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ABSTRACT

The subgrid-scale stress (SGS) of large-eddy simulation (LES) is modeled by artificial neural network-based spatial gradient models (ANN-
SGMs). The velocity gradients at neighboring stencil locations are incorporated to improve the accuracy of the SGS stress. The consideration
of the gradient terms in the stencil locations is in a semi-explicit form so that the deployed artificial neural network (ANN) can be considerably
simplified. This leads to a much higher LES efficiency compared with previous “black-box” models while still retaining the level of accuracy
in the a priori test. The correlation coefficients of the ANN-SGMs can be larger than 0.98 for the filter width in the inertial range. With the
current formulation, the significances of the individual modeling terms are transparent, giving clear guidance to the potential condensation
of the model, which further improves the LES efficiency. The computational cost of the current ANN-SGMmethod is found to be two orders
lower than previous “black-box” models. In the a posteriori test, the ANN-SGM framework predicts more accurately the flow field compared
with the traditional LES models. Both the flow statistics and the instantaneous field are accurately recovered. Finally, we show that the current
model can be adapted to different filter widths with sufficient accuracy. These results demonstrate the advantage and great potential of the
ANN-SGM framework as an attractive solution to the closure problem in large-eddy simulation of turbulence.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053590

I. INTRODUCTION

Accurate prediction of turbulent flow is crucial in both the
research and engineering communities as most industrial flows turn
out to be turbulent. As is well known, characterizing turbulence
in complete detail by direct numerical simulation (DNS) is often
impractical at high Reynolds number due to the large range of
spatial and temporal scales to be resolved. Hence, averaged solu-
tions become the major alternatives, mainly including the Reynolds-
averaged Navier–Stokes (RANS) method and the large-eddy simula-
tion (LES).1 The RANSmethod only calculates the ensemble average
of the flow properties, leaving the unclosed Reynolds stress modeled
either empirically or through theoretical arguments.2 In contrast,
LES, which was originally pioneered for meteorological applica-
tions,3–5 directly represents a portion of the large-scale motions. The

small-scale dynamics in LES is modeled so that the computational
cost is kept at manageable levels.6

Similar to the modeling of the Reynolds stress in RANS,
the reconstruction of the subgrid-scale (SGS) stress is a central
problem in the LES community.7–14 Extensive SGS models exist
in the literature, among which the Smagorinsky model (SM),3,4

the dynamic Smagorinsky model (DSM),8,9,15,16 the scale-similarity
model (SSM),17,18 the dynamic mixed model (DMM),19–22 the veloc-
ity gradient model (VGM),23 Implicit-LES (ILES),24–28 higher-order
gradient models,29 nonlinear-viscosity-based LES,30 non-local eddy
viscosity approach,31 and many others32–40 constitute the most
important ones.

Recently, increasing attention is attracted to machine-learning-
based SGS models due to the development of modern computers
and the availability of the large amounts of experimental and DNS
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data. The earliest contribution, to our knowledge, is from Sarghini
et al.41 who, in their study on channel flow, adopted an artificial
neural network (ANN) to predict the Smagorinsky coefficient in
Bardina’s scale similaritymodel. Interestingly, what follows the work
of Sarghini et al.41 is a long gap of more than a decade with very
few works emerging onmachine-learning-based turbulence closures
until the quite recent studies.42–45 Thereafter, the literature has seen
an enormous boom in this field.46–62

With artificial neural networks, like that employed by
Sarghini et al.,41 most researchers take velocity gradients (shear
rates) as inputs, and it turns out to be effective.63–65 Gamahara and
Hattori57 predicted the SGS stress in turbulent channel flow using
the artificial neural network without any assumptions on the form of
the SGS term. With the inputs constructed using the filtered gradi-
ents from DNS data, the predicted SGS stress exhibits a comparable
accuracy to the gradient model.23 Vollant et al.58 applied a similar
artificial neural network in conjunction with an optimal estima-
tion theory to predict the SGS flux of a passive scalar. To account
for the spatial influence, Xie et al.66,67 proposed a series of ANN-
based methods incorporating the first- and second-order gradients
at neighboring stencil locations to achieve higher correlation coef-
ficients. The reader is also referred to the summary by Duraisamy
et al.2 and the references therein for other recent progress. Despite
these continuous efforts in the modeling of the SGS stress, it is
important to note that highly accurate SGS stress can be unstable
under perturbation.68 While this approach may fail for more com-
plex flows, it is sufficient for the current homogeneous isotropic case.
It was shown that a hyper-viscosity can be implemented to keep the
stability of SGS model without significantly affecting the accuracy in
LES of isotropic turbulence.67

