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MIKE ELLIOTT,5 MICHEL FRANKIGNOULLE,4,8 FRED GAZEAU,2,4,9 JACK J. MIDDELBURG,6 MARIE-DOMINIQUE PIZAY,2 AND

JEAN-PIERRE GATTUSO
2
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Abstract. Knowing the metabolic balance of an ecosystem is of utmost importance in
determining whether the system is a net source or net sink of carbon dioxide to the
atmosphere. However, obtaining these estimates often demands significant amounts of time
and manpower. Here we present a simplified way to obtain an estimation of ecosystem
metabolism. We used artificial neural networks (ANNs) to develop a mathematical model of
the gross primary production to community respiration ratio (GPP:CR) based on input
variables derived from three widely contrasting European coastal ecosystems (Scheldt Estuary,
Randers Fjord, and Bay of Palma). Although very large gradients of nutrient concentration,
light penetration, and organic-matter concentration exist across the sites, the factors that best
predict the GPP:CR ratio are sampling depth, dissolved organic carbon (DOC) concentration,
and temperature. We propose that, at least in coastal ecosystems, metabolic balance can be
predicted relatively easily from these three predictive factors. An important conclusion of this
work is that ANNs can provide a robust tool for the determination of ecosystem metabolism
in coastal ecosystems.

Key words: artificial neural networks; coastal ecosystems; metabolic balance; primary production;
respiration.

INTRODUCTION

Eutrophication, as defined by Nixon (1995), is the

increase in supply of organic matter to a system.

Although not all coastal systems are subject to

eutrophication, many nearshore systems adjacent to

large population centers are organically enriched. In a

review of coastal eutrophication, Boesch (2002) reported

that 67% of the combined surface area of U.S. estuaries

exhibited moderate to high degrees of eutrophication,

and a similar picture is emerging in regions of Europe

(Vidal et al. 1999, Conley et al. 2002, Herman et al.

2005). Estuarine and coastal areas are naturally pro-

ductive ecosystems; nevertheless, human activities such

as urbanization, industrialization, and agricultural

practices have led to dramatically increased inputs of

nitrogen (N) and phosphorus (P) to coastal areas

(Howarth et al. 1996, Bouwman et al. 2005). Moreover,

recent estimates show that ;20% of the global human

population lives within 30 km of the coast, and this

percentage is likely to increase in the future (Small and

Nicholls 2003).

Increases in the nutrient loading to a system can lead

to dramatic changes in phytoplankton community

structure and activity (e.g., Berg et al. 2003). Higher

phytoplankton biomass in turn leads to increased

turbidity in the water column and organic-matter supply

to the sediments, often resulting in anoxic bottom waters

such as in the Baltic Sea (Bonsdorff et al. 2002,

Lundberg 2005) and Chesapeake Bay (Cooper and

Brush 1991). Nutrient and organic-matter concentra-

tions also influence prokaryotic community composition

(Cottrell and Kirchman 2000, Bouvier and del Giorgio

2002, Makino et al. 2003). Thus, increases in nutrient

loadings to a system induce changes in the structure of

both the autotrophic and heterotrophic communities.

Aquatic ecosystems are categorized in terms of their

net ecosystem metabolism, defined as the balance
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between the autochthonous production of organic

matter (gross primary production, GPP) and the

remineralization (community respiration, CR) of organ-

ic matter. Systems are considered autotrophic and,

hence, a potential net sink of CO2 when production of

organic matter exceeds the demands of respiration (GPP

. CR). Conversely, in heterotrophic systems respiratory

demand outweighs autochthonous production of organ-

ic matter (GPP , CR), and thus the system is potentially

a net source of CO2. Thus, ecosystems are classified in

terms of the fate of the organic matter produced within

the system rather than in terms of production and

respiration rates.

Environmental legislation has developed from sector-

al-based or regional-based regulations to more ecosys-

tem-based, holistic environmental directives (Apitz et al.

2006). An understanding of ecosystem metabolism is

necessary for any holistic ecosystem management plan

as ecosystem metabolism governs the accumulation or

removal of organic matter from a system. Moreover,

ecosystem metabolism has major consequences for

nutrient recycling and use (Smith et al. 1989) and thus

management. Having a rapid estimate of ecosystem

metabolism and its response to any management options

can provide important information for future decision

making. For example, systems that have very low

GPP:CR ratios are highly net heterotrophic and thus

have high oxygen demands that may present anoxia

problems. Conversely, systems with high GPP:CR ratios

will have high primary production rates, which will lead

to an accumulation of organic matter in the system.

Thus it is clear that a rapid and robust method of

determining ecosystem metabolism can provide useful

data.

