
540 © IWA Publishing 2013 Journal of Hydroinformatics | 15.2 | 2013

Downloaded fr
by guest
on 09 August 2
Artificial neural network (ANN) modeling of dynamic

effects on two-phase flow in homogenous porous media

Navraj S. Hanspal, Babatunde A. Allison, Lipika Deka and Diganta B. Das
ABSTRACT
The dynamic effect in two-phase flow in porous media indicated by a dynamic coefficient τ depends

on a number of factors (e.g. medium and fluid properties). Varying these parameters parametrically

in mathematical models to compute τ incurs significant time and computational costs. To circumvent

this issue, we present an artificial neural network (ANN)-based technique for predicting τ over a range

of physical parameters of porous media and fluid that affect the flow. The data employed for training

the ANN algorithm have been acquired from previous modeling studies. It is observed that ANN

modeling can appropriately characterize the relationship between the changes in the media and fluid

properties, thereby ensuring a reliable prediction of the dynamic coefficient as a function of water

saturation. Our results indicate that a double-hidden-layer ANN network performs better in

comparison to the single-hidden-layer ANN models for the majority of the performance tests carried

out. While single-hidden-layer ANN models can reliably predict complex dynamic coefficients (e.g.

water saturation relationships) at high water saturation content, the double-hidden-layer neural

network model outperforms at low water saturation content. In all the cases, the single- and double-

hidden-layer ANN models are better predictors in comparison to the regression models attempted in

this work.
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INTRODUCTION
Determining flow and transport behavior of non-aqueous

phase liquids (NAPLs) (e.g. tetrachloroethene or PCE, poly-

chlorinated biphenyl or PCB, trichloroethene or TCE,

creosote, soltrol) is of enormous importance in solving

many subsurface contamination problems. Characterization

of the flow processes involving these chemicals depends

upon the flow hydrodynamics (dynamic/static), capillary/

viscous forces, mobility ratios, temperature, grain size

distribution, fluid properties and length scales of obser-

vation. In general, modeling the two-phase flow processes

requires the solution of equations for conservation of

mass and momentum in conjunction with constitutive

equations for capillary pressure Pc, saturation S and relative

permeability Kr.
An extended version of Darcy’s law is most commonly

used as the governing equation of motion for the fluid

phases. The conservation of mass in the two-phase system

is given by an equation for conservation of phase saturation,

that is, the ratio of the volume of the fluid phase to the total

pore volume in the domain. As the constitutive Pc–S

relationship, models such as the Brooks–Corey (Brooks &

Corey ) or van Genuchten model (van Genuchten

) are frequently used. Similarly, other formulations

such as the Brooks–Corey–Burdine formula (Brooks &

Corey ) exists to calculate the Kr–S relationship.

The current work is limited to the study of the Pc–S

relationship. Physically, this relationship represents curves

which are determined by taking a porous medium sample
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initially saturated with a wetting fluid (e.g. water), and then

letting it gradually drain off by increasing the capillary

pressure at the domain boundary and displacing the wetting

fluid by a non-wetting fluid (e.g. air or oil). The main theor-

etical definition currently used to quantify the capillary

pressure is an empirical relationship obtained under equili-

brium conditions between individual phase pressures,

defined:

Pnw � PW ¼ PC SWð Þ ¼ f SWð Þ (1)

where Pnw and Pw are the average pressures of non-wetting

and wetting phases, respectively, and Sw is the wetting phase

saturation.

A number of recent studies (Tsakiroglou et al. ; Das

et al. , ; Mirzaei & Das ; O’Carroll et al. ;

Bottero et al. ; Gray & Miller ; Joekar-Nisar & Has-

sanizadeh ; Das & Mirzaei ; Hanspal & Das )

that describe two-phase flow processes in porous domains

under the assumption of dynamic flow conditions are

based on the use of a dynamic coefficient τ. These dynamic

coefficients determine the speed or ease with which flow

equilibrium is attained and the dependence of capillary

pressure on the time derivative of saturation, ∂S/∂t. t establishes
the speed at which flow equilibrium (∂S/∂t¼ 0) is reached. If τ

is small, the equivalence between Pc,dyn and c,equ is established

quickly. On the other hand, the necessary time period to

reach the equilibrium is high for larger τ values. The

dynamic coefficient τ therefore behaves as a capillary damp-

ing coefficient and indicates the dynamics of the two-phase

flow system.