To the best of our knowledge, most existing works in ANN-
based SGSmodelsmake no assumptions on the form of the SGS term
(i.e., “black-box” type). Consequently, the mathematical structure of
the SGS stress is implicitly hidden in the “black-box” of the artifi-
cial neural network, rendering it difficult to generalize the model or
to disentangle the specific role of the gradient terms. Moreover, the
number of required neurons can be enormous when spatial sten-
cil effects are considered,66,67,69 and over-fitting can exist when the
velocity gradients at stencil locations are directly fed to the artifi-
cial neural network (cf. Fig. 2 of Ref. 66). Very recently, Xie et al.70

proposed an ANN-based nonlinear algebraic model (ANN-NAM)
that incorporates the Galilean invariance into the SGS stress. In
their “semi-explicit” approach, the invariants of the velocity gradi-
ent tensors are taken as the input of the ANN and the nonlinear
terms are the tensor bases of the local gradients. We note that spa-
tial locations are not considered in their work and the accuracy of
SGS stress predicted by the ANN-NAM framework is very close to
that of the velocity gradient model (VGM). This also motivates the
current work to examine in detail the influence of the spatial stencil
locations.

In view of these limitations, we shall seek a semi-explicit for-
mulation for the SGS stress using the artificial neural network, with
particular emphasis on the individual contributions from the neigh-
boring stencil locations. The dimensional consistency and phys-
ical constraint of the Galilean invariance give the model more
robustness and stability. While accuracy is maintained at a com-
parable level, the computational efficiency is significantly increased
compared with the “black-box” model. The training data are

generated from the filtered DNS (fDNS) data of incompressible
isotropic turbulence at a grid resolution of 10243 in a cubic box of(2π)3 with periodic boundary conditions. The dimensionless invari-
ants of the velocity gradient tensor33,70,71 at the local position are
taken as the training inputs. Since the velocity gradients are incorpo-
rated after the final hidden layer, the artificial neural network is con-
siderably simplified compared with previous works,66,67 leading to a
much faster LES. Furthermore, with the current method, the influ-
ence of each constitutive term can be clearly visualized in contrast to
the previous models of “black-box” type. As we shall see, this leads to
an even simpler version of the artificial neural network-based spatial
gradient models (ANN-SGMs). Previous works66,67,69,72–74 show that
the flow dynamics at scales between Δ/2 and 2Δ play crucial roles in
the transport of kinetic energy at filter width Δ. Hence, the stencil
locations in the current work are tacitly taken at these scales.

Detailed comparisons between the present ANN-SGMmethod
and existing SGS models are performed using both a priori and a
posteriori tests. In the a priori test, the present models give much
larger correlation coefficients than traditional gradient models. As
the number of considered neighboring locations increases, the accu-
racy of the predicted SGS stress goes up. In the a posteriori test, we
choose the most simplified model as it turns out to be amply ade-
quate based on the a priori observation. Both the flow statistics and
the instantaneous field are examined, invariably demonstrating the
great potential of the present ANN-based SGS model.

The paper is organized as follows: Sec. II presents the govern-
ing equations of LES and the detailed structure of the artificial neural
network-based spatial gradient models. Section III gives the statistics
of the DNS database for incompressible turbulence and the param-
eterization of the numerical scheme. Sections IV and V highlight
the key results in the a priori and the a posteriori tests, respec-
tively. Section VI summarizes the paper and comments on the future
perspectives.

II. GOVERNING EQUATIONS OF LARGE-EDDY
SIMULATION AND ARTIFICIAL NEURAL
NETWORK METHODS

In the current section, the governing equations for incom-
pressible turbulence and large-eddy simulation are discussed, fol-
lowed by a detailed description of the artificial neural network-based
spatial gradient models (ANN-SGMs). The hyperparameters of the
machine-learning process are also introduced.

