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Abstract
We propose a model, inspired by recent artificial life theory,
applied to the problem of retrieving information from a
large, distributed collection of documents such as the World
Wide Web. A population of agents is evolved under density
dependent selection for the task of locating information for
the user. The energy necessary for survival is obtained from
both environment and user in exchange for appropriate
information. By competing for relevant documents, the
agents robustly adapt to their information environment and
are allocated to efficiently exploit shared resources. We
illustrate the roles played by document locality, adaptive
search strategies, and relevance feedback, in the information
gathering process.

Introduction*

The World Wide Web (WWW) is an information
environment made of a very large distributed database of
heterogeneous documents, using a wide-area network and a
client-server protocol. The structure of this environment is
that of a graph, where the nodes (documents) are connected
by hyperlinks. The typical strategy for accessing
information on the WWW is to navigate across documents
through hyperlinks, retrieving the information of interest
along the way. The dynamic and distributed nature of the
environment, however, makes retrieving specific
information a hard task [De Bra & Post 1994, McBryan
1994].

On the other hand, the WWW represents an ideal
environment in which to apply techniques recently matured
in the field of artificial life (ALife). In particular, adaptive
and distributed algorithms seem to appropriately capture
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the complexity of such an environment. Traditional genetic
algorithms [Mitchell & Forrest 1994] are characterized by
exploitation of information, but the distributed information
gathering problem requires adaptation rather than
optimization. Therefore we propose a model inspired by
the endogenous fitness metaphor to search for relevant
information through a population of intelligent agents
evolving in the WWW environment. This paper presents
various extensions to the work recently reported in
[Menczer, Willuhn & Belew 1994].

Background

The traditional solution to the problem of information
retrieval (IR) on the WWW is to build a database index 
all the documents, on which to use traditional search and
retrieval techniques. Such virtual libraries are built and
updated off-line, either in a user-driven fashion or by
automated exhaustive programs, called spiders or robots. A
well-known robot is the WWW Worm [McBryan 1994].
The off-line approach has several drawbacks: first, the size
of the WWW makes it increasingly difficult to update
virtual libraries without inefficient use of network
resources. Moreover, any database has to abstract away
important information, concerning both the content of
documents and their structure [Belew 1985]. Finally, the
information gathering and retrieval processes are
independent and therefore feedback from the latter cannot
be used to adaptively improve efficiency nor quality of the
former.

To remedy some of these problems, the client-based Fish
Search algorithm has been proposed [De Bra & Post 1994].
This approach uses the metaphor of a school of fish, where
agents in a population survive, reproduce, and die based on
the energy gained from their performance in the retrieval
task. This approach, however, stops short of solving the
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remaining problems: no mutation occurs at reproduction,
and each agent in the population follows a non-adaptive,
exhaustive depth-first search algorithm. While some
heuristics are used to order the graph traversal, the lack of
intelligent cutting of search branches results in slow speed
and high network consumption (caching being proposed as
a palliative).

The idea of adaptive IR is not new [Belew 1989]. More
recently, learning agents and traditional genetic algorithms
have been successfully applied to information retrieval
[Yang & Korfhage 1993] and information filtering [Maes
& Kozierok 1993, Sheth & Maes 1993]. Work in progress
indicates that learning is sped up by extending such models
to collaborative multi-agent systems [Lashkari, Metral, &
Maes 1994]. Using a distributed population of cooperating
best-first search agents has been recently proposed in the
WebAnts project [Mauldin & Leavitt 1994] to overcome
the single-server and single-client bottlenecks.

Information Search by Endogenous Fitness

Endogenous fitness models are becoming an increasingly
appreciated and well-understood paradigm in the ALife
community [Mitchell & Forrest 1994]. While a thorough
discussion of the subject is out of the scope of this paper
[see, e.g., Menczer & Belew 1995], we outline in this
section the main aspects that make this paradigm useful for
the problem of IR in the WWW.

A population of agents becomes evolutionary adapted in
a dynamic environment by a steady-state genetic algorithm.
Energy is the single currency by which agents survive,
reproduce, and die, and it must be positively correlated
with some performance measure for the task defined by the
environment. Agents asynchronously go through a simple
cycle in which they receive input from the environment as
well as internal state, perform some computation, and
execute actions. Actions have an energy cost but may result
in energy intake. Energy is used up and accumulated
internally throughout an agent’s life; its internal level
automatically determines reproduction and death, events in
which energy is conserved.

Agents that perform the task better than average
reproduce more and colonize the population. Indirect
interaction among agents occurs without the need of
expensive communication, via competition for the shared,
finite environmental resources. Mutations afford the
changes necessary for the evolution of dynamically adapted
agents. This paradigm enforces density-dependent
selection: the expected population size is determined by the
carrying capacity of the environment. Associating high
energy costs with expensive actions intrinsically enforces a
balanced network load by limiting inefficient uses of
bandwidth.