Many studies have focused on the causes and

consequences of eutrophication in coastal waters (e.g.,

Kemp et al. 1997). However, none to our knowledge has

adopted a comparative approach to address the factors

influencing ecosystem metabolism. In this study, we

present data on the metabolic balance of three markedly

different European coastal ecosystems: the Bay of Palma

in Mallorca Island, Spain; Randers Fjord in Denmark;

and the Scheldt Estuary in Belgium and The Nether-

lands. The study sites were chosen to encompass

gradients of light penetration, nutrient concentration

and enrichment, and eutrophication. A number of

additional physical (e.g., salinity), chemical (e.g., con-

centration of nutrients), and biological (e.g., bacterial

abundance) parameters were recorded as well to identify

cause-and-effect relationships. In order to have a clearer

understanding of the factors potentially influencing the

metabolic state of the three ecosystems studied, the data

were used to develop a mathematical model based on

artificial neural networks (ANNs). Conventional statis-

tical methods used to identify relationships between

parameters are restricted to data that fit a predefined

model (e.g., the normal distribution). In contrast, ANNs

employ a training phase to adapt the model parameters

to the data and are thus not, a priori, confined to a

predetermined model condition (e.g., linear or nonlinear
relationships). Additionally, ANNs are very well suited

to process multidimensional data in which complex
nonlinear interrelationships between the parameters can

be expected. Artificial neural networks have been
successfully used for such diverse tasks as comparing
natural microbial communities based on the analysis of

5S rRNA (Noble et al. 1997), modeling the frequency of
virally infected bacterial cells and rates of viral

production in the North Sea (Winter et al. 2005), and
modeling phytoplankton primary production in Ches-

apeake Bay (Scardi and Harding 1999). Artificial neural
networks were employed in this study to model the

metabolic state of the three study sites as represented by
the GPP:CR ratio.

METHODS

Study areas

The Bay of Palma, Mallorca, Spain, is a large,

oligotrophic bay located in the northwestern Mediter-
ranean (Fig. 1). The bay has an area of 216 km2, with a

mean depth of 31 m (Gazeau et al. 2005a). There are no
major riverine inputs to the bay, and water residence is

determined by the wind direction and intensity, with
residence times varying between 2.5 and 10 d (Gazeau et

al. 2005a). The city of Palma de Mallorca is located at
the head of the bay and has a resident population of

360 000 inhabitants. However, the region is a popular
tourist area, and during peak occupancy the population

can reach 500 000 in the bay area. In February/March
and June 2002, four stations were sampled to cover the

range of productivities in the bay, and at each station
four depths, covering the range of the water column,

were sampled (Gazeau et al. 2005a).
The Randers Fjord is the longest Danish estuary with

a length of 27 km, a surface area of 23 km2, and a mean
depth of 1.6 m (Nielsen et al. 2001). Freshwater inputs

are dominated by the Gudenå River, which drains a
large proportion of the catchment area (3200 km2;
Andersen 1999) and has a discharge of ;109 m3/yr. The

estuary also receives water from a minor tributary,
Grund Fjord, and from the wastewater treatment plants

in the catchment. The estuary empties into the Kattegat,
and water residence time within the estuary varies

seasonally and averages 13 d (Nielsen et al. 2001).
Randers Fjord was sampled in April and August of

2001. Five stations were visited along the salinity
gradient (0–29ø). This meso-eutrophic estuary exhibits

a typical two-layer circulation with a well-developed
pycnocline. Therefore, samples (Table 1) were collected

at four discrete depths to allow sampling from both the
surface mixed layer and the sub-pycnocline bottom layer

(Gazeau et al. 2005b).
The Scheldt Estuary is an organically enriched and

hyper-nutrified system located in Belgium and The
Netherlands. The dominant freshwater supply to the

estuary derives from the Scheldt River, with a catchment
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area of 19 500 km2 (Heip 1989). The dominance of tidal

exchange in the estuary relative to that of freshwater

inputs results in extremely long freshwater residence

times of up to 70 d in the freshwater reaches (Wollast

1988, Soetaert and Herman 1995). Strong tidal currents

(up to 1.5 m/s), combined with the relatively low

proportion of freshwater inputs (up to 200 times less

than seawater influx) result in a well-mixed water

column along the length of the estuary (Wollast 1988).

The estuary and plume were sampled in November 2002

and April 2003. Five stations were sampled in Novem-

ber and six in April covering the salinity gradient

(0–34ø), and, due to the well-mixed nature of this

estuary, only the subsurface was sampled (5 m; Fig. 1)

(Gazeau et al. 2005c). Hereafter, Scheldt Estuary refers

to both the inner estuary and the dilution plume.

Sample collection and analysis

Many of the methods used are described in more

detail in other papers from this study, and therefore only

a brief description of each method is presented below

(Rochelle-Newall et al. 2004, Veuger et al. 2004, Gazeau

et al. 2005a, b, c). At each station, salinity and temper-

ature were measured with a conductivity, temperature,

and depth (CTD) probe (Sea-Bird Electronics, Bellevue,

Washington, USA; see Plate 1) and light penetration

(photosynthetically active radiation, PAR) in the water

column was measured with a LI-COR spherical sensor

LI-193SA (LI-COR, Lincoln, Nebraska, USA). Samples

were collected as close to sunrise as possible using

Niskin bottles (General Oceanics, Miami, Florida,

USA).

