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ABSTRACT This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and

optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of

ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines

the accuracy of 3D Finite Element Method (FEM) and the low computational cost of ANNs, is selected and

implemented. All relevant effects are considered (3D magnetic and thermal field patterns, detailed core loss

data, winding proximity losses, coupled loss-thermal model, etc.) and the implemented model is extremely

versatile (30 input and 40 output variables). The proposed ANN-based model can compute 50′000 designs

per second with less than 3% deviation with respect to 3D FEM simulations. Finally, the inductor of a

2 kW DC-DC buck converter is optimized with the ANN-based workflow. From the Pareto fronts, a design is

selected, measured, and successfully compared with the results obtained with the ANNs. The implementation

(source code and data) of the proposed workflow is available under an open-source license.

INDEX TERMS Power converters, artificial neural networks, finite element analysis, inductors, machine

learning, magnetic devices, open source software, pareto optimization.

I. INTRODUCTION

The past few years have seen a rapid development of artificial

intelligence applications in research, engineering, and indus-

try [1]. For power electronic systems, the different machine

learning methods, i.e., algorithms that learn from data and

improve automatically through experience, are particularly

interesting for a large variety of applications: fault diagnosis,

preventive maintenance, reliability prediction, quality control,

control strategies, reverse engineering, advanced modeling,

and system or component optimization [2]–[7].

Machine learning has the ability to work with both struc-

tured data (organized dataset) or unstructured data (e.g., im-

age, video, text). Machine learning algorithms can be classi-

fied into three main groups [1], [8], [9]:
� Supervised learning - Learn how to predict values

(regression) or categories (classification) from labeled

training data (input-output pairs).
� Unsupervised learning - Learn how to find patterns

(clustering) from a dataset without pre-existing labels.

Such methods can also be used for reducing a dataset

(data reduction or dimensionality reduction) without

losing important information or for detecting anomalies

(outlier detection) in a dataset.
� Reinforcement learning - Learn how to perform a task

by interacting with its environment. The algorithm re-

ceives rewards by performing correctly and penalties for

performing incorrectly (feedback model).

The most popular implementation of such methods is based

on Artificial Neural Networks (ANNs), which share some

principles with biological brains. A collection of simple sig-

nal processing units (artificial neurons) receive, process, and

transmit information from and to the surrounding neurons [1],

[8], [9]. The strength (weighting) of the interconnections be-

tween the neurons are chosen during the training process,

where the ANN is learning from a provided dataset. ANNs

represent a broad class of algorithms. For supervised learning,

the main classes are [1], [8], [9]:
� Multilayer Perceptron (MLP) - Network where the artifi-

cial neurons are organized in layers, which are typically

fully-connected. The information is passed between the

layers with a feed-forward direction. The inputs of the

ANNs are vectors. Such ANNs are typically used for
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FIGURE 1. Data-driven approach for multi-objective optimization of
inductors with machine learning and, more specifically, with Artificial
Neural Networks (ANNs). The ANNs can be trained with simulations,
measurements, datasheets, papers, etc.

problems with structured data or with unstructured data

with limited complexity.
� Convolutional Neural Network (CNN) - Network where

the artificial neurons are organized in feed-forward lay-

ers, which are typically sparsely-connected. The usage of

convolution layers allows the usage of multi-dimensional

data (matrix of tensor) and the detection of complex pat-

terns. Therefore, such ANNs are particularly very well

suited to large problems with unstructured data.
� Recurrent Neural Network (RNN) - Network where the

neurons feature an internal memory. This implies that the

outputs do not only depend on the current inputs but also

on the previous inputs, making such ANNs interesting

for sequential data.

For power electronic systems, ANNs, so far, have been

mainly used for fault diagnosis [2], [3] and control strate-

gies [4], [5]. However, another important field of power elec-

tronics, requiring complex models and heavy computations, is

the modeling and multi-objective optimization of converters

and components (e.g., with respect to volume, mass, cost,

efficiency) [10]–[13]. Fig. 1 shows a vision of what ANNs

could provide for multi-objective optimization. From given

specifications and goals, the ANNs generate the Pareto fronts

and select the optimal designs [6], [7], [14]–[17]. The ANNs

learn from a dataset, which can be gained from simulations,

measurements, datasheets, papers, etc. With such a workflow,

the ANNs do not include a physics-based model, only the in-

put and output variables of the ANNs feature a clear physical

meaning.

Nevertheless, in order to be competitive against classi-

cal multi-objective optimization algorithms and models, ma-

chine learning approaches should avoid several pitfalls and

overcome some challenges, i.e. should feature the following

properties:
� Accurate and robust - The method should be robust and

accurate in the complete range, without producing any

outlier data.
� Versatile and flexible - The method should work for a

wide range of parameters and objectives.

� Extensible and adaptable - The workflow should be

easy to extend (e.g., additional models, parameters,

constraints) and to integrate in the design process. Fur-

thermore, it should be possible to accommodate special,

project-specific, requirements.
� Access to internal data - Not only the optimized vari-

ables (e.g., volume, mass, cost, efficiency) should be

accessible but also the internal variables and physical pa-

rameters (e.g., magnetic field, current density, switching

energy, temperatures).
� Dataset availability - The dataset, used to train the ANN,

should be available or easy to generate.

This paper analyzes the usage of MLP ANNs for modeling

and optimization of inductors and proposes a hybrid method,

combining the accuracy of 3D Finite Element Method (FEM)

and the flexibility of ANNs. Inductors are selected because

magnetic components typically represent the bottleneck of

multi-objective optimization (e.g., model complexity, compu-

tational cost, size and diversity of the design and performance

spaces) [11]–[13], [18]. However, all the presented methods

are also applicable to other power electronic components (e.g.,

transformers, semiconductors).

The paper is organized as follows. Section II reviews the

fundamentals of ANNs. Section III presents different ANN-

based workflows for inductor modeling and/or optimization.

In Section IV, the most promising solution is presented in

detail and the performances are evaluated in Section V. In

Section VI, the method is applied to the optimization, de-

sign, and measurement of the inductor of a DC-DC buck

converter. In the Appendix details are given about the open-

source software implementation of the proposed workflow,

“AI-mag” [19].