Most of the experimental and computational flow-phy-

sics-based techniques for determining Pc–S relationships

and the corresponding dynamic effects through dynamic

coefficients τ calculations are very resource intensive and

exceedingly time consuming for complex three-dimensional

flows in homogeneous or heterogeneous porous domains

(Das et al. ; Mirzaei & Das ; Das & Mirzaei ;

Hanspal & Das ). In order to circumvent these difficul-

ties, we present an artificial neural network (ANN) model

that can be effectively used to determine the dynamic coeffi-

cients τ for two-phase flow in porous media; in this

particular study, PCE and water are the fluid components.

The motivation to develop and apply an ANN model for
://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
two-phase flow computations results from the ability of

ANNs to impose fewer constraints on the functional form

of the relationships between input and output variables

when the complexity of the systems is difficult to anticipate

(Johnson & Rogers ). In the following section we dis-

cuss the background in more detail.

Artificial neural networks (ANNs)

An ANN is a computational tool composed of simple

elements operating in parallel (Demuth et al. ), com-

monly known as neurons, that can simulate the working

of the human brain and the nervous system in learning to

perform functions (an input/output map). The neurons are

grouped into subsets (input, output and hidden layers)

connected to one another, having bias and transfer func-

tions associated with them. Generally, networks with

biases, a sigmoid layer and a linear output layer are capable

of approximating any function with a finite number of dis-

continuities. The weight and bias are adjustable scalar

parameters of a neuron that are modified in a sequential

mode, for the network to exhibit the desired behavior. The

assigned weights in conjunction with the presence of

hidden layers within the network help to determine the

complicated relationships between the input and output

data.

A back-propagation algorithm is used in this work to

reduce the observed error in the predicted output variables

by modifying the connection weights. Standard back-propa-

gation includes a gradient descent algorithm, such as the

Widrow–Hoff learning rule (Widrow ), for the mul-

tiple-layer networks and non-linear differentiable transfer

functions in which the network weights are moved along

the negative of the gradient of the performance function

(Demuth et al. ; Khataee & Kasiri ). When the

error measure of the network is reduced below a user-

defined minimum, the training is stopped and the

connection weights are recorded and used to perform com-

putations. There are different architectures for neural

networks which consequently require different types of

algorithms but, despite an apparently complex system, a

neural network is relatively simple serving two important

functions: (1) pattern classifiers, and (2) non-linear adaptive

filters.
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The most commonly used ANN in engineering appli-

cations is the feed-forward network (Haykin ). The

presence of multiple layers of neurons with non-linear trans-

fer functions allows the network to learn non-linear

relationships between input and output vectors.

In the context of flows within porous media, ANNs have

been used for a variety of applications that include for

example: prediction of gas diffusion layer properties within

polymer electrolyte membrane (PEM) fuel cells (Kumbur

et al. ; Lobato et al. ); prediction of dialysis perform-

ance in ultrafiltration (Godini et al. ); hygrothermal

property characterization in porous soils (Coelho et al.

); oil saturation and petrophysical property predictions

in oilfield sands (Boadu ); groundwater contamination

and pollutant infiltration forecasting (Tabach et al. );

simulating cross-flow filtration processes (Silva & Flauzino

); optimization of groundwater remediation problems

(Rogers & Dowla ; Johnson & Rogers ); large-

scale water resource management (Yan & Minsker );

permeability modeling in petroleum reservoir management

(Karimpouli et al. ); water/wastewater treatment using

various homogeneous and heterogeneous nano-catalytic

processes (Khataee & Kasiri ); determination of stress-

strain characteristics in composites (Lefik et al. ); and

characterization of outflow parameters influencing fractured

aquifers outflows (Lallahem & Mania ).

For example, Rogers & Dowla () proposed an ANN-

based groundwater management model for optimizing aqui-

fer remediation. The flow and transport model generated a

set of sample data upon which the network could be trained.

The study indicated that the ANN-based management sol-

utions were consistent with those resulting from a more

conventional optimization technique, which combined

solute transport modeling and non-linear programming.