In the heterogeneous environment of the WWW, it is
hard to associate a fitness measure with a strategy in
general, but it is easy to estimate the results of a strategy
applied to a particular query. Different information search
and retrieval strategies may be optimal for different

queries, just as different behaviors may be optimal for
different environments. Only the end results of a search
(the retrieved documents) can be evaluated, and the agents
identify the relevant information from its correlation with
energy. Therefore populations will evolve strategies
effective in the different environments specified by both
information space and queries. Adaptation means for
agents to concentrate in high energy areas of the Web,
where many documents are relevant. Each agent’s survival
will be ensured by exchanging an adequate flow of
information for energy.

An Implementation

We have implemented the endogenous fitness model in a
simple prototype of IR system for the WWW. The
algorithm is illustrated in Table I. The user provides a
query consisting of a set of keywords. A population of
agents is initialized with some energy, some random
strategy, and some distribution in the Web. The ideal, zero-
knowledge assumption is to start with a population at
minimal distance from all nodes. Typical heuristics suggest
to initialize the population with a uniform distribution in a
default set of known starting points, or better yet in the
documents returned by a preliminary call to a traditional
search engine.

INPUT: n>O, e>O, t>O ; query word(s)

1 initialize population of n agents with random ,6, 7, E

2 while number of agents > 0 do for all agents:

2.1 compute for each link i in current document the
estimate Li = sum of occurrences of each query
word in document, weighted inversely to the
number of headers between the positions of i and
the word in the document

pick link i to follow according to the probability

distribution Pi=exp(flLi)//~i exp(~Lj)

2.2 E ~- E- N + eR where N = server access cost
measure and current document’s relevance R =
number of occurrences of query words in
document

1
if ( R + I ) 7 > -ff =:~ E ~-- E + where F = user

feedback energy (optional)

2.3 if E> t clone agent, split parent’s energy with
offspring, mutate offspring’s/~, %

else if E < 0 destroy agent
Table 1: Algorithm for adaptive information agents.

In order to keep search strategies simple while allowing
adaptivity, stochastic selection is used to navigate across
hyperlinks. For each cycle, each agent estimates the
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hyperlinks from the current node to decide which node to
visit next. The estimates, based on a fixed matching
function of the current document and the user keywords,
are scaled by a non-decreasing function to obtain a
probability distribution that is in turn used by a stochastic
selector. The slope of the non-linear scaling function is
determined by the agent’s genetic parameter fl This trait
represent the adaptive part of the agent’s search strategy. It
evolves by selection, reproduction, and mutation. Different
fl values can implement search strategies as different as
best-first (/~=~,), random walk (/~=0), or any middle course.

When a link is selected, the agent traverses it and finds
itself in a new document. (To prevent agents from sitting at
a favorable place without searching, no agent is allowed to
return to a previously visited document.) Any traversal
incurs an energy cost. Ideally, the cost should be a function
of the load imposed by the access on network resources,
ultimately affecting search time. The amount of energy an
agent receives by finding a document is determined by its
relevance, which in turn is estimated by a precision
measure from standard IR theory.

Each agent can also decide to present any document to
the user hoping to get bonus energy. This decision is based
on the relevance of the document and is biased by another
genetic parameter, ?;, determining the likelihood with
which a document is considered interesting enough to be
presented to the user. The extreme cases are when all
documents are presented (y=l) or none (y=0). The 
optionally provides feedback by increasing or decreasing
the agent’s energy. This is a natural model of relevance
feedback, where the user can effectively modify the
adaptive landscape with only incomplete knowledge of the
search space.

When energy exceeds a fixed threshold, the agent
produces an offspring by "local cloning." The genetic
parameters undergo random mutations, and energy
conservation is enforced by parents splitting their energy
with offspring. When energy is reduced below zero, the
agent dies. A possible variation of the algorithm in Table 1
is obtained if step 2.3 is moved ahead of 2.2: this is
effectively equivalent to cloning with one-step "lookahead"
[Menczer, Willuhn & Belew 1994]. We show in the next
section that this variation actually results in a deterioration
of performance, due to the loss of locality.

At steady-state, the user receives a flow of documents in
the form of a list of Web nodes that is updated on-line. The
search ends when the population gets extinct, converges
according to some measure, or is terminated by the user.

Results
Preliminary experiments of our system have been carried
out on a limited test bed represented by a collection of 116
relatively short documents describing the WWW project:
agents can move to any node whose URL starts with
"http://info.cern.ch/hypertext/WWW/". The total number of
links is 178, while 26 of the documents contain query
words. The graph corresponding to the test bed is shown in

Figure 1. The fact that this collection is closed to the rest of
the WWW is only one of its limitations.