II. FUNDAMENTALS OF ANNS

This section introduces the fundamental working principle

of MLP ANNs for supervised learning [1], [8], [9]. More

specifically, the ANN structure, the training process, the over-

fitting risk, and data normalization are analyzed for regression

problems. The readers who are familiar with these concepts

can skip this section.

A. ANN STRUCTURE

Fig. 2(a) depicts the computational structure of a MLP ANN,

which features several inputs and outputs. The artificial neu-

rons are organized in layers and connected together, like

synapses in a brain. The internal layers are called hidden

layers (arbitrary number of neurons) and the last layer is the

output layer (number of neurons is the number of outputs).

ANNs with several hidden layers are usually qualified as deep

learning ANNs, while structures with a single hidden layer

are shallow ANNs. Adding more neurons and layers extends

the learning capabilities of ANNs, allowing the processing of

more complex data.

Fig. 2(b) shows how a single artificial neuron is working.

First, the different input values are scaled with the weights

(wi), the transfer function is summing the inputs with a bias
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FIGURE 2. (a) Structure of an ANN with two inputs, two outputs, three
hidden layers, and an output layer. (b) Single artificial neuron where the
weights (wi ) and the bias (b) represent the ANN parameters determined
during the training process.

FIGURE 3. Typical activation function for ANNs: (a) linear function,
(b) rectified linear unit, and (c) sigmoid function.

(b). The resulting value is processed by the activation function

and the result is propagated to the connected neurons. The

weights (wi) and the bias (b) represent the ANN parameters,

which are determined by the training process.

Different activation functions can be used for the different

layers and the common choices are shown in Fig. 3. The

hidden layers, typically, use sigmoids and/or rectified linear

units. However, if many hidden layers are used (deep ANNs),

rectified linear units should be preferred due to the numerical

instability of sigmoids (vanishing gradient) [1]. Regression

ANNs (predicting values) feature a linear output layer and

classification ANNs (predicting categories) have a sigmoid

output layer [9]. This implies that the output values of clas-

sification ANNs are real numbers and are, afterwards, trans-

formed (with a given threshold) to binary data [1].

B. ANN TRAINING PROCESS

Fig. 4 describes the training process of an ANN (i.e., the

choice of the weights and biases) with respect to a dataset.

The different steps are described in the following [1], [9]:

1) The provided samples (pairs of inputs and outputs) are

split into a test set and a training set. The split is done

randomly and, typically, 80% of the samples are used

for training and 20% for testing.

FIGURE 4. Workflow for ANN training (supervised learning). The training,
overfitting detection, and validation steps are depicted.

2) The training set is subdivided in a training subset and a

validation subset. Again, the split is done randomly and,

typically, 80% of the samples are used for the training

subset and 20% for the validation subset.

3) The parameters of the ANN (weights and biases) are

selected. For the first iteration, the values are typically

selected randomly. For the next iterations, the values are

selected with respect to the error metrics obtained in the

previous iteration with the training subset.

4) The ANN is evaluated for the training subset and the

validation subset and the error metrics are computed be-

tween the ANN outputs and the dataset outputs. Widely

used metrics are the mean square error (for regression

ANNs) and the binary cross-entropy (for classification

ANNs).

5) The error metrics of the training subset and the valida-

tion subset are compared to stop the training if over-

fitting is occurring. The error metrics of the training

subset are monitored in order to detect the completion

of the training when the metrics are converging and stop

improving. The overfitting is explained, in more details,

in Section II-C.

6) If the convergence is not reached, the error metrics are

used to improve the weights and biases for the next

iteration. The selection of the weights and biases is

explained, in more details, in Section II-D.

7) After the completion of the training, the training set

and test set are evaluated and the obtained outputs are

compared with the dataset outputs. The comparison is

286 VOLUME 1, 2020



FIGURE 5. Overfitting example for a regression ANN with a single input
and output. (a) Evolution of the mean square error over the training
epochs for the training subset and the validation subset. (b) Noisy training
and validation samples, best fit, and overfit.

biased for the training set since the same data have been

used for the training. For this reason, the test set exists

and offers an unbiased validity check.

8) If the performances of the ANN are not sufficient, the

ANN structure (e.g., number of hidden layers, number

of neurons) or the training algorithms should be up-

dated.

It has to be noted that, due to the random splitting of

the dataset and the random initialization of the weights and

biases, the ANN training is not a deterministic procedure.

For the training iterations, the training subset is divided into

several batches (with several samples). For each iteration, a

single batch is used for improving the ANN parameters. A

training epoch is achieved when all the batches have been

processed, i.e., when all the samples of the training subset

have been used. The training process of an ANN consists of

many epochs. The batch size (number of samples per batch) is

a parameter that can affect the quality, stability, and computa-

tional cost of the training process.

C. ANN OVERFITTING

Overfitting means that an ANN is overspecialized with respect

to the samples of the training subset, to the detriment of other

samples [1], [9]. This is prone to happen with ANNs featuring

many artificial neurons compared to the size and/or complex-

ity of the dataset. Fig. 5 illustrates this effect for a regression

ANN used to fit noisy data. After a certain number of train-

ing epochs, the error of the training subset keeps improving

while the error of the validation subset starts to deteriorate. It

means that the ANN is trying to fit the noise of the training

subset, which can be seen from the predicted fits. Therefore, a

validation subset is required in order to detect overfitting and

terminate the training.

D. ANN TRAINING ALGORITHM

Selecting the optimal weights and biases of an ANN with re-

spect to a dataset is, fundamentally, an optimization problem.

However, an ANN contains hundreds or thousands of weights

and biases, resulting in a relatively high level of complexity.

For this reason, many different training methods exist. Nev-

ertheless, most of these algorithms share a similar concept:

propagation and backpropagation [1], [8], [9].

FIGURE 6. Basic ANN training algorithm based on the propagation of the
inputs and the backprogation of the errors (supervised learning).

Fig. 6 presents the fundamental principle of propagation

and backpropagation. A simple regression ANN is considered

(two inputs, two outputs, a hidden layer, and an output layer)

and the selection of the weights is investigated (the selection

of the biases is similar). The different steps are described as

follows [1], [9]:

1) The weights are initialized with random values.