It is apparent from the studies described in the literature

that, although most of them signify the importance and

reliability of ANN techniques for implementing porous

flows for a variety of engineering problems, none of them

are directly concerned with the need for quantifying the

dynamic effects and their influence on the flow of multiple

phases. We therefore present for the first time an ANN-

based framework for handling complex three-dimensional

two-phase flow computations of dense non-aqueous phase

liquid (DNAPL) displacements in the presence of dynamic
om http://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
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effects in a robust, computationally economical and reliable

fashion (in comparison to sophisticated numerical-methods-

based computational fluid dynamics (CFD) simulators,

which can be enormously time consuming for large-scale

recurring calculations). We also discuss the development

and training strategies employed for a variety of single-

and double-hidden-layer network models. Finally, the best

ANN and regression model architectures are identified for

reliable dynamic coefficient predictions by evaluating the

simulation results and the model performance on the basis

of statistical performance parameters.
ANN MODELING AND IMPLEMENTATION

The input or the reference data used for the ANN model

development and training result from the modeling studies

conducted within three-dimensional cylindrical coarse and

fine sand domains (Das et al. ; Mirzaei & Das ;

Hanspal & Das , ) using immiscible DNAPL displa-

cement experiments and quasi-static/dynamic ‘water-oil’

mode simulations handled via the Subsurface Transport

Over Multiple Phases (STOMP) model (http://stomp.pnl.

gov/; Nichols et al. ; White & Oostrom ).

The input data were collected from a number of pre-

vious studies (Das et al. ; Mirzaei & Das ;

Hanspal & Das ), which indicated that these variables

are important in determining the value of τ. Furthermore,

expert judgments were used to choose these variables. As

explained above, these data were obtained using numerical

(finite volume method) simulations with the main purpose

to report the significance of the dynamic effect. The dataset

included approximately 150 data points. The important stat-

istics of the datasets are listed in Table 1.

In this work, a multilayer feed-forward network trained

using a back-propagation training algorithm was implemented

with MatLab’s ANN toolbox and used to model the complex

non-linear relationship persistent among the dynamic coeffi-

cient and physical properties characterizing the DNAPL

displacement in multiphase transport. The back-propagation

algorithm used for training the feed-forward neural

network problem (Demuth et al. ) was implemented in

four sequential steps discussed in detail in the following

sections.

http://stomp.pnl.gov/
http://stomp.pnl.gov/
http://stomp.pnl.gov/


Table 1 | Important statistics of the variables used in this study

Independent
variable 1: water
saturation Sw

Independent
variable 2:
viscosity ratio
Vr¼ μnw/μw

Independent
variable 3:
density ratio
Dr¼ ρnw/ρw

Independent
variable 4:
permeability
K (m2)

Independent
variable 5:
temperature
T (WC)

Dependent variable:
dynamic coefficient
τ (Pa s)

Range 0.105–0.464 0.5–2 0.5–2 5.00 × 10�11–5.00 × 10�9 20–80 2.82 × 105–1.05 × 1011

Arithmetic average
value

0.257 0.946 1.39 3.43 × 10�9 24.55 1.26 × 1010

Standard deviation 0.091 0.32 0.47 2.31 × 10�9 13.89 2.69 × 1010

543 N. S. Hanspal et al. | Dynamic effects on two-phase flow in homogenous porous media Journal of Hydroinformatics | 15.2 | 2013

Downloaded from http
by guest
on 09 August 2022
Data assimilation

The data described above were imported to MatLab by using

calling functions to ensure that while one independent vari-

able was changed others remained constant, resulting in

variations in the dynamic coefficient values. This procedure

was repeated to train the network on each of the indepen-

dent variables in order to produce an output close enough

to the target (dependent variable). The input (independent)

variables are denoted p while the output (dependent) vari-

ables are represented by the target t.

Network object creation

MatLab’s ANN toolbox was utilized to create a feed-forward

network requiring three arguments before returning the net-

work object. The network object was created after providing

the input and output parameters which then initialized the

weight and bias values to determine the size of the output

layer. In addition, the input data were segregated into

three different sets, namely the training, validation and test

data in a split of 60, 20 and 20%, respectively.

Two-layer (single-hidden) and three-layer (two-hidden)

feed-forward networks were developed and investigated

in this study. The two-layer network has the typical

format of the input variables, the target and the number

of hidden neurons {p, t, 3} while the three-layer

network is characterized by two sets of hidden layer neur-

ons {p, t, [3 5]}.