Dissolved inorganic nutrients (NO3
� þ NO2

�, NH4
þ,

dissolved inorganic phosphorus [DIP]) were measured

using automated colorimetric techniques after filtration

through GF/F filters (Veuger et al. 2004). Dissolved

inorganic nitrogen (DIN) is defined as the sum of NH4
þ

and NO3
� þNO2

�; DIP is the concentration of soluble

reactive phosphate. Dissolved silicate (DSi) was mea-

sured after filtration through 0.45-lm Millipore filters.

Total dissolved nitrogen (TDN) and total dissolved

phosphorus (TDP) were measured using standard

methods. Chlorophyll a (chl a) and pigment concentra-

tions were measured on GF/F filters that were stored

frozen until extraction and analysis by high-performance

liquid chromatography (Barranguet 1997). Suspended

particulate material (SPM), as well as the particulate

organic carbon and nitrogen content, were measured

using a carbon–hydrogen–nitrogen (CHN) analyzer

(Nieuwenhuize et al. 1994).

Planktonic GPP and CR were measured using the

light-dark O2 incubation method at each of the three

FIG. 1. Map of the three study areas: Bay of Palma in Mallorca Island, Spain; Randers Fjord in Denmark; and Scheldt Estuary
in Belgium and The Netherlands. For the Bay of Palma, sampling stations are indicated by solid circles. For Randers Fjord,
sampling stations in April 2001 are indicated by solid circles; sampling stations in August 2001 are indicated by open circles. For
Scheldt Estuary, sampling stations in November 2002 are indicated by solid circles; sampling stations in April 2003 are indicated by
open circles.
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sites (Gazeau et al. 2005a, b, c). In Randers Fjord,

planktonic metabolism during the two cruises was

estimated using five replicates incubated in situ at four

depths from the sunrise to sunset in transparent and

dark 60-mL biological oxygen demand (BOD) bottles. In

the Bay of Palma, planktonic metabolism was estimated

using in situ incubations in March and June 2002 at four

stations. In the Scheldt Estuary planktonic metabolism

was measured at five and six stations in November 2002

and April 2003, respectively. Samples from the Scheldt

were incubated in flowing seawater in an onboard

incubator (at 100%, 50%, 25%, and 12% incident irradi-

ance; Gazeau et al. 2005c). Daily planktonic respiration

rate (CR) was calculated by multiplying the hourly dark

rates by 24, therefore assuming a constant rate over 24

hours. Hourly GPP were multiplied by day length to

estimate daily planktonic GPP.

Samples for dissolved organic carbon (DOC) collected

in Randers Fjord and the Scheldt Estuary were filtered

through glass fiber filters in precombusted 10-mL glass

ampoules, preserved with 12 lL 85% phosphoric acid

(H3PO4) and flame-sealed (Rochelle-Newall et al. 2004).

Due to the low particulate organic carbon concentration

in the Bay of Palma, total organic carbon (TOC)

samples were collected to minimize the risk of contam-

ination from filtration. Dissolved organic carbon con-

centration was measured on a Shimadzu 5000 TOC

analyzer (Shimadzu, Kyoto, Japan), using potassium

phthalate calibration standards over the measurement

range 0–800 lmol/L C. Certified reference materials

(Hansell Laboratory, University of Miami, Miami,

Florida, USA) were also used to assess the performance

of the instrument on and between measurement days.

The machine blank, calculated as the difference between

the measured concentration of the external standards

and the ‘‘real’’ concentration of the external values, was

between 8 and 12 lmol/L C for the measurement days.

Bacterial abundance (BA) was measured using the

4, 6-diamidine-2-pheylindole, dihydrochloride (DAPI)-

staining technique of Porter and Feig (1980). Bacterial

cells were enumerated in at least 20–30 randomly

selected fields of view under 12503 magnification

(Rochelle-Newall et al. 2004).

Bacterial production (BP) was estimated by the
3H-leucine incorporation method (Smith and Azam

1992). The amount of radioactivity contained in the

particulate fraction was measured in a scintillation

counter using Ultima Gold scintillation cocktail (Pack-

ard Instruments, Downers Grove, Illinois, USA).

Uptake of 3H-leucine was transformed into micromoles

of C per liter per day using the conversion factors of

Simon and Azam (1989).

Modeling GPP:CR ratio using ANNs

Basheer and Hajmeer (2000) provide a good intro-

duction to ANN theory. Feed-forward ANNs with one

layer of hidden neurons and one output neuron were

implemented in Mathematica 5.2 using the Neural

Networks application package (Wolfram Research,

Champaign, Illinois, USA). A bias term with a fixed

value of one was included in the input and the hidden

layer. Before training, the parameters of the networks

were initialized using the option ‘‘LinearParameters’’ in

order to randomize the initial values of the nonlinear

parameters within the range of the input data and to

completely randomize the linear parameters. We used

the Levenberg-Marquardt algorithm (Marqhardt 1963,

Haykin 1999) to train the ANNs for 100 iterations,

employing the sigmoid function as the activation

function of the hidden neurons. Prior to training, the

data were scaled to a mean of zero and unity variance.