2) With the selected weights, the ANN is evaluated for the

provided inputs. This is done layer by layer from the

inputs to the outputs, i.e., propagation.

3) The error between the computed values and the pro-

vided outputs is computed. In this example, the sum of

the squares is used.

4) The sensitivity of the error with respect to the weights is

computed. This is achieved by applying, systematically,

the chain rule for the derivative. This is done layer by

layer from the outputs to the inputs, i.e., backpropaga-

tion.

5) With the obtained sensitivity, the weights are updated in

order to diminish the error. This update is controlled by
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FIGURE 7. Pareto fronts obtained with the analytical scaling laws (cf. (1)
and (2)). (a) Operating frequency. (b) Operating temperature.

a specified learning rate, which specifies how aggressive

the learning algorithm acts.

E. ANN EXAMPLE: INDUCTOR SCALING LAWS

The aforementioned ANN structure and training procedure

are applied to a simple example. Scaling laws of non-isolated

DC/DC converter inductors, which predict the losses (P) and

the temperature (T ) from the boxed volume (Vbox), the switch-

ing frequency ( f ), the DC current (IDC) and the applied volt-

age (VPWM) are considered.

P = kPV
4(2−βc )
3(2+βc ) −

1
3

box
f

2αc−2βc
2+βc I

2βc
2+βc

DC
V

2βc
2+βc

PWM , (1)

T = Tamb + kTPV
−

2
3

box
, (2)

where kP and kT are empirical parameters. The coefficients αc

and βc represent the Steinmetz parameters of the core material

and Tamb the ambient temperature. More details about this

empirical model can be found in [20].

The following specifications are considered: IDC = 10 A,

VPWM = 200 V, Tamb = 55 ◦C, Vbox < 200 cm3, T < 130 ◦C,

and f < 750 kHz. With these specifications, the empirical

parameters (kP = 0.004, kT = 0.02, αc = 1.4, and βc = 2.4)

are fitted from the results presented in [21]. Fig. 7 shows the

resulting Pareto fronts obtained with (1) and (2).

In order to highlight the working principle of ANNs,

different ANN structures (number of layers and activation

functions) and variable processing methods (variable trans-

formation and normalization) are compared, using the afore-

mentioned dataset (2′000 samples). The inputs of the ANN

are f and Vbox and the outputs are P and T . The splitting

between the training set and the test set is 80/20%. The ratio

between the training subset and the validation subset is also

80/20%. The ANNs are trained with the mean square error

as a metric. In order to overcome the non-deterministic nature

of the ANN training process, each ANN is trained 100 times.

For each training, the performances (number of epochs until

convergence is achieved, RMS error, and maximum error) are

evaluated and the median values over the 100 training cycles

are computed. Table 1 shows the obtained results, which can

be interpreted as follows:
� Mode 1 - No variable transformation and no normal-

ization is done. An ANN with a single linear layer is

TABLE 1 Inductor Scaling Laws: ANN Performance

used (no hidden layer). Due to the simple nature of the

network, convergence is achieved quickly. However, the

performances of the ANN are low. This is expected since

(1) and (2) are clearly not linear equations.
� Mode 2 - In order to overcome this issue, a non-linear

(sigmoid) hidden layer with 5 neurons is added. The

performances of the ANN are improving but the number

of training epochs drastically increases.
� Mode 3 - The different variables feature very different

orders of magnitude, which is always problematic for

numerical methods. Therefore, the variables (inputs and

outputs) are normalized for the ANN. A min-max nor-

malization, which linearly maps a variable between zero

and one is used. It can be seen that the normalization

improves both the training speed and the fitting accuracy.
� Mode 4 - From (1) and (2), it can be seen that apply-

ing a logarithmic variable transformation (inputs and

outputs) could help the numerical conditioning of the

problem. Therefore, the logarithm of the different vari-

ables is taken and the transformed variables are, again,

normalized. It can be observed that the variable transfor-

mation further improves the convergence and the fitting

performances.

It can be concluded that not only the structure of the neural

network (number of layers, number of neurons, and activa-

tion functions) but also the training method (dataset splitting,

algorithm, and error metric) and the variable handling (nor-

malization and eventual variable transformation) are critical

to obtain robust, accurate, and fast ANNs.

III. COMPARISON OF ANN-BASED WORKFLOWS

This section first reviews the different models and optimiza-

tion methods used for multi-objective optimization. Then,

different possibilities to integrate ANNs in the workflow are

discussed.

A. MODELING AND MULTI-OBJECTIVE OPTIMIZATION

Inductor modeling includes many aspects: current and volt-

age waveforms, magnetic circuit, thermal behavior, winding

losses, and core losses. The different models can be classified

into three main categories [13], [14]:
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FIGURE 8. (a) ANN-based inductor model using a classification ANN and several regression ANNs. (b) ANN-based inductor sub-component model.
(c) Physics-based inductor model using an ANN to improve the results (correction factor). (d) ANN-based inductor optimization, generating optimal
designs with respect to a given objective.

� Full-analytical models - The models are based on ana-

lytical equations and feature closed-form analytical solu-

tions [20], [22]–[26]. Such models are extremely simple

but are too inaccurate for virtual prototyping.
� Semi-numerical models - The models are mostly based

on analytical equations but do not feature explicit so-

lutions [10], [11], [13], [27]. Such models represent an

interesting trade-off between the accuracy and the com-

putational cost.
� Numerical models - The parameters are extracted from

numerical field simulations (e.g., FEM simulations) [25],

[28], [29]. Despite their accuracy, such models are rarely

used for optimization due to their heavy computational

cost.