Network training

After the network weights and biases were initialized,

the network was trained for function approximation
://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
(non-linear regression), pattern association and pattern

classification. During training, the weights and biases of

the network were adjusted iteratively to minimize the net-

work performance function. The default performance

function for the feed-forward networks is mean square

error (mse), which is the average difference of the squared

errors (Demuth et al. ) between the network (a) and

the target outputs (t). The training was carried out in

MatLab by segregating the available data into three datasets:

60% for training, 20% for validation and 20% for testing.

Training was conducted multiple times in conjunction

with using five-fold cross-validation to ensure each of the

data points in the 150-point dataset was a part of 60% test

dataset. The network training data were then utilized to

recognize the behavioral patterns in the data, validated in

order to assess the network generalization and tested to pro-

vide an independent evaluation of network generalization

for new data that the network had not experienced

previously.

The process parameters, goal and epoch were used to

determine the stopping criteria for the network training.

The training was stopped when the number of iterations

exceeded the epochs or if the performance function

dropped below the set tolerance value. The training was

carried out until there was a continued reduction in the

network error on the validation vectors. After the network

memorized the training set, training was terminated. Re-

initialization of the network was pursued depending

upon its accuracy. The initial weights of nodes are

assigned randomly in the MatLab toolbox, so repeated

training may result in different ANN performances. In

this work, each ANN was trained multiple times. The

number of hidden neurons was varied gradually, since

large neuron numbers within the hidden layer gave the
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network more flexibility due to multiple parameter optim-

ization. Under-characterization was tackled by instructing

the network to optimize more parameters than the

number of data vectors.

Although, the training was carried out in MatLab by seg-

regating the available data randomly into three datasets (i.e.

60% for training, 20% for validation and 20% for testing),

the well-known measure of stratified sampling was applied

to ensure that the statistics of the testing and training data

are in close vicinity.

Network response simulation

After the network was trained, it was re-applied to the orig-

inal vectors. Network outputs were produced by

incorporating the network input and the network object,

and finally applied to simulate dynamic coefficient values

for a range of input parameters.
PRE- AND POST-PROCESSING PROCEDURES: ANN
MODEL TRAINING

Specific pre- and post-processing steps discussed in the sub-

sequent section were required to train the ANN model

effectively, as described in the following sections.

Pre-processing procedure

When the network is created using MatLab’s ANN tool-

box, default processing functions are automatically

assigned to the network inputs and outputs. These

functions were overridden by adjusting the network par-

ameters. User-defined functions were used to scale up

the network where the epoch limit was set to be 200 iter-

ations. The {mapstd} function was utilized in the scale-up

operation by normalizing the mean and standard deviation

of the training set to be 0 and 1, respectively. No other

scaling functions or correction factors for the inputs and

outputs were utilized in this work.

It was also important that we did not use too much

over-fitting of the data. This was ensured as follows.

First of all, we used a relatively large dataset as compared

with the number of points needed to plot the τ–S curve. In
om http://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
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our case, the dataset was about 30–35 times greater than

the typical number of points (five to six points) needed

to plot a τ–S curve. Secondly, we used a relatively

simple ANN structure. This ensures that there is no artifi-

cial over-fitting of the data, as may be observed in

complex ANN structures.

Post-processing analysis

As an additional measure, regression analysis was carried

out using the network outputs and the corresponding targets

to validate the network performance.
ANN MODEL PERFORMANCE TESTING AND
CALIBRATION

The performance of various ANN models developed in this

work were analyzed against standard performance par-

ameters and criteria (Jain et al. ), described in the

following sections. The performances were calculated

using the entire dataset.

Sum squared error (SSE)

The summed square of residuals (SSE) represents the total

deviation of the simulated values in comparison to the

observed values. This is defined:

SSE ¼
XN

i¼1

Sobs � Scalð Þ2 (2)

where N is total number of data points predicted; Sobs is the

observed value of dynamic coefficient τ; and Scal is the calcu-

lated value of dynamic coefficient τ.

Average absolute relative error (AARE)

The average of the relative errors (AARE) commonly

expressed as a percentage were calculated via:

AARE ¼ 1
N

XN

i¼1

Scal � Sobs
Sobs

����
���� × 100 (3)
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Lower values of AARE indicate better model

performance.
Nash–Sutcliffe efficiency coefficient E

The Nash-Sutcliffe efficiency coefficient E is defined:

E ¼ 1�
P

Scal � Sobsð Þ2
P

Sobs � �Sobs
� �2 (4)

where �Sobs is the average observed dynamic coefficient τ.