Figure 1: WWW subgraph used as a test bed in the experiments.

Given an impossible query (no words in documents
match those in the query), the environment kills the agents
and extinction occurs promptly, as expected. Otherwise, the
population quickly reaches the environment’s carrying
capacity (determined by the distribution of query word
occurrences in the collection) and a steady-state document
retrieval rate from information-rich areas. These results
hold over a wide range of simulations and seem quite
promising in showing feasibility, robustness, and good
quality of retrieved documents.

In the previous section we have mentioned two
alternatives of our endogenous fitness algorithm, namely
local cloning (cf. Table 1) and lookahead cloning. Figure 
illustrates the superiority of the former. The increase of
over 200% in the rate of collected energy demonstrates the
importance of the search graph topology for effective
information gathering.

In Figure 3 we have plotted the size of four populations
of information agents to compare the performances of local
vs. lookahead cloning as well as adaptive vs. nonadaptive
(best-first) agents. Note that population size is 
appropriate measure of population fitness in endogenous



fitness models [Menczer & Belew 1995]. Once again local
cloning results in a large performance improvement. The
search strategy of adaptive agents can adjust according to
the selective pressures of the information environment.
However, adaptive populations score significantly better
than nonadaptive ones only in the simulations with
lookahead cloning. This suggests that local adaptation is
particularly advantageous when less locality is preserved
during the search process.
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Figure 2: Cumulative energy collected by information agents.
Given the same environment, agents with local cloning harvest
more energy than those reproducing with one-step lookahead. The
normalized curve is scaled to correct a difference in the e
parameter across experiments. In this and the following plots,
error bars correspond to +1 standard deviation over repeated
simulation runs.
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Figure 3: Population dynamics for adaptive and best-first
information agents. The 13 parameter (cf. Table 1) evolves in the
unit interval for adaptive populations, while the large fixed 13=50
value implements a nonadaptive, pseudo-best-first strategy.
Agents with local cloning can afford larger population sizes, but
adaptive search exhibits a significant advantage over exploitative
strategies only for agents with lookahead cloning.

Finally, user feedback is tested in simulations whose
results are shown in Figure 4. Five particularly relevant
documents are identified manually and assigned positive F

values (cf. Table 1); the rest are given negative F so that
our simulated user actually decreases the environment’s
carrying capacity, on average. Therefore the observed
increase in population size confirms that the user, without
any knowledge of information space topology, can use
relevance feedback to alter the selective pressure and
significantly improve performance.
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Figure 4: Population size for adaptive information agents with and
without user relevance feedback. In the former cases, the
parameter y (cf. Table 1) is set to 0.2. The user interactively
modifies the adaptive environment, thus accelerating the
discovery of relevant documents.

Extensions
Many extensions are possible for improved

implementations of our model. The experiments reported in
the previous section simulate on-line access in order to
avoid network load. Several options (AppleScript, Tcl,
SodaBotL [Coen 1994]) are being considered for the
implementation of actual on-line agents.

Better measures for document precision and link
estimates, using for example cosine normalization, inverse
frequency weighting, and word proximity, are under study.
Local caching and back links are other additions likely to
be incorporated in future implementations.

Simple reinforcement learning during life may provide
faster adaptive changes than evolution alone [Menczer &
Belew 1994]. Learning local characteristics about the
search space should complement the slower process of
genetic adaptation.

Another set of extensions depends on inter-agent
communication. Smart convergence measures, crossover,
shared caching, learning from other agents, and other forms
of interaction, may all speed up the location of information-
rich areas in the search graph. However, any advantages
must be traded off with the incurred communication costs.

Including server information in the computation of
energy costs allows a more efficient exploitation of
resources and therefore decreases bandwidth waste.
However, in the long run, we believe that network access
will become a serious bottleneck for any client-based



distributed search. The answer, of course, is to transfer
agents from clients to servers. While many well-founded
concerns make this solution unfeasible at present, we
imagine that in the very busy network of a near future, the
owner of a server might become willing to give up some
CPU cycles on its machine in exchange for improved
bandwidth. Transportable agents [Kotay & Kotz 1994]
would then access the server documents locally, and only
transfer relevant information back to the client.

Conclusions
We have illustrated the suitability of ALife modeling for an
important real-world application such as intelligent IR in
distributed, heterogeneous information environments.
Endogenous fitness models, in particular, have been shown
to be a natural paradigm within which to evolve
populations of adaptive information agents. The approach
we have proposed overcomes many of the limitations found
in existing systems. No index database is built, eliminating
the problems of size, server load, and dynamic updating.