The role of the models is to map the design space into the

performance space. For magnetic components, it is known

that wide regions of the design space are mapped to a narrow

region in the performance space, i.e., designs with very dif-

ferent parameters feature similar performances (design space

diversity) [21], [29], [30]. This implies that, together with the

model non-linearity, implicit constraints, and discrete vari-

ables, the optimization of magnetic components is a challeng-

ing task. Several methods are used [13], [14]:
� Brute force grid search - The design space is systemat-

ically sampled and all the combinations are tested [11],

[13], [31]. This method is extremely simple and robust

but the number of combinations scales exponentially

with the number of variables (without additional filters

and/or heuristics).
� Deterministic optimization - Algorithms such as gradient

optimization, simplex method, or geometric program-

ming are used [10], [14]. These algorithms converge

quickly but are problematic with respect to the design

space diversity. Moreover, additional constraints exist

about the objective functions (e.g., smoothness, posyn-

omial function, no discrete variables).

� Stochastic optimization - Stochastic algorithms (e.g., ge-

netic optimization, particle swarm, simulated annealing)

represents a good trade-off between the robustness and

the computational cost [12], [18], [31]–[33].

In order to obtain a fast, robust, and accurate optimization

workflow, the following combinations of the aforementioned

models and optimization methods are typically considered.

Brute force grid search requires the evaluation of several

million designs, which takes several hours or days of com-

putations with a semi-numerical model [12], [29]. Therefore,

the number of degrees of freedom is limited and the usage

of a numerical model (e.g., FEM) is not a viable solution.

Stochastic optimization still requires the evaluation of tens

of thousands design possibilities, which still takes several

minutes with a semi-numerical model and some hours or days

with a numerical model [12], [31]. Therefore, a clear need can

be identified to obtain a workflow that is simultaneously fast,

accurate, and robust.

B. ANN-BASED MODELING AND OPTIMIZATION

The flexibility and reduced computational cost of ANNs offer

several opportunities for improving the aforementioned mod-

els and methods. Fig. 8 identifies several potential ANN-based

workflows:
� Workflow A - The complete inductor model is replaced

by ANNs (cf. Fig. 8(a)) [6], [15]. The model features

a classification ANN, for handling discrete variables

(e.g., core shape, core material, litz wire size) and sev-

eral regression ANNs for the continuous variables. The

advantages of this workflow are the reduced compu-

tational cost and the total independence from physics-

based models. A challenge is the large number of data

(simulations, measurements, and/or datasheets) required

to train the ANNs with tens of input and output parame-

ters. Moreover, it is difficult to guarantee that the ANNs

are accurate for all the possible combinations. The last
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FIGURE 9. (a) Workflow for generating the data and training the ANNs for the thermal and magnetic models. (b) Inductor design workflow using the two
ANNs. The step requiring a FEM solver is highlighted in green and the ANN-based steps in red.

problem is the prediction of designs where few training

samples exist (e.g., new geometry, new material).
� Workflow B - In order to overcome these difficulties, a

solution is to split the model into different sub-models

(cf. Fig. 8(b)) [34]–[37]. The usage of ANNs for sub-

component models (e.g., magnetic, losses, thermal) re-

duces the complexity and facilitates the training of the

ANNs.
� Workflow C - Another possibility is to use ANNs to

improve the accuracy of an existing model (cf. Fig. 8(c)).

For example, an analytical model can be improved with

an ANN trained with FEM simulation results or mea-

surements. This solution is robust and easy to integrate

into a pre-existing model.
� Workflow D - Apart from offering advanced models,

ANNs can also be used for the multi-objective opti-

mization (cf. Fig. 8(d)) [14], [32], [38], [39]. This can

be achieved by training the ANNs only with optimal

designs or with advanced techniques such as ANN in-

version, reinforcement learning ANN, or neuro-genetic

optimization. However, due to the complex nature of

inductor multi-objective optimization (design space di-

versity) and the wide variety of possible objectives (e.g.,

cost, volume, mass, efficiency, available components), a

robust implementation of an ANN-based inductor opti-

mization is a challenging task.

IV. SELECTED ANN-BASED MODEL

From the aforementioned methods and the goals defined in

the introduction, an ANN-based inductor model, which fea-

tures the same accuracy as 3D FEM simulations with a mas-

sively reduced computational cost, is presented in detail in the

following.

A. WORKING PRINCIPLE

The model uses regression MLP ANNs to replace the 3D

FEM simulations at the sub-component level (cf. Fig. 8(b)).

A first ANN is used to predict the magnetic parameters (e.g.,

inductance, magnetic flux, magnetic field) and a second ANN

is modeling the thermal behavior (e.g., average and hotspot

temperatures). Both ANNs are trained with a dataset gen-

erated using 3D FEM, whereas a simple analytical solution

is used as a base-value for increasing the robustness of the

regression (cf. Fig. 8(c)). Fig. 9 shows, schematically, the

workflow where two distinct parts are identified: the ANN

training and the inductor design evaluation.

The selected model represents a pragmatic approach with

regression ANNs, which is robust and easy to extend [15],

[36], [40], [41]. Since the model uses ANNs at the sub-

component level, internal variables are accessible for inspec-

tion. Finally, the dataset required for the training can be easily

generated and extended. Besides the low computational cost,

the ANN-based workflow also offers the following advantage:
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TABLE 2 FEM/ANN Input Variables

FIGURE 10. Considered inductor geometry with an E-shaped core with an
air gap and a litz wire winding.

the FEM solver is only required for generating the training

dataset (cf. Fig. 9(a)) and not for evaluating inductor designs

(cf. Fig. 9(b)). This implies that the users of the design tool do

not need any FEM solver and/or powerful computer.

B. ANN INPUT VARIABLES

Before analyzing the workflow in detail, the input variables

of the ANNs (magnetic and thermal) should be defined. The

following assumptions are made for the inductor: E-shaped

core with an air gap, litz wire winding with homogeneously

distributed strands, and forced convection cooling [42], [43].

However, the presented workflow can be easily extended to

other types of inductors.

All the input variables are summarized in Table 2. First, the

geometry of the inductor is described, cf. Fig. 10. For training

the ANN, it is numerically better to define scaled dimensions:

rw = hw/dw, (3)

rc = zc/tc, (4)

rcw = Ac/Aw, (5)

rgap = dgap/
√

Ac, (6)

where, these four scaled variables, together with the boxed

volume (Vbox), define uniquely the inductor geometry.