Values of E nearing 1.0 indicate a perfect match between

the observed data and outputs, signifying high model

accuracy.
Pearson product moment coefficient of correlation R

The Pearson product moment coefficient R is defined:

R ¼
P

Sobs � �Sobs
� �

× Scal � �Scal
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Sobs � Sobsð Þ2P Scal � �Scal

� �2q (5)

where �Scal is the average calculated dynamic coefficient τ.

Equation (5) was used to characterize the strength of

linear dependency in the relationship between simulated

and observed data. Values of R nearing unity indicate a

good model.
Threshold statistics (TS)

The threshold statistics for a level of absolute relative error

(ARE) of x% are defined:

TS ¼ Nx

N
(6)

where Nx is the number of data points predicted

for which the average relative error (ARE) is less

than x%. Equation (6) quantifies the consistency in

the prediction errors ( Jain & Ormsbee ). Large

values of threshold statistics indicate better model

performance.
://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
REGRESSION MODELING OF DYNAMIC
COEFFICIENT

Linear and non-linear regression models were also devel-

oped as a part of this study to make comparisons with the

predictions obtained using the ANNmodel. MatLab was uti-

lized for all the regression modeling work carried out,

described in the following sections. The regressions were

calculated using the entire dataset.
Linear multiple regression

The dynamic coefficient τ was regressed against the indepen-

dent variables, i.e. water saturation, viscosity ratio, density

ratio, permeability and temperature:

τ ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β5x5 (7)

where τ is the dynamic coefficient; β0 ! β5 are the

regression coefficients to be estimated; and x1 ! x5 are the

independent variables.

Since the resulting system of equations was over-deter-

mined (William ), the left division method (based on

Gauss elimination and least-square techniques) was used

to determine the matrix coefficients which best fit the data-

sets. Using this technique, the data are arranged in a

matrix:

Xβ ¼ τ (8)

where

β ¼

β0
β1
. . .

β5

2
6664

3
7775 X ¼

1 x11 x21 x31 x41 x51
1 x12 x22 x32 x42 x52
. . . . . . . . . . . . . . . : . . .

1 x1N x2N x3N x4N x5N

2
6664

3
7775 τ ¼

τ0

τ1

. . .

τN

2
6664

3
7775

x1i ! x5i and τi represent the data, and i¼ 1,…, N where N

is the number of data points. The solution for the coeffi-

cients is computed:

β ¼ Xnτ (9)

where the backslash operator performs matrix left division.
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x minimizes norm X�β � τð Þ, the length of the vector

Xβ � τ (Demuth et al. ).
Non-linear multiple regression

Using similar variables as in the case of linear regression,

polynomials of various orders ( Jain & Indurthy )

represented by Equations (10) and (12) were used to

regress the dynamic coefficient against water saturation,

viscosity ratio, density ratio, permeability and tempera-

ture:

τ ¼ β0 þ β1 x1ð Þ2þβ2 x2ð Þ2þβ3 x3ð Þ2þβ4 x4ð Þ2þβ5 x5ð Þ2 (10)

τ ¼ β0 þ β1 x1ð Þ0:05þβ2 x2ð Þ0:05þβ3 x3ð Þ0:05þβ4 x4ð Þ0:05

þ β5 x5ð Þ0:05 (11)

τ ¼ β0 þ β1 x1ð Þ4þβ2 x2ð Þ4þβ3 x3ð Þ4þβ4 x4ð Þ4þβ5 x5ð Þ4 (12)

Function based on the Gauss–Newton algorithm with

Levenberg–Marquardt modifications for global convergence

(Demuth et al. ) were used to determine the least-

squares parameter estimates.
Figure 1 | Trained network and post-training regression analysis for [5-7-1] ANN model.

om http://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
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RESULTS AND DISCUSSION

The reference data used in developing and training various

neural network models for predictive modeling of dynamic

coefficients through incorporation of dynamic effects are

described in Das et al. (), Mirzaei & Das () and

Hanspal & Das (). As described in the ‘Data assimila-

tion’ section, the data comprise five independent and one

dependent output parameter.