A. Governing equations of incompressible turbulence
and large-eddy simulation

The conservations of mass and momentum for incompressible
turbulence are governed by1,14,75

∂ui

∂xi
≙ 0, (1)

∂ui

∂t
+

∂uiuj

∂xj
≙ −

∂p

∂xi
+ ν

∂
2ui

∂xj∂xj
+ℱi, (2)

with ui being the ith component of velocity, ν being the kinematic
viscosity, p being the pressure divided by the constant density, and
ℱ being a large-scale forcing to the fluid momentum. Here, the
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summation convention is used. In addition, the Taylor microscale
Reynolds number Reλ is given by75

Reλ ≙
urmsλ√

3ν
, (3)

where urms
≙

√⟨uiui⟩ stands for the root mean square (rms) velocity
and ⟨⋅⟩ denotes a spatial average over the whole periodic domain D.
The Taylor length scale λ is defined by

λ ≙

√
5ν

ε
u
rms

, (4)

where ε is the dissipation rate given by ε ≙ 2ν⟨SijSij⟩ with Sij
≙

1
2
(∂ui∂xj + ∂uj∂xi) being the strain rate tensor. Finally, the

Kolmogorov length scale η and the integral length scale LI are
defined, respectively, by1,75

η ≙ (ν3
ε
)1/4, (5)

LI ≙
3π

2(urms)2∫
∞

0

E(k)
k

dk, (6)

with the energy spectrum E(k) defined as ∫ ∞0 E(k)dk ≙ (urms)22.
In LES, the governing equations are obtained through a filtering

operation,

f (x) ≙ ∫
D
f (x − r)G(r, x;Δ)dr, (7)

where G is the filter kernel, Δ is the filter width, and D denotes
the overall domain.6,10,76 In the current work, filter G is assumed
to commute with the spatial derivatives (i.e., homogeneous filter1).
Applying Eq. (7) to Eq. (1) and Eq. (2), we have6,7,10,77

∂ui

∂xi
≙ 0, (8)

∂ui

∂t
+

∂uiuj

∂xj
≙ −

∂p

∂xi
−

∂τij

∂xj
+ ν

∂
2ui

∂xj∂xj
+ℱi, (9)

where the information of the filter is implicitly contained in the
unclosed term τij, recognized as the subgrid-scale (SGS) stress,
defined by

τij ≙ uiuj − uiuj. (10)

The central problem in LES boils down to the representation of the
SGS term using the filtered (resolved) variables. Subsequently, the
filtered equations can be solved just like the original Navier–Stokes
equations using any suitable numerical algorithm. However, unlike
the viscous stress, the constitutive equation for the SGS stress
is not obvious since the SGS stress is not a true “stress.” It is
formed completely due to nonlinear interactions of the fluctuat-
ing field. Consequently, the success of the traditional models (e.g.,
the Smagorinsky model3), which mimics the linear Newton’s Law
for viscous stress, is quite limited. For enhanced predictions of the
mean flow, many modifications to the Smagorinsky model were
attempted. The dynamic Smagorinsky model (DSM) exploits the
Germano identity15 and reproduces the overall energy exchange

between the resolved and the subgrid scales. The dynamic mixed
model (DMM),18 which combines the scale-similarity model17,18

with an eddy viscosity part, yields a higher correlation coefficient.
However, these models tend to overpredict the energy spectrum at
larger scales while underestimates it at smaller scales due excessive
SGS dissipation. These observations suggest an inadequacy in the
accuracy of the SGS stress. In other words, these models can have
similar net effects on the mean flow like the true SGS stress; how-
ever, the prediction of the SGS term per se and other flow properties
may not be adequate, begging more accurate SGS models. In view
of these limitations, we resort to the machine-learning technique to
reconstruct the SGS stress.

B. The structure of the artificial neural network-based
spatial gradient models

As discussed, most existing works41,57,58,64,65 take the velocity
gradients as the inputs of the artificial neural network. Very recently,
Xie et al.66,67,69 further improved the previous models by consider-
ing the velocity gradients of different orders at neighboring spatial
locations near the filter width (cf. Fig. 2). However, since no forms
are assumed for the SGS stress. The constitutive relation is implic-
itly hidden in the network, rendering it difficult to unravel the exact
contributions of the neighboring locations. Considering dimen-
sional consistency, the SGS stress can be written in the most general
form as