TABLE 3 FEM/ANN Output Variables

For the thermal simulations, the following input variables

are added: the ambient temperature (Ta), the convection co-

efficient (hc), and the generated losses. The losses are also

normalized:

ptot = (Pw + Pc) /Abox, (7)

rp = Pw/Pc, (8)

where Abox is the boxed area of the component, Pw the wind-

ing losses, and Pc the core losses.

For the magnetic simulations, the additional input parame-

ters are the core permeability (µc), the core Steinmetz param-

eter for the flux density (βc), and the current excitation. All

the magnetic simulations are done with a single turn and the

current is normalized with the saturation current:

rsat = Î/Isat =
(

µ0 Î
)

/
(

2dgapBsat

)

, (9)

where Î is the peak winding current, Isat the saturation cur-

rent, and Bsat the saturation flux density. For the scaling with

respect to the saturation current, the fringing field and the core

reluctance are neglected.

C. ANN OUTPUT VARIABLES

For the output variables, ANNs would have the ability to

learn directly from the field patterns generated by the 3D

FEM simulations (magnetic and temperature fields) [1], [44].

However such algorithms are complex and involve very large

datasets. Furthermore, for the evaluation of inductor designs,

the complete field patterns are not required, some key figures

of merit, which are summarized in Table 3, are sufficient.

For the thermal simulations, the different maximum and

average temperature elevations are extracted. The maximum

(hotspot) temperatures are used for ensuring the thermal lim-

its and the average temperatures for calculating the material

properties (core and winding) used for the loss computations.

It has to be noted that, for linear thermal models, the ambient

temperature (Ta) does not have any impact on the temperature

elevations.

For the magnetic simulations, the definition of the output

variables is not straightforward. The inductance (L), the core

losses (Pc), the low-frequency winding losses (Pw,LF) and the
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high-frequency winding losses (Pw,HF) can be defined as

L =
1

Î2

∫∫∫

all

B̂ĤdV , (10)

Pc =

∫∫∫

core

kc f αc B̂βc dV , (11)

Pw,LF =

∫∫∫

wdg.

1

2kwσw

Ĵ2dV , (12)

Pw,HF =

∫∫∫

wdg.

π2µ2
0d2

s kwσw f 2

8
Ĥ2dV , (13)

where Î is the peak winding current, B̂ the magnetic flux

density, Ĥ the magnetic field, Ĵ the current density, and f the

operating frequency. The parameters kc, αc, and βc are the

Steinmetz parameter of the core material [22]. The winding

is defined by: kw the filling factor, σw the conductivity, and

ds the litz wire strand diameter [22]. Please note that, for the

sake of simplicity, these equations are defined for pure AC

sinusoidal currents. However, more complex waveforms (e.g.,

DC biases, triangular currents) or loss models (e.g. iGSE for

core losses, Bessel functions for winding losses) can be used

without changing the definition of the output variables [22],

[29], [45], [46]. The current (Î) and the number of turns (N)

can be factorized, which leads to

L = N2Lint, (14)

Pc = Vckc f αc
(

NÎBint

)βc
, (15)

Pw,LF = Vw

1

2kwσw

(

NÎJint

)2
, (16)

Pw,HF = Vw

π2µ2
0d2

s kwσw f 2

8

(

NÎHint

)2
. (17)

where Vc and Vw are the core and winding volumes, respec-

tively. With these equations, the normalized energy and fields

can be defined as

Lint =
1

(

NÎ
)2

∫∫∫

all

B̂ĤdV , (18)

Bint =
1

NÎ

(

1

Vc

∫∫∫

core

B̂βc dV

)
1
βc

, (19)

Jint =
1

NÎ

(

1

Vw

∫∫∫

wdg.

Ĵ2dV

)
1
2

, (20)

Hint =
1

NÎ

(

1

Vw

∫∫∫

wdg.

Ĥ2dV

)
1
2

. (21)

With these definitions, the spatial effects (e.g., flux crowding

at the corner of the core, air gap fringing field) are taken into

account in the inductance and loss computations. Therefore,

the normalized variables are used as the output variables for

the magnetic simulations and the corresponding ANN. It has

to be noted that, for linear magnetic models, the current exci-

tation (rsat) does not impact the normalized output variables.

D. ANN TRAINING

Fig. 9(a) shows the process used to generate the dataset and

train the different ANNs. The operation comes with a high

computational cost but is executed only once (and not for

every inductor design). Moreover, the dataset can be generated

in parallel and/or with a distributed computing platform.

At first, many 3D magnetic and thermal simulations are

done with different random combinations of the input vari-

ables (cf. Table 2). The output variables are extracted (cf.

Table 3) [47]. In a second step, simple analytical approxima-

tions of the output variables are computed. For the thermal

model, a lumped equivalent circuit is used [13], [27]. The

analytical magnetic model is based on a reluctance circuit

(i.e., inductance and magnetic flux density) and analytical

approximations with Ampère’s circuital law (i.e., magnetic

field and current density) [22], [48]. Afterwards, the invalid

samples (e.g., non-manufacturable geometries, design with

very poor figures of merit) are filtered out and the dataset is

obtained.

The resulting data set is split into a test set and a training

set. The different variables are then prepared for the ANNs.

This process is described in the following:

1) Variable scaling - The output variables are scaled with

respect to the analytical approximations such that the

ANNs are just predicting correction factors between the

3D FEM simulations and the analytical approximations.

The scaling is optional and can be described as

v ←
vFEM

vAna. Approx

. (22)

2) Variable transformation - In a second step, variable

transformations can be applied to the different input and

output variables to improve the numerical conditioning.

More concretely, a logarithmic transformation is applied

to the variables spanning over several orders of magni-

tude:

v ← log(v). (23)

3) Variable normalization - Finally, all the input and output

variables are normalized. Typically, a min-max normal-

ization is used which is linearly mapping the variable

between zero and one:

v ←
v − min(v)

max(v) − min(v)
. (24)

Afterwards, the scaled, transformed, and normalized

dataset is used for the training of the thermal and magnetic

ANNs [49]–[51]. Finally, the performances of the ANNs are

evaluated using the training set and the test set. Additionally,

the ANN parameters (e.g., structure, weights) are saved.

E. INDUCTOR DESIGN

Fig. 9(b) shows the process used to compute inductor designs.

