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Abstract

A general design procedure is suggested for microstrip antennas using artificial neural networks and

this is demonstrated using rectangular patch geometry. In this design procedure, synthesis is defined as

the forward side and then analysis as the reverse side of the problem. Worked examples are given using

the most efficient materials.
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1. Introduction

In high-performance spacecraft, aircraft, missile and satellite applications, where size, weight, cost, perfor-
mance, ease of installation, and aerodynamic profile are constraints, low profile antennas may be required.
Presently, there are many other government and commercial applications, such as mobile radio and wireless
communications that have similar specifications. To meet these requirements, microstrip antennas can be
used [1]. These antennas are low-profile, conformable to planar and non-planar surfaces, simple and inexpen-
sive to manufacture using modern printed circuit technology, mechanically robust when mounted on rigid
surfaces, compatible with MMIC designs, and when particular patch shape and mode are selected they are
very versatile in terms of resonant frequency, polarization, pattern, and impedance. In addition, by adding
loads between the patch and the ground plane, such as pins and varactor diodes, adaptive elements with
variable resonant frequency, impedance, polarization, and pattern can be adjusted [2].

Often microstrip antennas are also referred to as patch antennas because of the radiating elements
(patches) photoetched on the dielectric substrate. This radiating patch may be square, rectangular, circular,
elliptical, triangular, and any other configuration. In this work, rectangular microstrip antennas are the
ones under consideration (Figure 3). The patch dimensions of rectangular microstrip antennas are usually
designed so its pattern maximum is normal to the patch. Because of their narrow bandwidths and effectively
operation in the vicinity of resonant frequency, the choice of the patch dimensions giving the specified
resonant frequency is very important. In the literature, artificial neural network (ANN) models have been
built usually for the analysis of microstrip antennas in various forms such as rectangular, circular, and
equilateral triangle patch antennas [4-7]. In these works, the analysis problem can be defined as to obtain

resonant frequency for a given dielectric material and geometric structure (Figure 2). However, in the
present work, the corresponding synthesis ANN model is built to obtain patch dimensions of rectangular
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microstrip antennas (W,L) as the function of input variables, which are the height of the dielectric substrate

(h), dielectric constants of the dielectric material (εr , εy), and the resonant frequency (fr) (Figure 1).
This synthesis problem is solved using the electromagnetic formulae of the microstrip antennas. In this
formulation, 2 points are especially emphasized: the resonant frequency of the antenna and the condition for
good radiation efficiency. Using reverse modeling, an analysis ANN is built to find out the resonant frequency
immediately for a given rectangular microstrip antenna system. The models are simple, easy to apply, and
very useful for antenna engineers to predict both patch dimensions and resonant frequency. Thus, in the
following sections, the forward and reverse sides of this design problem are defined as black-ANN boxes;
then the electromagnetic background is briefly summarized for building the synthesis ANN model. In the
following section, also, this synthesis model is reversed for the analysis purpose of the given antenna system
whose results are compared with those in the literature.

2. Design Problem for the Microstrip Antenna

In this work, the patch geometry of the microstrip antenna is obtained as a function of input variables,
which are height of the dielectric material (h), dielectric constants of the substrate material (εr , εy), and

the resonant frequency (fr), using ANN techniques (Figure 1). Similarly, in the analysis ANN, the resonant

frequency of the antenna is obtained as a function of patch dimensions (W, L), height of the dielectric

substrate (h), and dielectric constants of the material (εr , εy) (Figure 2).

Thus, the forward and reverse sides of the problem will be defined for the rectangular patch geometry
in the following subsections.

2.1. The forward side of the problem: The synthesis ann

The input quantities to the ANN black-box in synthesis (Figure 1) can be ordered as:

• h : height of the dielectric substrate;

• εr , εy : electrical properties of the dielectric substrate, where εr , εy are the permittivities in the x and

y directions of the dielectric material used in the system, respectively;

• fr : resonant frequency of the antenna.

The following quantities can be obtained from the output of the black-box as functions of the input
variables:

• W : width of the patch;

• L : length of the patch.

