitive burden, decision points 

where AI could assist the user were identified based on the 

need or opportunity to increase efficiency or to decrease the 

cognitive load. The first high-level cognitive services identi-

fied were: ICSR validity service, suspect product detection, 

reporter detection, patient detection, seriousness classifica-

tion, World Health Organization Drug Dictionary (WHO-

DD) coding, Medical Dictionary for Regulatory Activities 

(MedDRA) coding, expectedness classification, reporter 

causality, and drug mention detection. As the study pro-

gressed, additional cognitive services were identified (listed 

in Fig. 7) and are grouped into the PV concepts of adverse 

event, reporter, patient, case, and product.

In adopting the AQL methodology into our validation 

process to maintain quality control, the result has been the 

development of a framework that addresses specific PV 

needs (Fig. 8). This framework can be replicated and used 

to validate new PV cognitive services that have yet to be 

developed and is advantageous in that it is: (1) a consist-

ent approach to quality assurance; (2) a scalable, sampling 

approach; (3) reproducible in that it was used for a vari-

ety of cognitive services, report types, users, and data; (4) 

customizable based on desired inspection and tolerance; 

(5) meets good manufacturing practice (GMP) regulatory 

requirements for sample sets of validation; and (6) integrates 
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the PV professional throughout the identification and valida-

tion process.

As an overarching view of our research, key milestones 

and accomplishments that have been reached include (1) an 

establishment of a process that identified 51 PV decision 

points that are candidates for AI; (2) a standardized identifi-

cation and labeling dictionary of PV information, serving as 

a means to make PV knowledge explicit; (3) the incorpora-

tion of PV expertise throughout the development and valida-

tion process by the inclusion of the PV SME at every step; 

(4) a standardized validation process of cognitive services 

using established quality principles originating from manu-

facturing; and (5) validated a total of 126 cognitive services.

5  Discussion

AI is becoming increasingly used throughout the healthcare 

industry, and it has been seen in the increasing uses of NLP 

and machine learning to automatically detect AEs and drug-

drug interactions. As there has been limited success in these 

endeavors due to reliance on keywords, or the limitations 

of medical dictionaries, many opportunities still exist to 

discover the full extent to which AI can be introduced as a 

support structure to augment and empower the PV profes-

sional [6, 18].

5.1  Ground Truth Inconsistencies and Quality 
Considerations

As this research was conducted, it became apparent that 

for the cognitive services to have high quality predictions, 

the data within the corpus had to be of high quality as 

well. However, the data within the corpus, or the ground 

truth, could vary because of the innate way PV informa-

tion was ingested and received. The annotated corpus was 

reflective of the real-world data and had representation 

from a variety of sources and channels, thus, the ground 

truth could vary because of (1) spacing (whether the 

annotation included the space before or after the correct 

ground truth); (2) misspellings; (3) line breaks (e.g. when 

information was dispersed throughout a document); (4) 

limitations in the annotation dictionary; and (5) annotator 

and reviewer bias. Because of these inconsistencies, the 

Fig. 7  These were the 51 deci-

sion points that were identified 

and then developed into cogni-

tive services, and are grouped 

into their associated concepts 

marked by the outer ring. 

The decision points were also 

categorized into essential vs 

non-essential by assessing the 

tasks the end user was perform-

ing, and identifying which tasks 

imposed higher intrinsic and 

extrinsic cognitive load. The 

‘essential’ decision points that 

became the ‘essential’ cognitive 

services are indicated by the 

inner ring in black. Adverse 

event (AE); Manufacturer con-

trol number (MCN); Adverse 

event report (AER); Individual 

case safety report (ICSR)



117Identifying Cognitive Services and the Framework for Their Validation Within Pharmacovigilance

PV SMEs manual review was fundamental to provide a 

consistent input of PV knowledge and provide the context 

and reasoning for the annotations.