Progress of the training procedure was monitored using

the root mean square error (RMSE) of the networks.

The first phase of modeling was designed to determine

suitable sets of input parameters for modeling the

GPP:CR ratio. We considered the following 23 input

parameters: bacterial abundance and production, bot-

tom depth, the concentrations of chlorophyll a, b, and c,

sampling depth, DOC concentration, NH4, NO2, NO3,

DIP, DSi, oxygen saturation, PAR, and the percentage

of PAR at the sampling depth, salinity, SPM, percentage

of carbon and nitrogen in SPM, TDN, TDP, and water

temperature.

PLATE 1. A CTD (conductivity, temperature, and depth)
probe, shown here at the Scheldt Estuary, was used at each site
to measure the physical parameters of the water column. Photo
credit: F. Gazeau.
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Only parameters collected in situ at 5-m depth were

considered in the Scheldt Estuary due to its well-mixed

condition. The input parameters were used alone and in

combination with up to two other parameters to train

ANNs with one to five hidden neurons. The initial

values of the weights of the network can have a

profound influence on the outcome of the training

procedure (Haykin 1999). Thus, for each set of input

parameters and number of hidden neurons, 100 ANNs

were initialized and trained as described above. Artificial

neural networks are capable of memorizing the data

used for training when trained over too many iterations

(over-training), particularly when the networks have a

large number of hidden neurons. Over-training makes

predictions on the basis of new input data inaccurate. In

order to prevent over-training, we performed cross-

validation (Haykin 1999). The data set was split into a

training data set (75% of the data) and a validation data

set (25% of the data) by assigning every fifth data vector

to the validation data set. While the training data set is

used for adjusting the networks parameters in order to

decrease the networks error, the validation data set is

only used to validate the network at each iteration

during training without interfering in parameter adjust-

ment. Training was assumed to have converged when

the sum of the RMSE of the training and validation data

sets reached a minimum.

The networks were reconstituted at the iteration of the

minimum of the combined errors by retrieving the

corresponding network parameters from the training

record. The best performing ANNs for each set of input

parameters and number of hidden neurons were

determined by the smallest sum of the RMSE of the

training and validation data set at convergence of

training. In this first phase we initialized, trained, and

screened a total of 254 000 ANNs.

The second phase of modeling used only the sets of

input parameters yielding good results in the first phase

and was targeted at finding the most suitable set of input

parameters and the best performing network structure.

The number of hidden neurons was increased stepwise

to a maximum of 12. For each set of input parameters,

as identified in the first phase of model development and

number of hidden neurons (6–12 hidden neurons), 1000

ANNs were initialized, trained, and screened as de-

scribed above. The best performing set of input

parameters and network structure was found by

searching for the minimum of the combined RMSE of

the training and validation data set between the sets of

input parameters and number of hidden neurons. The

ANN was used to perform a simulation of the GPP:CR

ratio by varying the input parameters within the ranges

found in the three study sites.

Statistical analyses

The Kruskal-Wallis and the Mann-Whitney tests were

used to test whether the variables differed between the

study sites. To avoid any bias introduced by data from

TABLE 1. Summary of physicochemical data (minimum and maximum in ranges) from the three study sites (the Bay of Palma in
Mallorca Island, Spain; Randers Fjord in Denmark; and the Scheldt Estuary in Belgium and The Netherlands) for both
sampling periods.