ANN models

Two different types of ANN models were developed in

this work: (1) single-hidden-layer model, and (2) double-

hidden-layer model. For each type of model, the number of

neurons in the input layer and the output layer were kept

the same. The number of neurons in the hidden layer was

determined using a trial-by-error procedure proposed by Jain

& Indurthy (). The optimal model architecture was deter-

mined by varying the number of hidden neurons from 3 to 17

and performing a post-training analysis on each of the net-

work models. As discussed before, slope m, correlation

coefficient r and intercept c values in the proximity of 1 and

0 indicate an optimal model. The model training and post-

training regression analysis plots for the best ANN networks

developed in this work are depicted in Figures 1–4.



Figure 2 | Trained network and post-training regression analysis for [5-9-1] ANN model.

Figure 3 | Trained network and post-training regression analysis for [5-9-11-1] ANN model.
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The mean-squared errors in Figures 1(a)–4(a) gradually

decrease as the learning and the training process continues.

The performance goal indicates that the convergence of the

mean-squared error training, validation and test plots was

set to the default mode of zero. The number of iterations

(epochs) were different in all the distinct models reported,

since the validation test stops the network training when

the peak performance is attained. Figures 1(b)–4(b) rep-

resent the post-training regression analyses of the network

models depicting the perfect line, outputs¼ targets (Y¼ T )

and the best linear regression line for the data points. The
://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
best linear regression line is then used for evaluating the

slope, correlation coefficient and the intercept. Table 2

lists the performance values of the ANN models on the

basis of post-training line regression plots used in the deter-

mination of the number of hidden neurons which produce

the most accurate fit.

From the slopes and the correlation coefficients listed in

Table 2, it is clear that the network is best trained when there

are seven or nine hidden neurons for the single-hidden-layer

model structure and a combination of [9 11], [13 15] or [11

13] hidden neurons for the double-hidden-layer models.



Figure 4 | Trained network and post-training regression analysis for [5-11-13-1] ANN model.

Table 2 | ANN model performance determined using post-training regression analysis

Number of hidden
layers

Artificial neural
network model

Correlation
coefficient r

Slope
m

1 ANN (5-3-1) 0.8396 0.7363

1 ANN (5-5-1) 0.8950 0.8359

1 ANN (5-7-1) 0.9578 0.9183

1 ANN (5-9-1) 0.9439 0.9056

1 ANN (5-11-1) 0.8634 0.7134

1 ANN (5-13-1) 0.8752 0.7715

2 ANN (5-3-5-1) 0.9455 0.8705

2 ANN (5-5-7-1) 0.9499 0.8786

2 ANN (5-7-9-1) 0.9492 0.8722

2 ANN (5-9-11-1) 0.9489 0.9025

2 ANN (5-11-13-1) 0.9632 0.9077

2 ANN (5-13-15-1) 0.9243 0.9595

2 ANN (5-15-17-1) 0.9248 0.8938
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Only these models have their correlation coefficients and

slopes above 0.9. In terms of the correlation coefficient,

the double-hidden-layer structure ANN [11 13] performed

best with a value of 0.9632 while the ANN [13 15] model

structure performed best with respect to the slope with a

value of 0.9595. In comparison to the double-hidden-layer

networks, the single-layer networks ANN [7] and ANN [9]

models have correlation coefficient values of 0.9578 and

0.9439, respectively.
om http://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
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Regression models

The values of the regression coefficients for the linear and

non-linear regression models used in this work are listed

in Table 3. The performances of the regression models

were further evaluated and compared with the ANN

model performances, enlisted in the subsequent section

using the criteria described in the ‘ANN model performance

testing and calibration’ section.
Model performance criteria evaluation

Model performance parameters (AARE, SSE, R, E and TS)

were computed to determine the performance of the ANN

and regression models. Plots depicted in Figures 5–8 provide

a better means to evaluate and compare the performance of

the ANN and regression models.

From the absolute average relative error (AARE) tests,

characterized in Figure 5, it can be seen that the regression

models performed badly; the linear regression model per-

forms the worst. The best of the single-layer and double-

hidden-layer structures performed almost identically.