Other quality considerations were due to the fact that 

documents were manually transcribed, and there were limi-

tations to recreating documents based on sizes, tables, and 

formatting. The annotation process, which was also manual, 

could have varied and affected the data quality as well. The 

annotations were periodically redefined, some annotations 

were retired, while others were added to ensure correct spec-

ificity for practical use. Because of this, the dictionary was 

updated as the study developed to accommodate for these 

needs and correctly highlight PV concepts. Because of this 

process, the version of the dictionary used during annotation 

A developer generates results 

shares it with A PV SME 

PV SME reviews 100% of 

FP and FN and provides 

feedback in the results 

table

PV SME creates a 

randomized sample size 

of TP based on the AQL 

method*

PV SME evaluates the 

results
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Service needs further 
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service
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PV SME
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100% review of TP

Number of errors 

<= 4% of TP?

No
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Is the service above 75% of 

Accuracy/F1?

No

No
Yes

Fig. 8  Acceptable quality limit (AQL) process for pharmacovigilance 

cognitive services. This process depicts the framework for the vali-

dation of cognitive services leveraging the AQL method. It was cus-

tomized in a way to accommodate for the inherent needs of pharma-

covigilance (PV). The validation process begins once the developer 

generates the results of a cognitive service and creates an excel output 

of all of the TP, FP, FN, and TN’s. If the  F1 score is below the 75% 

threshold, the PV subject matter expert (SME) reviews 100% of the 

FP and FN results, and reports any trends in errors and results of the 

review to the developer for further training. If the  F1 score is above 

75%, the PV SME reviews the TP results to ensure the service is per-

forming at the accuracy claimed. For our purposes, if the number of 

TPs was less than 150, the PV SME would perform a 100% review of 

TPs to ensure a high-quality service, as it was within the work capac-

ity of the team. If there were more than 150 TPs, the PV SME would 

randomize the TPs, select the appropriate AQL sample of TPs, and 

then review results. For both instances, it the TP error rate was ≤ 4%, 

then the service was deemed passed, and if not, it was sent back to the 

developer for further training
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could have limited the accuracy, quality, and existence of the 

annotations and thus the ground truth. Another factor that 

could have affected data quality is annotator and reviewer 

bias, which was addressed by having frequent trainings, and 

tracking inconsistencies among reviewers and annotators to 

pinpoint trends.

If a cognitive service was unable to be trained success-

fully due to inconsistent ground truth, the process of either 

fixing the annotated corpus or the reannotation of new 

training data was an alternative route. This was generally 

considered only for high-impact cognitive services because 

the rework was not only time consuming but ran the risk of 

being insufficient after the re-annotation. This was especially 

true if a concept was inherently complex as in the case of 

cognitive services like regulatory clock start date, which 

involves many company-specific guidelines.

5.2  The Di�erent Sources of Ground Truth

When approving the cognitive services, referencing the 

ground truth was crucial, but this differed by the type of 

service and its inherent complexities and needs. The most 

common way to develop and validate services was using 

the annotations as ground truth; however, this was not 

always the most advantageous route. WHO-DD coding 

was a service that was developed and validated using the 

metadata from our legacy database as its primary ground 

truth. This was because WHO-DD coding is an interna-

tional standard, so the service’s predictions came out in 

this desired format. When the annotations were used as 

the ground truth, there was a disparity between the pre-

dictions, which were all in the standard WHO-DD coding 

format, and the annotations, which would reflect the raw, 

initially ingested data that came in a variety of formats 

and spellings. To address this delta, the reviewer used the 

metadata, which reflected processed and coded products 

and therefore allowed the predictions to match the ground 

truth. By using the metadata as the ground truth, this ser-

vice was unique in that it was developed independent of its 

report type and therefore required only one comprehensive 

round of validation.

Another approach for the source of ground truth was 

using a combination of both the metadata and the annota-

tions. This approach was used specifically for the serious-

ness service because the initial output of the service would 

predict a seriousness independent of its associated event. 

Therefore, for instances with multiple seriousness criteria 

and events, the reviewer could not make an accurate judg-

ment on the accuracy of the service. Thus, the metadata 

were used as a supplemental ground truth when there were 

multiple seriousness criteria, because this use helped deline-

ate each seriousness with its associated AE.