All the steps feature a reduced computational cost. Moreover,

the complete workflow is parallelized and vectorized. This
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TABLE 4 FEM/ANN Input Variable Ranges

model offers 30 input and 40 output variables and is, therefore,

flexible and versatile.

First, the basic inductor properties (e.g., geometry, mass,

cost) of the designs are computed. Afterwards, the magnetic

ANN is evaluated and the magnetic properties are extracted

(e.g., inductance, saturation current, magnetic and thermal

field patterns). The designs with properties which are incom-

patible with the given specifications are filtered out.

In a second step, the different operating points (e.g. full

load, partial load) are computed. The waveforms are generated

and analyzed (e.g, DC bias, sinusoidal, triangular, Fourier

harmonics). The core losses (different materials) are com-

puted with the iGSE and detailed loss data that take into

consideration the impact of the frequency, AC flux density,

DC flux density, and temperature [13], [42], [46]. The winding

losses (different litz wire strandings) are computed, including

the proximity losses and the impact of the harmonics [22],

[45]. For both the core and winding losses, the field patterns

are coming from the magnetic ANN. The temperatures are

evaluated with the thermal ANN. Iterations are made between

the loss and thermal models in order to reach the steady-state

(coupled loss-thermal model) [13]. Again, the invalid designs

(e.g., saturation, thermal limit) and the designs with poor

performances (e.g., losses) are filtered out.

Finally, the results are displayed in an interactive tool that

allows the exploration of the Pareto fronts and the different

trade-offs (e.g., cost, efficiency, volume). Interesting designs

can be selected and inspected (geometry, properties, and op-

erating points).

V. PERFORMANCES OF THE ANN-BASED MODEL

In this section, the performances of the presented workflow

are analyzed. More precisely, the accuracy of the ANNs, the

training parameters, and the computational cost are investi-

gated.

A. CONSIDERED DATASETS

Table 4 depicts the considered ranges for the input variables,

which cover most of inductor designs. For generating the

dataset, random combinations of the inputs (in the specified

ranges) are generated. For the variables spanning over several

orders of magnitude, the random samples are generated on

a logarithmic scale. For the generation of the samples, the

following procedure is used:
� First, all the points at the edges (upper and lower limit

of the ranges) of the dataset, which are unlikely to ap-

pear with random sampling, are considered. This cor-

responds to 29 = 512 and 28 = 256 samples for the

FIGURE 11. Error distribution (18′522 samples) for the thermal model.
(a) Deviation between the analytical approximations and the 3D FEM
simulations. (b) Deviation between the ANN outputs and the 3D FEM
simulations. The RMS error and the maximum error (over all the samples)
are indicated.

thermal and magnetic ANNs, respectively. These sam-

ples at the edges are, strictly speaking, not required but

improve the validation of the ANNs by ensuring that the

extreme cases are included.
� All the remaining samples are chosen randomly. This is

one of the great strengths of ANNs: they do not require a

regular sampling, which is advantageous with problems

with many input variables.

At the end, each dataset (thermal and magnetic) consists of

20′000 samples. The number of valid samples (used for the

ANN training) are 18′522 and 18′444 for the thermal dataset

and magnetic dataset, respectively.

B. ANN PARAMETERS

For the ANN training, the 3D FEM outputs are scaled with

the analytical approximations, the variables spanning over

several orders of magnitude are transformed into a logarithmic

scale, and all the variables are normalized (min-max normal-

ization). The splitting between the training set and the test

set is 80/20%. The ratio between the training subset and the

validation subset is also 80/20%. The training algorithm uses

Levenberg-Marquardt backpropagation with the mean square

error as a metric [49]. The ANNs feature two hidden layers

(with 10 neurons each, sigmoid activation function) and an

output layer (linear activation function).

C. ACHIEVED ACCURACY

Fig. 11 and Fig. 12 show resulting performances for the ther-

mal model and magnetic model, respectively. It shows that
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FIGURE 12. Error distribution (18′444 samples) for the magnetic model.
(a) Deviation between the analytical approximations and the 3D FEM
simulations. (b) Deviation between the ANN outputs and the 3D FEM
simulations. The RMS error and the maximum error (over all the samples)
are indicated.

even if the deviation between the analytical approximations

and the 3D FEM simulations is, for some samples, above

100%, the error between the ANNs and the 3D FEM simu-

lations is always below 3%. As expected, the analytical ap-

proximations are particularly inaccurate for the magnetic field

in the winding window. This is due to the air gap fringing

field, which is difficult to compute analytically. It should be

noted, that since overfitting is explicitly prevented during the

training, the error of the training set is very similar to the error

of the test set. For this reason, the error metrics are computed

for all the samples together (test set and training set). It can be

concluded that the ANNs are accurate in the complete range

and do not produce any outlier data.

D. TRAINING REPRODUCIBILITY

The ANN training process is not deterministic (dataset split-

ting and initial values). For this reason, the complete training

process of the ANNs is repeated 200 times. Afterwards, the

distribution and the median value of the error metrics (RMS

error and maximum error, over all the samples) are computed,

cf. Fig. 13. It can be observed that the maximum error is, for

all the trainings, below 7%. Nevertheless, it is advised to train

the ANNs several times to check the reproducibility and to

pick the ANNs with the best performances.

E. SIZE OF THE DATASET

Another important parameter is the size of the dataset used

for the training. Fig. 14 shows the ANN performances (me-

dian over 200 trainings) for different training ratios (splitting

ratio between the training and the test). The splitting ratio

between the training subset and the validation subset remains

FIGURE 13. Performances of the ANNs over 200 trainings. (a) Thermal
model ANN. (b) Magnetic model ANN. The selected metrics are the RMS
error and the maximum error (over all the samples and all the variables).

FIGURE 14. Performances of the ANNs for different splitting ratio between
the training set and the test set. (a) Thermal model ANN. (b) Magnetic
model ANN. The selected metrics are the RMS error and the maximum
error (over all the samples and all the variables). The shaded areas
represent the variations obtained over 200 trainings and the solid lines the
median values.