446
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Figure 1. The synthesis ANN model.

2.2. The reverse side of the problem: The analysis ann

In the analysis side of the problem, terminology similar to that in the synthesis mechanism is used, but the
resonant frequency of the antenna is obtained from the output for a chosen dielectric substrate and patch
dimensions at the input side (Figure 2).

Figure 2. The analysis ANN model.

2.3. Electromagnetic Working of Microstrip Antennas

Microstrip patch antennas, which are the most common printed-board radiating elements at RF and mi-
crowave frequencies, have 2 basic models to explain electromagnetic working: (i) transmission line; (ii)
cavity. Both of them give good physical insight; however, the cavity model is more accurate, and at the
same time more complicated. Later a full-wave analysis has been developed including primarily the integral
equations/moment methods to treat accurately single elements as well as finite and infinite arrays, stacked
elements, arbitrary shaped elements, and coupling.

In recent decades, neural network models have been developed especially for the calculation of resonant
frequencies for the various shapes of antennas such as equilateral triangular, circular, and rectangular
microstrip antennas, respectively in [4-9]. The accurate evaluation of the resonant frequency of microstrip
antennas is a key factor to determine their correct behaviors. Training and test data sets used for these
ANN models were obtained either analytically or measured from previous works in the literature. ANN
models developed for the evaluation of the input impedances of microstrip antennas are also available in
the literature [10, 11]. There is also a fast technique to evaluate the resonant frequency of microstrip

antennas using neuro-fuzzy networks [12]. In [13] and [14], a neural technique is combined with the spectral

(wavenumber domain) analysis together the resulting “neurospectral” analysis to apply the square-patch
antenna basically for analysis but then reversing the model for the synthesis of the antenna. Another role
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for ANNs in reverse modeling is as function/inverse function approximators for RF/Microwave transmission

line design problems [15].

2.4. Rectangular microstrip antennas

The rectangular microstrip antennas are made of a rectangular patch with dimensions width, W,and length,
L , over a ground plane with a substrate thickness hand dielectric constantsεr , εy , as given in Figure 3.

Dielectric constants are usually used in the range 2.2 ≤ εr ≤ 12. However, the most desirable ones are the
dielectric constants at the lower end of this range together with the thick substrates, because they provide
better efficiency and larger bandwidth, but at the expense of larger element size [3].

Figure 3. Rectangular microstrip antenna.

In the literature, almost all works have been done by choosing the dielectric substrate to be in an
isotropic structure. In this work, the ANN model is capable of giving results for both isotropic and anisotropic
structures of the dielectric substrate. For an anisotropic substrate, the spacing parameter h is replaced by
the effective spacing he , and the geometric mean εg is used for the dielectric constantεr :

he =
√

εr

εy
h (1)

εg =
√

εrεy (2)

The effective dielectric constant of the dielectric material is given in (2):

εeff =
εg + 1

2
+

εg − 1
2

[1 + 12
he

W
]−1/2 (3)

For an efficient radiator, a practical width that leads to good radiation efficiencies is [2]:

W =
vo

2fr

√
2

εg + 1
(4)
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where vo is the free-space velocity of light.
The actual length of the patch:

L =
1

2fr
√

εeff
√

µoεo
− 2∆L (5)

where ∆L is the extension of the length due to the fringing effects and is given by:

∆L

h
= 0.412

(εeff + 0.3)
(

W
h + 0.264

)
(εeff − 0.258)

(
W
h

+ 0.8
) (6)

3. Building Neural Networks for Rectangular Microstrip Antenna

and Results

In this work, both Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks were used in
ANN models. In the following 2 sections, the structures of these ANNs are described briefly.

3.1. RBF Networks

Feedforward neural networks with a single hidden layer that use radial basis activation functions for hidden
neurons are called radial basis function networks. RBF networks are applied for various microwave modeling
purposes. A typical RBF network structure is given in Figure 4. The parameters cij and λ ij are centers and
standard deviations of radial basis activation functions. Commonly used radial basis activation functions
are gaussian and multiquadratic.