Figure 6 illustrates the comparison of the sum squared

errors (SSE), signifying that the regression models

perform poorly with the non-linear regression model-2

performing the worst (7.13333). The ANN [7] and ANN



Table 3 | Linear and non-linear regression coefficients

Non-linear multiple regression (NLR) models

Regression parameter Independent variable Linear multiple regression (LR) model Model 1 (NLR 1) Model 2 (NLR 2) Model 3 (NLR 3) Model 4 (NLR 4)

β0 Constant 0.5223 9.1625 0.1785 �0.6614 6.9875

β1 x1 �0.8281 �9.5799 �0.6248 1.4945 �4.1225

β2 x2 �0.0983 �1.4919 0.0051 0.2166 �11.7713

β3 x3 0.0791 0.5146 0.0930 �0.1092 0.8174

β4 x4 �0.0009 �0.0248 0.0060 0.0044 �2.0980

β5 x5 0.1610 1.2602 0.1471 �0.22358 1.1004

Figure 5 | Average absolute relative errors (AARE): comparison of various regression

(linear LR and non-linear NLR) and ANN models.

Figure 7 | Efficiency E and correlation coefficient R: comparison of various regression

(linear LR and non-linear NLR) and ANN models.
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[11 13] performed best with the latter having a better

value of 0.7175.

Comparisons using efficiency E and correlation coeffi-

cient R presented in Figure 7 also illustrates the
Figure 6 | Sum squared errors (SSE): comparison of various regression (linear LR and non-

linear NLR) and ANN models.

://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
underperformance of regression models with the non-

linear regression model-2 performing the worst. The ANN

[7] and ANN [11 13] models have the best performance

with the efficiency E and correlation coefficient R for

ANN [7] being 0.9171 and 0.9578, respectively. ANN [11
Figure 8 | Threshold statistics (TS-5, TS-10, TS-25, TS-50 and TS-100): comparison of

various regression (linear LR and non-linear NLR) and ANN models.



Table 4 | Model performance comparisons for ANN [7] and ANN [11 13], the best-performing single- and double-hidden-layer ANN structures

Model R E SSE AARE TS-5 TS-10 TS-25 TS-50 TS-100

ANN-7 0.9578 0.9171 0.7175 31.2250 57.58 63.65 76.52 84.85 88.64

ANN-[11 13] 0.9632 0.9272 0.6306 27.4732 59.85 65.91 75.00 80.30 87.12
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13] performed slightly better with values of 0.9272 for E and

0.9632 for R, respectively.

From the threshold statistics (TS) plot in Figure 8, it is

can be seen that the regression models again perform

poorly; the non-linear regression model-2 has the lowest

value for threshold statistic (TS-5). The ANN [7] model, on

the other hand, performed best for TS-100 with a value of

88.64 while the ANN [9 11] model performed best for

TS-5 with a value of 65.91.

It is concluded that the regression models generally per-

form poorly in comparison to ANN models. The ANN [7] in

the category of single-hidden-layer models and the ANN [11

13] within the class of double-hidden-layer models demon-

strate the best performance. Double-hidden-layer network

models performed slightly better in comparison to the

single-layer-network models; they have better performance

values in all the tests except for the threshold statistics,

where they had lower values in comparison to the single-

layer network (Table 4).
Figure 9 | Regression model performance for predicting dynamic coefficient–water saturation

om http://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
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Model simulations: Dynamic coefficient–water

saturation relationship

The functional relationships between the dynamic coeffi-

cient and water saturation can typically be characterized

by smooth curves, exemplifying decreasing dynamic coeffi-

cient values for increasing water saturation. Dynamic

coefficients values were obtained using the best ANN and

regression models developed in this work and compared

against the corresponding target values obtained using the

reference data (Das et al. , ; Mirzaei and Das

; Hanspal & Das , ). Dynamic coefficient

versus water saturation plots presented in Figures 9–11

were developed using the simulated data from the single,

double-hidden-layer ANN and regression model simu-

lations. Comparisons have been made for determining the

forecasting accuracy of the ANN and regression models

regarding a typical inverse relation between the dynamic

coefficient and water saturation.
relationship.



Figure 10 | Single-hidden-layer ANN model performance for predicting dynamic coefficient–water saturation relationship. The ANN structure with [7] neurons in the hidden layer seems to

perform better.
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Figures 9(a) and (b) demonstrate the predictive capabili-

ties of the linear and non-linear regression models, which

are deemed to be poor. The non-linear model performs

better in comparison to the linear regression model, but

still fails to accurately represent the characteristic behavior

of the reference data. Single-layer ANN model predictions

compare very well against the reference data illustrated in

Figures 10(a) and (b).
Figure 11 | Double-hidden-layer ANN model performance for predicting dynamic coefficient–w

seem to perform better.