80/20%. It can be observed that good performances can be

achieved with a training ratio of 10/90% (compared to the

nominal value of 80/20%). This implies that the ANNs can

be correctly trained with smaller datasets: 5′000 3D FEM

simulations (instead of 20′000) would be sufficient.

In comparison, if a multivariate interpolation with a regular

grid would be used in place of ANNs, the required dataset

would be much larger. A regular grid with 6 values per vari-

able would lead to 10.1 millions samples for the thermal

model (9 input variables) and 1.7 millions samples for the

magnetic model (8 input variables). This further highlights

the advantages and potentials of ANNs for improving inductor

models against classical methods such as interpolation.

F. NUMBER OF NEURONS

A last critical degree of freedom is the structure of the ANNs

(number of hidden layers, number of neurons, and activation

functions). Two hidden layers with sigmoid activation func-

tions have been selected since such ANNs are well adapted

for non-linear fitting [8], [9]. It has to be noted that the

choice of the ANN structure is not unique: many different

294 VOLUME 1, 2020



FIGURE 15. Performances of the ANNs for different numbers of neurons
(per hidden layer). (a) Thermal model ANN. (b) Magnetic model ANN. The
selected metrics are the RMS error and the maximum error (over all the
samples and all the variables). The shaded areas represent the variations
obtained over 200 trainings and the solid lines the median values.

TABLE 5 ANN Performances: Scaling with Ana. Approx

structures may give good performances. Fig. 15 highlights the

ANN performances (median over 200 trainings) for different

numbers of neurons (per hidden layer). It can be seen that

the selected structure (10 neurons per hidden layer) represents

a good trade-off between the achieved performances and the

computational cost.

G. SCALING WITH ANALYTICAL APPROXIMATIONS

For the ANN trainings, the output variables are scaled with

the analytical approximations such that the ANNs are only

predicting relative correction factors. Table 5 compares the

achieved performances with and without the scaling (median

over 200 trainings). It appears that good performances are

also achievable without scaling the 3D FEM results with the

analytical approximations. Nevertheless, the performances are

still improved by the scaling. Moreover, having analytical

approximations is very useful for inspecting and debugging

the model. For these reasons, in this work, the scaling of the

output variables has been considered.

H. COMPUTATIONAL COST

For the benchmarking, a mid-range laptop (Intel Core i7-

8650 U with 16 GB RAM) is used. However, all the workflow

(cf. Fig. 9) is parallelized and, therefore, can be massively

accelerated with more powerful hardware and/or with a dis-

tributed computing platform.

It has been shown (cf. Fig. 14) that 5′000 samples are suffi-

cient for training the ANNs. The 3D FEM models have been

optimized in order to obtain a good trade-off between the com-

putation time and the achieved accuracy. More specifically,

the models are exploiting the symmetry planes, use a cus-

tomized mesh size, and a carefully parametrized solver [47].

With this number of samples, the generation of the dataset

and the training of the ANNs (cf. Fig. 9(b)) takes 160 hours.

Between the 3D FEM simulations and the ANN trainings, the

3D FEM simulations represent, clearly, the bottleneck of the

workflow. It should be noted that the generation of the dataset

is completely automated and does not require any human

supervision. Moreover, this operation is only required once.

Nevertheless, if required, the computational cost could be

greatly reduced by using 2D FEM simulations, which are

less accurate but much faster (typically 100 times faster).

However, depending on the geometrical aspect ratio of the

components, the error between 2D and 3D simulation can be

significant (up to 30%). The error is mainly due to the field

distribution and heat flow close to the winding head of the

inductor, which cannot be easily modeled in 2D. Therefore, if

2D models are used for the optimization, the selected design

should be checked with a 3D model to ensure the validity of

the optimization.

For the computation of inductor designs (cf. Fig. 9(a)),

all the steps feature a reduced computational cost. The com-

putation of the inductor properties takes 3.3µs (or 300′000

designs per second) and the computation of an operating point

takes 20 µs (or 50′000 designs per second). The computing

speed and the parallel operation make this model particularly

useful for brute force grid search of genetic optimization al-

gorithms, which require the evaluation of many designs (cf.

Section III-A).

I. DRAWBACKS

The first drawback of the proposed model is the increased

complexity caused by the addition of the ANNs (cf. Fig. 9(a)).

However, this increased complexity is, partially, compensated

by the simplification of the inductor design evaluation process

(cf. Fig. 9(b)).

The second shortcoming of the method is the requirement

to generate a dataset for training the ANNs. It also implies that

an extension of the model (e.g., additional parameters, mate-

rials, geometries) will require an adaptation of the underlying

dataset and retraining of the ANNs.

VI. CASE STUDY: DC-DC BUCK INDUCTOR

With the presented workflow and ANNs, different types of

inductors can be optimized (e.g. PFC inductors, DC-DC in-

ductors, resonant inductors). In this paper, the inductor of a

2kW DC-DC buck converter is optimized and measured.

A. SPECIFICATIONS

Fig. 16 shows the considered 2 kW DC-DC converter stepping

down from 400 V to 200 V. The following specifications are

chosen: 55 ◦C ambient temperature, 100 µm litz wire strand-

ing, and TDK N87 core material [42]. This corresponds to the

specifications used in [21].

The following variables are optimized the boxed vol-

ume (Vbox ∈ [10, 200] cm3), the operating frequency ( f ∈

[50, 750] kHz), the geometrical aspect ratios, the air gap

length, and the number of turns. For the core and litz wire
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FIGURE 16. (a) Considered DC-DC converter. (b) Current and voltage
applied to the inductor (shown for 375 kHz and 150 µH).

FIGURE 17. Obtained Pareto plots and fronts (boxed volume vs. losses)
with the ANN-based workflow. (a) Operating frequency. (b) Inductance
value.

FIGURE 18. Deviation between the analytical approximations and the
ANN-based workflow. (a) Loss deviation. (b) Inductance deviation. The red
area represents the regions where no valid design exists with the
analytical approximations.

geometries, custom designs are also considered, in addition to

the standard shapes. Due to the extreme computational speed

of the ANN-based model, a brute force grid search approach

is used.