Parameter

Randers Fjord Bay of Palma Scheldt Estuary

Apr 2001 Aug 2001 Mar 2002 Jun 2002 Nov 2002 Apr 2003

Mean depth (m) 1.6a 1.6a 31b 31b 9.7c 9.7c

Maximum depth (m) 10 8.5 37 33 17 17
Temperature (8C) 6.6–9.9 17.5–19.8 14.2–14.4 18–23.5 11–12.7 7.7–11.4
Salinity 0.2–29.5 0.2–28.1 37.4–37.6 37.7–37.8 0.55–30.4 1.2–34.0
Surface irradiance (lmol photons�m�2�s�1) 205–738 183–588 242–761 960–1110 114–331 257–810
Light attenuation coefficient (m�1) 0.6–1.3 0.2–1.3 0.11–0.15 0.1–0.2 0.9–8.2 1.7–4.3
Chlorophyll a (lg/L) 0.6–19.7 0.3–16.3 0.2–4.2 0.04–0.6 1.7–16.9 2.9–13.9
SPM (mg/L) 1.5–43.1 0.6–12.1 0.4–60.3 0.3–40 22–118 29–179
SPM (%C) 2.7–16.9 3.1–24 0.5–20 1.4–20 5–6 0.4–0.7
SPM (%N) 0.3–1.8 1.5–3.4 0.5–4.6 0.2–2.4 0.4–0.7 0.6–1.8
POC (lmol/L) 16–232 5–89 2–538 2–17 87–592 344–1384
DOC (lmol/L) 209–470 244–392 57–76 63–97 98–510 195–428
DSi (lmol/L) 1.3–113 6.4–283 ��� ��� 14–227 17–131
DIP (lmol/L) 0.05–0.4 0.1–2.9 ��� ��� 0.64–6.0 0.6–5.2
NO3 (lmol/L) 0.06–134d 0.03–9.2d 001–0.5 03–0.6 6.0–297 29.1–354
NH4 (lmol/L) 0.9–7.2d 0.9–66.6d 01–0.4 0.1–0.3 2.8–88 0.5–129
TDN (lmol/L) 21.5–144 0.6–104 2.6–4.6 3.1–4.0 21.5–448 219–491
TDP (lmol/L) 0.08–3.9 0.3–3.9 0.17–0.34 0.24–0.39 0.4–4.3 0.5–3.4
BA (millions of cells/mL) 2.1–6.0 1.4–6.8 0.5–0.8 0.3–1.0 1.1–7.1 2.9–7.4
BP (lmol C�L�1�d�1) 1.4–7.2 0.24–9.6 0.1–1.4 0.17–1.44 0.24–4.8 1.7–7.2
Surface GPP (lmol O2�L�1�d�1) 5.5–44.3a 13.7–80a 2.4–5.4b 3.3–6.3b 1.7–5.9c 3.7–55.6c

CR (lmol O2�L�1�d�1) �11–�0.5a �11.2–�2.4a �3–0.1b �7.1–�1b �21.8–�0.3c �14.8–�2.4c

Notes:Abbreviations are: SPM, suspended particulate matter; POC, particulate organic carbon; DOC, dissolved organic carbon;
DSi, dissolved silicate; DIP, dissolved inorganic phosphorus; TDN, total dissolved nitrogen; TDP, total dissolved phosphorus; BA,
bacterial abundance; BP, bacterial production; GPP, gross primary production; CR, community respiration. References are
indicated by superscript letters: a, Gazeau et al. (2005b); b, Gazeau et al. (2005a); c, Gazeau et al. (2005c); d, Veuger et al. (2004).
Ellipses indicate values below the detection limit.
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Scheldt Estuary, only the in situ values from the 5-m

depth (the sampling depth) were applied. Spearman

rank correlation coefficients were employed to deter-

mine the degree of correlation between parameters. The

slope of linear regression analyses was tested against a

hypothetical value of one by calculating a t value

according to the formula t¼ (jbyx� Byxj)/Sbyx where t is
the t value, byx is the slope of the linear regression, Byx

the hypothetical growth of 1, and Sbyx the standard

deviation of the increase of the linear regression. The P

values are given for the two-tailed t distribution.

Stepwise multiple regression analysis was performed as

a comparison to the ANN-based model of the GPP:CR

ratio developed in this study. The results of the

statistical tests were assumed to be significant at P �
0.05.

RESULTS

Table 1 provides a summary of the physicochemical

data collected at the three study sites. Temperature

varied over a relatively small range within each field

campaign. The widest range was observed in the Bay of

Palma in summer due to the presence of cooler bottom

water at the deepest station (188C at 30 m compared to

228C at the surface). Salinity varied very little in the Bay

of Palma, reflecting the lack of riverine influence in this

environment. In contrast, large salinity gradients were

observed in the two estuaries. Turbidity, incident

irradiance, and water column light penetration, as

represented by the light attenuation coefficient, also

varied between the three sites, with the Bay of Palma

having significantly higher light penetration (lower light

attenuation coefficients) than the other two sites

(Kruskal-Wallis, P , 0.0001).

Inorganic and organic nutrients were significantly

lower in the oligotrophic Bay of Palma than in the two

estuaries (Kruskal-Wallis, P , 0.0001). This was also

the case for chl a and BA and BP (Kruskal-Wallis, P ,

0.0001). Interestingly, although Randers Fjord had

significantly lower inorganic and organic nutrients and

DOC than the Scheldt (Mann-Whitney, P , 0.05),

bacterial abundance and production rates were not

significantly different between the two estuaries (Mann-

Whitney, P . 0.05). Suspended particulate matter

concentrations were significantly higher in the Scheldt

(P , 0.05) than in the Bay of Palma and the Randers

Fjord. Moreover, the lack of significant difference

between bulk SPM concentration in these two latter

sites was also manifested in the percentage of carbon or

nitrogen content of the SPM. In contrast, the percentage

of carbon and nitrogen content of SPM in the Scheldt

was significantly lower than in Randers (P , 0.05) and

in both the Randers Fjord and the Bay of Palma for

percentage of carbon and percentage of nitrogen,

respectively.