τ
model
ij ∣l,m,n ≙

Np,q

∑
p1 ,p2 ,p3
q1 ,q2 ,q3

=−Np,q

∞

∑
I1 ,I2 ,I3
J1 ,J2 ,J3

=0

g

p1 ,p2 ,p3
q1 ,q2 ,q3
I1 ,I2 ,I3
J1 ,J2 ,J3 Δ

I1+I2+I3
+J1+J2+J3

×

∂
I1+I2+I3ui

∂xI11 ∂x
J2
2 ∂x

J3
3

∣ l+p1
m+p2
n+p3

∂
J1+J2+J3uj

∂x J1
1 ∂x

J2
2 ∂x

J3
3

∣ l+q1
m+q2
n+q3

. (11)

Here, (l,m,n) represent the local grid point and each compo-
nent of (p1, p2, p3) and (q1, q2, q3) can take the values between ±Npq

(e.g., 0, ±1,±2,±3 . . .), which represent different neighboring stencil
locations. When only the local gradients are considered, a rigor-
ous form exists using Taylor expansion.29 In the current treatment,
which considers also the information at multiple spatial locations,
Eq. (11) is an assumption based on the dimensional consistency
of the SGS stress. In general cases, the numerical construction of
first-order derivatives requires less efforts than higher-order deriva-
tives, which also induces further numerical errors at large LES grid
spacings. Besides, the previous “black-box” model has shown that
incorporating first-order gradients at multiple stencil locations can
have higher SGS accuracy than including higher-order derivatives
at the local grid point.64,67 Meanwhile, higher-order gradients can
be, in principle, constructed using lower-order gradients among the
spatial stencil locations. Hence, we will only consider the first-order
velocity gradients, yielding

τ
model
ij ∣l,m,n ≙

Np,q

∑
p1 ,p2 ,p3
q1 ,q2 ,q3

=−Np,q

3

∑
k=1

g
(p1 ,p2 ,p3 ;q1 ,q2 ,q3)

× Δ
2 ∂ui

∂xk
∣l+p1 ,m+p2 ,n+p3 ∂uj

∂xk
∣l+q1 ,m+q2 ,n+q3 . (12)
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In the current work, we only choose the stencil locations along
the x, y and z coordinate directions, as shown in Fig. 1. As a result,
the SGS stress reduces to

τ
model
ij ∣l,m,n ≙

Np,q

∑
p1 ,p2 ,p3
q1 ,q2 ,q3

=−Np,q

p1p2=p2p3=p1p3=0
q1q2=q2q3=q1q3=0

3

∑
k=1

g
(p1 ,p2 ,p3 ;q1 ,q2 ,q3)

× Δ
2 ∂ui

∂xk
∣l+p1 ,m+p2 ,n+p3 ∂uj

∂xk
∣l+q1 ,m+q2 ,n+q3 . (13)

For Npq ≙ 1, there are M ≙ 1 + 6Npq ≙ 7 stencil locations, and
the model will be abbreviated as ANNSGM-7-49 (since there are
M2
≙ 49 possible combinations of the gradient products on the

right-hand side of the equation). Likewise, for Npq ≙ 2, M ≙ 13,
and the model will be abbreviated as ANNSGM-13-169 . . .,and so
on. In general, the model is abbreviated as ANNSGM-M-M2. For
simplicity, hereafter, we shall denote (l,m,n), (p1, p2, p3), and(q1, q2, q3) by L, s1, and s2, respectively. We shall also drop

FIG. 1. Schematic of the ANN-SGM: (a) spatial locations in consideration and (b)
the structure of the neural network.

the summation symbol Σ due to the summation convention.
Consequently, the SGS stress can be written as

τ
model
ij ≙ g

s1s2
Δ
2( ∂ui

∂xk
∣L+s1)( ∂uj

∂xk
∣L+s2). (14)

Inspired by previous works,33,42,78 the model coefficients gs1s2

are assumed to be functions of ΛL∗
n (n ≙ 1, 2, 3, 4, 5), which are the

invariants of the local velocity gradient tensor, defined as

Λ
L∗

1 ≙ Tr(S2), ΛL∗

2 ≙ Tr(Ω2), ΛL∗

3 ≙ Tr(S3),
Λ
L∗

4 ≙ Tr(Ω2
S), ΛL∗

5 ≙ Tr(Ω2
S
2), (15)

with the filtered strain and rotation rates given by

Sij ≙
1

2
(∂ui
∂xj
+

∂uj

∂xi
), Ωij ≙

1

2
(∂ui
∂xj
−

∂uj

∂xi
). (16)

Following previous works,33,71 we further reduce the five invariants
to four dimensionless variables by rescaling, yielding