We have shown locality to be important for distributed
information gathering, and the use of the WWW
hyperstructure has been made an essential feature of our
model. The search process dynamically adapts to changes
in the information environment, as well as to the variability
due to different users and queries. Exhaustive search is
overcome by more efficient, adaptive branch cutting in the
search space. The model, making only minimal
assumptions about the structure of the adaptive landscape,
allows the user to easily improve on-line performance.

The selective pressure mechanism, removing agents
from low energy zones and allocating new ones to
information-rich areas, is connected to theoretical results
about optimal on-line graph-search algorithms [Aldous &
Vazirani 1994, Deng & Papadimitriou 1990]. We are
currently working on a rigorous proof to link algorithmic
complexity and expected performance.

Since communication is the bottleneck of any distributed
algorithm (and even more so for client-based, on-line
search), the problem addressed in this paper is well
characterized by the need to limit communication among
agents to its minimum. The endogenous fitness algorithm
allows to achieve this goal in a natural way, because no
overhead is incurred by explicit communication among
agents. Density dependent selection occurs by way of
competition for shared environmental resources; no ranking
of the population is required. It should be noted, however,
that certain "hidden" communication costs cannot be
avoided. This is the case, for example, in order to make
retrieved documents "disappear" and avoid redundant
access. Caching and efficient data structures are being
considered to minimize such hidden costs.

Many other directions remain open for further work.
Present goals include analyzing evolved genetic
parameters, evaluating how performance scales with search
space size, and comparing our algorithm with existing
search methods.

References

Aldous D and Vazirani U 1994. "Go With the Winners"
Algorithms. Proc. 35th Annual Symposium on
Foundations of Computer Science, 492-501. Los
Alamitos, CA: IEEE Comput. Soc. Press

Belew RK 1989. Adaptive information retrieval: Using a
connectionist representation to retrieve and learn about
documents. Proc. SIGIR 89, 11-20. Cambridge, MA

Belew RK 1985. Evolutionary decision support systems:
An architecture based on information structure.
Knowledge Representation for Decision Support
Systems, ed. by Methlie LB and Sprague RH, 147-160.
Amsterdam: North-Holland

Coen MH 1994. SodaBot: A Software Agent Environment
and Construction System. Proc. CIKM’94 Workshop on
Intelligent Information Agents. Gaithersburg, MD

De Bra PME and Post RDJ 1994. Information retrieval in
the World Wide Web: Making client-based searching
feasible. Proc. 1st Intl. World Wide Web Conference, ed.
by Nierstrasz O. Geneva: CERN

Deng X and Papadimitriou CH 1990. Exploring an
unknown graph. Proc. 31st Annual Symposium on
Foundations of Computer Science, 355-361. Los
Alamitos, CA: IEEE Comput. Soc. Press

Kotay KD and Kotz D 1994. Transportable Agents. Proc.
CIKM’94 Workshop on Intelligent Information Agents.
Gaithersburg, MD

Lashkari Y, Metral M, and Maes P 1994. Collaborative
Interface Agents. Technical Report, Media Lab, MIT

Maes P and Kozierok R 1993. Learning interface agents.
Proc. 1 lth AAAI Conference, 91-99. Los Angeles, CA:
Morgan Kaufmann

Mauldin ML and Leavitt JRR 1994. Web agent related
research at the Center for Machine Translation. Proc.
ACM SIGNIDR 94

McBryan OA 1994. GENVL and WWWW: Tools for
taming the Web. Proc. 1st Intl. World Wide Web
Conference, ed. by Nierstrasz O. Geneva: CERN

Menczer F and Belew RK 1995. Latent Energy
Environments. Adaptive Individuals in Evolving
Populations: Models and Algorithms, ed. by Belew RK
and Mitchell M. Reading, MA: Addison Wesley

Menczer F and Belew RK 1994. Evolving sensors in
environments of controlled complexity. Artificial Life IV,
ed. by Brooks R and Maes P, 210-221. Cambridge, MA:
MIT Press

Menczer F, Willuhn W, and Belew RK 1994. An
Endogenous Fitness Paradigm for Adaptive Information
Agents. Proc. CIKM’94 Workshop on Intelligent
Information Agents. Gaithersburg, MD

Mitchell M and Forrest S 1994. Genetic algorithms and
artificial life. Artificial Life 1(3):267-289

Sheth B and Maes P 1993. Evolving Agents for
Personalized Information Filtering. Proc. 9th IEEE
Conference on AI for Applications

Yang J and Korfhage RR 1993. Query Optimization in
Information Retrieval Using Genetic Algorithms. Proc.
5th ICGA, 603-611. Urbana, IL