In summary, the chemical and biological parameters

in the Bay of Palma were all significantly lower than

those in the estuaries. The two estuaries differed from

one another in terms of nutrient concentrations, with the

Scheldt generally having higher concentrations than the

Randers Fjord. Thus, there were significant differences

among the sites with regard to physicochemical and

biological gradients.

The principal objective of this research was to

determine whether there are robust factors that could

be used to predict the metabolic status of an estuarine or

coastal marine site. We therefore tested whether any of

the above biological and physicochemical factors were

correlated with the GPP:CR ratio. Although several

parameters were very weakly correlated (e.g., PAR and

percentage of PAR), the correlation coefficients did not

exceed 0.5 and thus were considered too weak to be of

relevance (Appendix A).

In the first phase of neural network development, the

following five combinations of input parameters had a

combined RMSE , 0.4: sampling depth, DOC, tem-

perature; NO3, oxygen saturation, TDP; DSi, SPM,

temperature; SPM, percentage of carbon in SPM, TDP;

percentage of carbon and nitrogen in SPM, TDP. Initial

results indicated that the number of hidden neurons

could still be increased to further improve network

performance without over-fitting the data, i.e., the

combined RMSE of the training and validation data

set had not yet reached a minimum when using five

hidden neurons (data not shown). Increasing the

number of hidden neurons in the ANNs improved the

performance of all five combinations of input parame-

ters (data not shown). However, the GPP:CR ratio was

best modeled using the sampling depth, DOC, and

temperature as input parameters to an ANN with 11

hidden neurons (RMSE ¼ 0.25). The values of the

weights between the input and hidden layers as well as

between the hidden and output layers are presented in

Appendix B and the mean and standard deviation of

actual data used for model development are presented in

Appendix C. The GPP:CR ratio, as predicted by the

ANN corresponded very well with the observed

GPP:CR ratio, and 99% of the variation could be

explained by the ANN-based model (Fig. 2). The slope

of the regression analysis was not significantly different

from one (t¼ 0.09, P . 0.05).

When simulating the GPP:CR ratio by varying the

input parameters over the entire range found in the three

study sites, the output of the ANN exceeded the

maximum GPP:CR of 50 observed in this study for

specific ranges of the input parameters (Fig. 3). Lower

temperatures (5–158C) had a stronger effect on the

GPP:CR ratio, as predicted by the ANN-based model,

than did higher temperatures (20–258C). For example, at

a temperature of 58C, the GPP:CR ratio increased

dramatically at DOC concentrations below 150–250

lmol/L, whereas at 108C GPP:CR increased strongly

below a DOC concentration of 150 lmol/L and depth

values above 15 m (Fig. 3). Particularly for higher

temperatures (20–258C), the model predicted increasing

GPP:CR values when increasing the concentration of
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DOC and depth, resulting in a hump-shaped feature

(Fig. 3). This relationship is also visible for temperatures

ranging from 58 to 158C, but appears to be modified

substantially at these temperatures.

The same parameters used for the development of the

ANN-based model were also used in stepwise multiple

regression analysis to obtain a multiple linear regression

model of the GPP:CR ratio (Table 2). Photosyntheti-

cally active radiation explained 27% of the variability of

GPP:CR. The addition of the concentration of DOC

increased the performance of the model slightly.

However, the effect of the concentration of the DOC

on the model was not significant (P ¼ 0.7576; Table 2).

Overall, the ANN-based model of the GPP:CR ratio

was by far superior to the multiple linear regression

model.

DISCUSSION

Prediction of GPP:CR by an ANN-based model

In this study a comparative approach was adopted in

order to address the factors influencing ecosystem

metabolism. Analyzing data across ecosystems is diffi-

cult to accomplish using conventional statistical meth-

ods due to the often large variability of parameters, and

as a consequence, important links can often be

overlooked. These problems can be especially important

when data sets from different sampling strategies or

methodologies are compared. However, even for data

collected within the same program, simple correlations

often do not suffice to explain the determining factors

due to the wide variability in the parameters measured.

The three ecosystems studied differed widely in organic

matter and nutrient concentration as well as other

physicochemical properties. This is probably one of the

reasons why none of the parameters identified as being

important in determining the GPP:CR ratio by the

ANN-based modeling approach were indicated by

correlation or stepwise multiple regression analysis

(Table 2; Appendix A). In reducing ecological systems

to just two simple cause-and-effect parameters, we fail to

take into account the often considerable variability in

the data set. In our data set, the parameter that was best

correlated with GPP:CR was PAR, and yet PAR

explained ,50% of the variability in GPP:CR. This is

in comparison to the R2 value of over 0.98 for the

network when predicted and observed values were

compared.