Figure 4. RBF neural network structure.

Given the inputs x, the total input to the ith hidden neuron γi is given by

γi =

√√√√ n∑
j=1

(
xj − cij

λij

)2

, i = 1, 2, ....., N (7)
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where N is the number of hidden neurons. The output value of the ith hidden neuron iszij = σ(γi), where

σ(γ)is a radial basis function. Finally, the outputs of the RBF network are computed from hidden neurons
as

yk =
N∑

i=0

wkizki (8)

where wki is the weight of the link between the ith neuron of the hidden layer and the k th neuron of the
output layer. Training parameters w of the RBF network include wk0 , wki , cij , λ ij , k = 1,2, . . . , m,

I = 1,2, . . . .,N, j = 1,2, . . . n [17].

3.2. Multilayer perceptron networks

MLP are feedforward neural networks trained with the standard backpropagation algorithm. They are
supervised networks and so they require a desired response to be trained. They learn how to transform
input data into a desired response, and so they are widely used for pattern classification. With 1 or 2 hidden
layers, they can approximate virtually any input-output map. They have been shown to approximate the
performance of optimal statistical classifiers in difficult problems. Most neural network applications involve
MLP. The basic MLP building unit is a simple model of artificial neurons. This unit computes the weighted
sum of the inputs plus the threshold weight and passes this sum through the activation function (usually

sigmoid). In a multilayer perceptron, the outputs of the units in one layer form the inputs to the next
layer. The weights of the network are usually computed by training the network using the back propagation
algorithm [16].

4. Structures of the neural networks

The MLP network, which has a configuration of 4 input neurons, 10 and 5 neurons in 2 hidden layers, and
2 output neurons with learning rate = 0.1, goal = 0.001, was trained for 400 epochs. Hyperbolic tangent
sigmoid and linear transfer functions were used in MLP training. MLP models were trained with almost all
network learning algorithms. Among these, those giving the best results for the MLP network are shown in
Table 1. In the RBF network, the spread value was chosen as 0.01, which gives the best accuracy. Both MLP
and RBF were trained with 45 samples and tested with 15 samples determined according to the definition
of the problem; 5 inputs and 1 output were used for the analysis ANN and 4 inputs and 2 outputs for the
synthesis ANN. The training and test data of the synthesis and analysis ANN were obtained from both
experimental results given in previous works [6] and a computer program using formulae given in Section 3.
The data are in matrix form consisting of inputs and target values and arranged according to the definitions
of the problems.

5. Results

In Table 1, the accuracy values of analysis ANN for 4 networks giving the best results are given. As can be
seen from Tables 1 and 4, in synthesis and analysis, RBF network were the one giving the best approximation
to the target values whose structure is defined in the following subsection. The results of the synthesis and
analysis ANN for an isotropic material (ε r= ε y) and comparison with the targets are given in Table 2 and
3, respectively.
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Table 1. Accuracies of the synthesis ANN for 4 networks giving the best results.

Accuracy%
RBF 99.09

MLP 1 96.53
MLP 2 95.05
MLP 3 94.88

RBF: Radial basis function network.
MLP 1: Multilayer perceptron network using scaled conjugate gradient backpropagation as learning algo-
rithm.
MLP 2: Multilayer perceptron network using resilient backpropagation algorithm as learning algorithm.

MLP 3: Multilayer perceptron network using Levenberg-Marquardt optimization algorithm as learning
algorithm.