Conversely, the ground truth could be missing and had to 

be generated by auto-annotation. One reason for this situa-

tion was missing annotations, so “simple rule” scripts were 

created to generate ground truth. For example, in the patient 

mention service, the developers created an annotation rule 

whereby the word “patient” was highlighted. However, this 

posed a risk of incorrect ground truth; a way to overcome 

this limitation was to auto-annotate solely in the AE verba-

tim section, or unstructured text area, instead of the entirety 

of the document. Another challenge was that the ground 

truth was sometimes heavily skewed in one direction. We 

discovered that in developing the reporter country cognitive 

services that the majority of the training data used were for 

US-based cases. Because of this finding, we discovered that 

the service could not predict global countries, and retraining 

was done to increase the service’s exposure to non-US cases 

during development before proceeding to final approval.

5.3  Applications of the Identi�cation and Validation 
Framework

If the cognitive services are introduced to a production envi-

ronment, any outputs of the services would be subject to a 

PV SME’s review and feedback. This user feedback would 

be logged, reviewed, quality checked, and fed back again to 

the developer to further train and improve the models. This 

improvement could be achieved by performing incremen-

tal training of machine learning services on samples of the 

new data points selected by analyzing and identifying the 

error patterns of the outputs [19, 20]. Validating the new 

versions of the cognitive services would be necessary before 

the release of every feedback loop. Therefore, this valida-

tion framework could be used as the foundation to validate 

not only the service upgrades in the future, but new cogni-

tive services as well. With respect to the validation frame-

work, adjustments could be made to the inspection level as 

the services mature and have a positive AQL history. With 

repeated positive performance, the thresholds of inspection 

could become less stringent, and fewer resources and less 

time would need to be allocated for inspection. On the other 

hand, it there are repeated failures of validation of a service 

in the future, it would be prudent to use tighter AQL crite-

ria such as an increased sample size or tightened general 

inspection levels. The tier of retesting should be limited and 

defined because repeated test failure may result in a service’s 

rejection [21].

An additional consideration with this framework is the 

inclusion of protected health information and personal 

identifying information. Additional effort was necessary 

on our part to accommodate for this because in order to 

share results, it was essential to have a secure file transfer to 

an appropriate environment. Initially, there were delays in 

creating this environment, so sharing results and providing 
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feedback demanded much collaboration without direct 

access to results.

In a similar vein to the validation framework, the means 

for identifying cognitive services can be replicated in other 

groups or areas that wish to seek to identify areas or tasks 

that can be supported by AI. These two methodologies could 

become standards for future identification and validation to 

occur across industry members to ensure both quality and 

consistency in various groups. As automation becomes more 

prevalent within PV, the focus will decrease on repetitive 

tasks and data collection, and create more opportunities to 

concentrate on evolving regulatory requirements and com-

plex healthcare cases. Patient safety is central to PV, and in 

the space in which AE reports are becoming more frequent 

and more convoluted, it is imperative that innovation and 

technology are intertwined to create quality data that will 

promote patient benefit and health. The PV industry has 

needed a long-term solution to unsustainable volumes of 

ICSRs, and by embracing AI it is possible to improve the 

way we approach PV and strive for excellence in our pro-

cesses for the benefit of our patients.

6  Conclusion

This paper demonstrates the way in which we identified 

points across the PV value chain that can be augmented by 

artificial intelligence with the aim of decreasing cognitive 

burden and supporting efficiencies in various PV processes. 

There were 51 decision points that were identified across 

the data ingestion and data collection and collation steps of 

ICSR case management that covered common PV concepts 

including patient, reporter, adverse event, case, and prod-

uct. We also outlined a framework for validating cognitive 

services through the AQL process such that services were 

validated in a consistent and reproducible fashion within a 

regulated environment and could be used as a future stand-

ard to validate technologies yet to be developed; to our 

knowledge, this is the first instance of a validation process 

of AI within PV. The drive for innovative technologies must 

continue as PV professionals continue to face challenges of 

growing case volumes and data consumption. And as we 

adopt new approaches aimed at enhancing the future of PV, 

we require not only better data quality and consistency, but 

ultimately to improve the safety of patients.
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