We therefore used the available data to develop an

ANN-based model of the GPP:CR ratio as a measure of

ecosystem metabolism. The 23 input parameters initially

used for the model development were not used to

FIG. 2. Comparison between predicted and observed values of the ratio of gross primary production to community respiration
(GPP:CR). Values were calculated by dividing the daily planktonic gross primary production by the daily community respiration.
The predictions were computed using the artificial neural network (ANN) developed in this study. Additionally, the equation and
the coefficient of determination (R2) of the linear least-squares fit to the data are shown. The inset depicts the entire range of the
data.
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calculate GPP:CR, and as correlation analysis revealed

no relationships between any of the parameters and

GPP:CR, the choice for these input parameters was a

pragmatic one based on the number of data points
available. Thus, parameters that missed .20% of the

data points were not considered for model development.

Although this approach required considerably more

computing time than if a more restricted data set had

been used, it ensured that all possible relationships

within the data set using up to three parameters as input
to the ANNs were explored. The predicted GPP:CR

ratio corresponded very well with the observed values

(Fig. 2), indicating that suitable input parameters for

modeling GPP:CR were identified. As a comparison to

the ANN-based model we performed stepwise multiple

regression analysis of GPP:CR (Table 2). The perfor-

mance of the ANN-based model was by far superior to

the multiple linear regression model. This indicates that

ANNs are a powerful modeling tool suitable for studies

revealing cross-ecosystem relationships between param-
eters that otherwise remain hidden from conventional

statistical analysis.

The strategy used in model development involved

splitting the data into a training and validation data set.

This cross-validation approach (Haykin 1999) is useful

in preventing over-training and over-parameterization

of the ANN-based model. Thus, the model developed in
this study should have captured the influence of the

input parameters on GPP:CR. The good fit between the

observed and predicted values (Fig. 2) indicates that the

ANN-based model is a good predictor for GPP:CR in

these three coastal ecosystems. Moreover, the model

FIG. 3. Simulation of the ratio of gross primary production to community respiration (GPP:CR) at five different temperatures,
5–258C. The model developed in this study, based on an artificial neural network, was used to simulate GPP:CR at dissolved
organic carbon (DOC) concentrations ranging from 50 to 500 lmol/L and depth from 0 to 30 m.
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could be used to get a fast estimate of GPP:CR on the

basis of new input data for parameters easily measured

using routine methods in monitoring programs.

Although Fig. 3 shows the model predictions of

GPP:CR over the entire range of the input parameters

found in the three study sites (sensitivity analysis), it is

important to realize that not all combinations of values

of the input parameters were actually found. For

example, DOC values below 150 lmol/L at a temper-

ature of 58C or below were not encountered in any of the

three study sites. These unencountered combinations of

values of the input parameters could result in model

predictions of GPP:CR surpassing the maximum mea-

sured in this study. Thus, it is necessary to interpret

these graphs (Fig. 3) in the context of the values of the

input parameters observed in situ and to disregard those

areas of the graphs that were not observed.

The model accurately predicts metabolic status with

only a relatively small database. It can be argued that

the metabolic estimates used in the model are based on

short-term incubations obtained during two intensive

two-week-long sampling periods at each of the three

sites and that metabolic balance concepts are based on

longer-term metabolic estimates. However, as demon-

strated by Gazeau et al. (2005a), the net metabolic

balance estimated from bottle incubations in Randers

Fjord was in good agreement with estimates based on

the LOICZ budgeting approach, which integrates data

over a much longer spatial scale (weeks to months).

Moreover, the output from the model can be used to

provide an estimate of integrated water column metab-

olism; i.e., by selecting the output from each measured

combination of depth, DOC, and temperature, an

integrated measure of water column metabolism can

be calculated, similar to that estimated from raw data.

However, as is evident from the scatter in Fig. 2, it is

clear that if one wants to precisely determine the

metabolic balance of a particular site, then it is better

to directly measure the balance between GPP and CR.

Moreover, although our results show that ANNs can be

used to accurately predict metabolic balance in widely

contrasting coastal ecosystems, it is difficult to envision

how the ANN-based model would perform in funda-

mentally different aquatic environments. Since the data

for model development were exclusively derived from

coastal and estuarine ecosystems, it is unlikely that the

model would perform well in open ocean environments.

Ecological interpretation of the ANN-based model

of GPP:CR

In terms of an ecological context and application, one

of the major benefits of modeling techniques is that they

provide answers to questions that would have otherwise

required considerably more manpower, time, and

money, as well as providing a means to investigate

cause-and-effect relationships. Of course, this can only

be the case if the model results can be logically placed in

an ecological context. We found that the GPP:CR ratio

can be best described by three parameters: sampling

depth, temperature, and DOC concentrations. Two of

these parameters are easily measured by a CTD probe,

and the third is a relatively straightforward chemical

measurement. It is therefore interesting to examine how

each of these parameters might affect ecosystem

metabolism.

In our sampling strategy, sampling depth also

corresponds to incubation depth for the respiration

and primary production measurements in two of the

sites (Palma and Randers; Gazeau et al. 2005a, b).

Interestingly, although the sampling depth is clearly

related to light penetration in the water column, light

penetration was a less significant factor in the analysis.