://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
The network model with seven hidden neurons success-

fully simulates the dynamic coefficient values, which fall in

close proximity to the reference data with fewer errors in com-

parison to the ANN model with nine neurons in the hidden

layer. The simulations were carried out using the double-

hidden-layer ANNmodels presented in Figures 11(a) and (b).

The simulated data represent predictions of the

dynamic coefficient values and characteristics of the
ater saturation relationship. The ANN structure with [11 13] neurons in the hidden layers
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inverse dynamic coefficient–water saturation relationship,

which again compare well against the reference data. How-

ever, there are more wayward data points in comparison

with the single-hidden-layer ANN model predictions. Simu-

lations resulting from ANN [11 13] hidden neuron model

structure compare much better in comparison to the

ANN [9 11] model. Finally, the best performing single-

hidden-layer ANN [7] and double-hidden-layer ANN [11 13]

models from all the simulations and performance analysis

are compared in Figure 12.

Observing Figure 12, it can be concluded that the

double-layer-hidden ANN [11 13] model contains more pre-

diction errors in comparison to the single-hidden-layer

ANN [7] model. Closer inspection reveals that the

double-hidden-layer ANN network performs better for low

water saturation values, enabling the prediction of high

dynamic coefficient values which closely resemble the refer-

ence data (as determined by immiscible displacement

experiments and complex three-dimensional flow-physics-

based CFD computations; Hanspal & Das ). As the

water saturation values start to increase, the single-hidden-

layer ANN [7] model better predicts the dynamic coefficient

variations than the double-hidden-layer ANN [11 13] model.

The ANN [11 13] model had a great many wayward values;
Figure 12 | Comparisons of the best-performing single- and double-hidden-layer ANN models

formances of the two structures seem to be similar, suggesting that a single-hidd

om http://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
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this was the same for all the double-hidden-layer models.

The network structure of the best-performing models

include: (1) single-layer ANN model containing five input,

seven hidden layer and one output neuron; and (b)

double-layer ANN model containing five input, [11 13]

hidden layer and one output neuron. These can be used

reliably for predicting dynamic coefficient–water saturation

relationships, as depicted in Figures 13 and 14.
CONCLUSIONS

We have demonstrated the successful application of ANN

(single- and multiple-hidden layered) and regression model-

ing techniques (linear and non-linear) for determining

complex relationships between the dynamic coefficient

and the physical parameters characterizing the porous

medium and the fluid properties. The data deployed for

model development, network training, performance evalu-

ation and subsequent analysis was acquired from

computational physics-based modeling studies (Mirzaei &

Das ; Hanspal & Das , ). It has been demon-

strated that significant computational savings can be

obtained by using the ANN models (Figures 13 and 14) in
for predicting dynamic coefficient–water saturation relationship simulations. The per-

en-layer ANN model may be chosen.



Figure 13 | Best-performing single-layer ANN model containing five inputs, seven hidden

layers and one output neuron.

Figure 14 | Best-performing double-layer ANN model containing five inputs, [11 13]

hidden layer and one output neuron.
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comparison to the flow-physics-based CFD simulators.

These cost savings are indicative of the reduced simulation

timescales required for determining the complex functional

relationships for dynamic coefficient variations resulting

from dynamic effects within multiphase flows. Excessive

over-fitting of the data was also avoided.

It is concluded that ANNs can model the behavioral

relationship between the changes in the media and fluid

properties, reliably predicting dynamic coefficients in com-

parison to regression models. From the performance

statistics parameters which comprise the average absolute

relative error, sum squared errors and the efficiency, the

double-hidden-layer ANN model seems to perform better

in comparison to the single-hidden-layer ANN model

with similar threshold statistics. However, from the simu-

lation plots it was determined that single-hidden-layer

ANN [7] model is a better predictor for high water
://iwaponline.com/jh/article-pdf/15/2/540/387026/540.pdf
saturation content in comparison to the double-hidden-

layer ANN [11 13] model, while at low water saturation

ANN [11 13] performs more reliably. In most cases, however,

the differences in the model predictions were small and it can

be concluded that, for most practical work, a well-trained and

validated single-layer ANN structure should suffice.

Results from this work demonstrate that ANN models

operating within a hybrid framework of both single- and

double-hidden-layer neurons for a range of water saturation

contents provide a boost to parameter estimation and

simulation.
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