B. PARETO FRONTS

Fig. 17 depicts the Pareto plots and fronts obtained with the

ANN-based workflow. For the optimization 5 million designs

are considered and 0.7 million designs are valid (e.g., satu-

ration, thermal limit). All the designs are computed in 40s.

In the Pareto fronts, the design space diversity (very different

designs located at the same region of the Pareto fronts) can be

observed for both the operating frequency and the inductance

value [21], [29], [30].

Fig. 18 shows the deviation between the values ob-

tained with the analytical approximations with respect to the

TABLE 6 Measured Inductor Prototype

FIGURE 19. Measured values compared with the ANN-based workflow, 3D
FEM simulations, and analytical approximations. (a) Inductance values.
(b) Inductor losses.

ANN-based workflow. It can be seen that significant devi-

ations exist (up to 50%), highlighting the superiority and

usefulness of the ANN-based model compared to analytical

approximations. The fact that the analytical approximations

are more accurate close to the Pareto fronts (with some ex-

ceptions) can be explained by the fact that these designs

have reduced fringing field, proximity losses, and temperature

elevations [21]. Therefore, such designs are, typically, less

sensitive to the inaccuracies of the analytical approximations.

C. MEASURED PROTOTYPE

Table 6 shows the properties of the selected design, which is

the same as in [21]. It has to be noted that, due to practical

restrictions (available core shapes and litz wire geometries),

the selected design is not on the Pareto front but close to

the front. The prototype is measured, at different frequencies,

with DC currents and sinusoidal voltages (with the same volt-

second product as applied by the DC-DC buck converter).

The inductance is measured with an Agilent 4924 A

precision impedance analyzer (measurement uncertainty
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below ±0.25 µH) [52]. The losses are measured with a

custom calorimetric setup (measurement uncertainty below

±0.1W) [21]. Fig. 19 compares the measured values with the

ANN-based workflow, 3D FEM simulations, and analytical

approximations. It can be seen, that the ANN-based workflow,

as expected, matches perfectly with the 3D FEM simulations

(less than 0.6% deviation for the inductance and the losses).

The deviations between the analytical approximations and the

measurements are 8.6% for the inductance and 21.2% for the

losses. With the ANN-based workflow, the errors are reduced

to 1.4% and 11.5%, respectively.

VII. CONCLUSION

This paper examines the potential of ANNs for modeling

and optimization of power electronic components, and more

specifically, inductors. A promising workflow, which consists

of using MLP ANNs for obtaining a fast and accurate in-

ductor model, is selected. More specifically, regression ANNs

(trained with 3D FEM simulations) are used for the magnetic

and thermal models. This workflow represents a pragmatic

solution. The generation of the training dataset is straightfor-

ward and the model is accurate, robust, and easy to extend or

combine with other models and/or optimization algorithms.

The complete implementation is available as an open-source

software.

The ANN-based workflow is able to simulate inductors

with different geometries, winding strandings, core materials,

waveforms, etc. The model offers 30 input and 40 output vari-

ables and considers advanced effects such as the 3D magnetic

and thermal field patterns, detailed core loss data, proximity

winding losses, coupled loss-thermal model, etc. Furthermore,

the proposed model features the same accuracy as 3D FEM

simulations (less than 3% deviation) with a computational

cost reduced by several orders of magnitude (computation of

50′000 per second). Finally, the described computation tech-

niques are successfully applied for designing the inductor of a

2 kW DC-DC converter.

Overall, the paper demonstrates how machine learning can

be combined with classical power electronic models in order

to improve their accuracy and reduce the computational cost,

which is particularly interesting for magnetic components.
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APPENDIX

This appendix describes “AI–mag,” the software implementa-

tion of the proposed workflow (cf. Fig. 9), which is available

under an open source license [19]. All the source code is

available together with the required data (e.g., FEM models,

core loss data). The dataset used in this paper (3D FEM sim-

ulations) and the trained ANNs are also provided.

FIGURE 20. (a) Graphical user interface enabling an interactive exploration
of the Pareto fronts. (b) Geometry and properties of a specific design.

A. TYPICAL DESIGN STEPS

The tool enables many different workflows for modeling and

optimizing inductors. The most straightforward method (brute

force grid search) can be summarized as follow:
� The different variables to be optimized and the corre-

sponding ranges are chosen (e.g., geometry, material,

frequency). The fixed parameters and the applied stress

(e.g, waveforms) are defined.
� Filters are defined in order to prevent the computation

and/or storage of undesirable designs.
� With the provided data, the tool is automatically gener-

ating and computing the different designs.
� The different Pareto plots and/or objective functions are

defined (e.g., volume, mass, cost, efficiency) and the

results (trade-offs) can be displayed in a graphical user

interface, cf. Fig. 20.

B. USED TECHNOLOGIES

The tool is mainly written in MATLAB with some restricted

dependencies to COMSOL and Python (13′000 lines of

code) [47], [49]–[51]. MATLAB is communicating with both

COMSOL and Python over TCP/IP (client/server model). All

the code can take advantage of multi-core machines. Further-

more, the dataset generation (3D FEM simulations) can be

done with a distributed computing platform (cloud computing

or high-performance computing cluster).

COMSOL is used for generating the dataset (3D FEM sim-

ulations). It should be noted that COMSOL is only required

to generate the dataset, not for running the inductor model

(cf. Fig. 9). Moreover, the code is written such that COMSOL

can be easily replaced with another FEM solver.

For the regression ANNs, a versatile interface is proposed

and is taking care of the dataset handling (e.g., splitting,

scaling, normalization), ANN training, ANN validation, per-

formance visualization, and ANN evaluation. For the ANN

engine, two different libraries are available:
� MATLAB - Using the built-in MATLAB Deep Learning

Toolbox as an ANN engine.
� Python - Using the Keras ANN API with TensorFlow as

an ANN engine backend.

C. EXTENSION OF THE TOOL

Finally, the tool is made such that it is easy to extend its

capability (object-oriented programming). The addition of
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other inductor types (e.g., core shapes, winding type), mag-

netic components (e.g., transformers, chokes), or optimization

methods (e.g., genetic algorithm) should not represent a prob-

lem. ANNs could also be used for other parts of the workflow

(e.g., core losses, winding losses).
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