This is probably due to the fact that the GPP:CR ratio is

dependent on not only physicochemical characteristics,

such as nutrients or light field, of the sample but also on

the community composition present as species diversity

is likely to affect both GPP and CR (Rivkin 1989).

The direct effect of temperature on phytoplankton

production has been known for a long time, especially in

algal cultures; however, the effect of temperature on

GPP:CR is more complex and, as a result, less well

known (Lomas et al. 2002). Given that a large

proportion of community respiration is due to the

smaller size fractions (Smith and Kemp 2001, Lemée et

al. 2002) and that temperature and bacterial respiration

are correlated (Rivkin and Legendre 2001), it is obvious

that temperature can exert considerable control on

community respiration. Temperature also affects prima-

ry production and community structure in phytoplank-

ton (Agawin et al. 2000), both of which can entrain

changes in community metabolism. However, while

community respiration has Q10 values of more than

two, the Q10 values of primary production are more

variable and are generally less than two (Lomas et al.

TABLE 2. Stepwise multiple linear regression analysis of the ratio of gross primary production to community respiration
(GPP:CR).

Parameter n

Model Regression Intercept

R2 F P Coefficient SE P Value SE

PAR 70 0.27 25.2 ,0.0001 0.02 0.004 0.0386 �0.59 1.01
PAR 70 0.31 15.4 ,0.0001 0.02 0.004 0.0636 2.26 1.69
DOC �0.01 0.005 0.7576

Note: The best-performing model of GPP:CR is indicated in boldface type.
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2002). This may be one of the reasons why we observe a

humpback-shaped response in the model predictions.

The third parameter, DOC, ‘‘is the soil of the sea—a

large, biochemically resistant reservoir of organic matter

providing substrate for life’’ (Ducklow 2002:xv). One of

the major autochthonous sources of DOC is from direct

production of DOC during active photosynthesis.

Moreover, DOC production rates average 19% of

primary production rates in coastal regions (Morán et

al. 2002, Marañón et al. 2004) and can represent a

significant source of potentially bioavailable DOC, and,

interestingly, although GPP tends to decrease with

depth, in many cases the relative percentage of DOC

production actually increases with depth (Marañón et

al. 2004). Dissolved organic carbon concentration and

lability are key factors controlling bacterial processes

(Carlson et al. 1994, Findlay 2003). Dissolved organic

carbon therefore provides the energy source for the

production of biomass as well as the respiratory

requirements of bacterial heterotrophs. The lability

and concentration of DOC can exert a strong influence

on bacterial respiration (del Giorgio and Davis 2003,

Rochelle-Newall et al. 2004) and, given the importance

of bacterial respiration in community respiration, it is

clear that changes in DOC concentration and lability

can lead to changes in CR. Thus, each of the three

factors selected as being important for determining

GPP:CR during model development (temperature,

depth, and DOC concentration) has the potential to

significantly influence ecosystem metabolism.

One of the central paradigms of aquatic ecology is

that increased concentrations of inorganic nutrients lead

to increased organic matter in the system. Thus, given

that nutrient concentration influences organic matter

production, it is generally accepted that nutrients will

exert a non-negligible influence on ecosystem metabo-

lism. However, nutrient concentrations were not impor-

tant for the determination of GPP:CR in the developed

model, although it can be argued that DOC cannot be

regarded as being strictly independent of organic

nutrient concentrations because it is unrealistic to think

that DOC concentrations represent a pool of organic

matter that is solely comprised of organic carbon and

thus is lacking other elements such as N or P (Hedges

2002). Furthermore, it is known that increases in

nutrients tend to lead to increases in DOC in a system,

and so it may well be that DOC is a proxy for increased

nutrient concentrations. However, particulate organic

carbon did not appear to be one of the major controlling

parameters, either. Thus it appears that dissolved

organic matter rather than particulate organic matter

is more important in determining ecosystem metabolism.

Finally, as noted by Herman et al. (2005), although

increased inorganic and organic matter inputs to the

system can lead to fundamental changes in ecosystem

functioning in terms of metabolic balance, community

structure, and biodiversity, it is the hydrological and

environmental conditions of the system that will

determine the magnitude of this response. If it is indeed

the case that physical parameters such as temperature

and depth can exert a stronger effect on metabolic status

than can nutrients, this poses some interesting questions

as to the response of the metabolic status of the coastal

ocean to future climate change and in turn, on how to

manage those changes.
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APPENDIX A

A table of Spearman correlation coefficients for the parameters used in model development (Ecological Archives A017-064-A1).

APPENDIX B

A table of values of the weights from the input layer to the hidden layer and from the hidden layer to the output layer of the
model of the ratio of gross primary production to community respiration (GPP:CR) developed in this study based on an artificial
neural network (ANN) (Ecological Archives A017-064-A2).

APPENDIX C

A table of means and standard deviations of actual data used for model development (Ecological Archives A017-064-A3).
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