Table 2. Results of the synthesis ANN and comparison with the targets.

h(cm) εr fr(GHz) W-target(cm) W-RBF(cm) L-target(cm) L-RBF(cm)
0.3175 2.33 2.310 5.7000000e+000 5.6974505e+000 3.8000000e+000 3.7994597e+000
0.3175 2.33 2.890 4.5500000e+000 4.5474521e+000 3.0500000e+000 3.0499109e+000
0.3175 2.33 4.240 2.9500000e+000 2.9511621e+000 1.9500000e+000 1.9486281e+000
0.3175 2.33 5.840 1.9500000e+000 1.9475063e+000 1.3000000e+000 1.2971094e+000
0.3175 2.33 6.800 1.7000000e+000 1.6944723e+000 1.1000000e+000 1.1033160e+000
0.3175 2.33 7.700 1.4000000e+000 1.3929305e+000 9.0000000e-001 9.0775583e-001
0.3175 2.33 8.270 1.2000000e+000 1.1977494e+000 8.0000000e-001 7.9030186e-001
0.3175 2.33 9.140 1.0500000e+000 1.0426235e+000 7.0000000e-001 7.0188779e-001
0.9525 2.33 4.730 1.7000000e+000 1.7005360e+000 1.1000000e+000 1.1001805e+000
0.4000 2.55 7.134 7.9000000e-001 7.9083561e-001 1.2550000e+000 1.2579399e+000
0.4500 2.55 6.070 9.8700000e-001 9.8108696e-001 1.4500000e+000 1.4564505e+000
0.4760 2.55 5.820 1.0000000e+000 1.0135424e+000 1.5200000e+000 1.5142246e+000
0.4760 2.55 6.380 8.1400000e-001 8.1739191e-001 1.4400000e+000 1.4414665e+000
0.5500 2.55 5.990 7.9000000e-001 7.8253575e-001 1.6200000e+000 1.6187765e+000
0.1570 2.33 5.060 1.7200000e+000 1.7173371e+000 1.8600000e+000 1.8634147e+000

Table 3. Results of the analysis ANN and comparison with the targets.

h(cm) εr W (cm) L (cm) fr -target(GHz) fr -RBF(GHz)
0.3175 2.33 5.7 3.80 2.3100000e+000 2.3108710e+000
0.3175 2.33 4.55 3.05 2.8900000e+000 2.8880900e+000
0.3175 2.33 2.95 1.95 4.2400000e+000 4.2060612e+000
0.3175 2.33 1.95 1.30 5.8400000e+000 5.8893107e+000
0.3175 2.33 1.70 1.10 6.8000000e+000 6.6958903e+000
0.3175 2.33 1.40 0.90 7.7000000e+000 7.7905070e+000
0.3175 2.33 1.20 0.80 8.2700000e+000 8.3661174e+000
0.3175 2.33 1.05 0.70 9.1400000e+000 9.0719890e+000
0.9525 2.33 1.70 1.10 4.7300000e+000 4.6866520e+000
0.4000 2.55 0.79 1.255 7.1340000e+000 7.0603068e+000
0.4500 2.55 0.987 1.45 6.0000000e+000 6.0940227e+000
0.4760 2.55 1.00 1.52 5.8200000e+000 5.8599528e+000
0.4760 2.55 0.814 1.44 6.3800000e+000 6.4233684e+000
0.5500 2.55 0.79 1.62 5.9900000e+000 5.9439372e+000
0.1570 2.33 1.72 1.86 5.0600000e+000 5.0258464e+000
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Table 4. Accuracies of the analysis ANN for four networks giving the best results.

Accuracy%
RBF 97.76

MLP 3 97.75
MLP 2 96.68
MLP 1 95.85

6. Conclusion

In this work, the neural network is employed as a tool in design of the microstrip antennas. In this design
procedure, synthesis is defined as the forward side and then analysis as the reverse side of the problem.
Therefore, one can obtain the geometric dimensions with high accuracy, which are the length and the width
of the patch in our geometry, at the output of the synthesis network by inputting resonant frequency,
height and dielectric constants of the chosen substrate. Furthermore, in our work, the synthesis can also
be applied into anisotropic dielectric substrate. In this work, the analysis is considered as a final stage of
the design procedure, therefore the parameters of the analysis ANN network are determined by the data
obtained reversing the input-output data of the synthesis network. Thus, resonant frequency resulted from
the synthesized antenna geometry is examined against the target in the analysis ANN network. Finally, in
this work, a general design procedure for the microstrip antennas is suggested using artificial neural networks
and this is demonstrated using the rectangular patch geometry.
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