Λ
L

1 ≙
Tr(Ω2)
Tr(S2) , ΛL

2 ≙
Tr(S3)

Tr (S2)3/2 , ΛL

3 ≙
Tr(Ω2

S)
Tr (S2)1/2 Tr(Ω2) ,

Λ
L

4 ≙
Tr(Ω2

S
2)

Tr(S2)Tr(Ω2) .
(17)

In turn, Eq. (14) can be recast as

τ
model
ij ≙ g

s1s2(ΛL

1Λ
L

2Λ
L

3Λ
L

4)Δ2( ∂ui
∂xk
∣L+s1)( ∂uj

∂xk
∣L+s2). (18)

Clearly, the building blocks of Eq. (18) explicitly involve the
velocity gradients at different stencil locations. As discussed above,
both s1 and s2 represent seven stencil locations (including the
local point) if one neighboring point is chosen in each direction
(x−, x+, y−, y+, z−, z+). Consequently, 72 ≙ 49 terms appear in the
summation on the right-hand side of the equation, and 49 dimen-
sionless coefficients (gs1s2 ) are needed. These coefficients (gs1s2 ) are
only functions of the local dimensionless invariants. Based on our
test (not reported), including the invariants at the neighboring sten-
cil locations, i.e., incorporating Λs at the seven stencil locations in
the expressions of the coefficients g (4 × 7 terms in total), makes little
improvements, but including the velocity gradients at the neighbor-
ing stencil locations is indeed necessary for improving the accuracy
of the SGS stress. Finally, the relations between gs1s2 and the invari-
ants are obtained by the ANN. As we can see, the gradient terms
are not in the hidden layers of the ANN and no parameters need
to be trained for them. The only implicit part is in the dimension-
less model coefficients gs1s2 generated from the ANN. This “semi-
explicit”model needs only four inputs (the invariants) for the hidden
layers to yield the model coefficients. As already noted, Eq. (18)
is mathematically and dimensionally consistent with the true SGS
stress. Furthermore, the non-dimensional character of the coeffi-
cients inherently gives the model a wide applicability, making it
easier to adapt to other filter widths. With these considerations, we
aim at constructing a highly explicable and widely applicable model
with desired accuracy.

We recall that Ling et al.42 constructed an ANN-based semi-
explicit model for the anisotropic part of the Reynolds stress with
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embedded invariance properties. Recently, Xie et al.70 adopted a
similar approach in the reconstruction of the SGS stress in LES. Both
works show the importance of the embedded invariance properties.
However, these works only exploit the information of the local point.
In addition, the accuracy of the predicted SGS stress is not signifi-
cantly better than the velocity gradient model (VGM).70 As a new
extension to these studies, the current work also incorporates the
invariance property. Meanwhile, the contributions from the spatial
stencil locations are examined in detail.

To obtain the SGS stress τij, the dimensionless model coeffi-
cients gs1s2 in Eq. (18) are determined by the artificial neural network
shown in Fig. 1. The output of any layer l (except for the input and
output layers) can be calculated as

X
l
i ≙ σ
⎛⎝∑j W l

ijX
l−1
j + b

l
i

⎞⎠, (19)

where W l
ij is the weight from the jth neuron in layer l − 1 to the ith

neuron in layer l. bli is the bias parameter for the ith neuron in layer

l.W l
ij are initialized using Glorot-uniform,79 and bli are initialized to

zero. Here, σ is an activation function.80,81 In the current work, we
choose the Leaky-ReLU function,42 given by

σ(a) ≙ (a i f a > 0

0.2a i f a ≤ 0
). (20)

The present artificial neural network consists of four layers of neu-
rons (4 : 20 : 20 : No) with the four neurons in the input layer
receiving the invariants ΛL

1 . . .Λ
L

4 , and the No neurons send out the
coefficients gs1s2 for each of the gradient products as per Eq. (18).
Here, the number of coefficients depends on the number of con-
sidered spatial locations. These coefficients finally combine with the
gradient products, as shown in Eq. (18), to match the target (i.e., the
true SGS stress generated from the filtered DNS data).

In this work, we choose Npq ≙ 1, 2, 3 neighboring locations
of the local grid point in each of the six directions, namely,
x−, x+, y−, y+, z−, z+, as shown in Fig. 1. These locations are equally
spaced at the distance of Δ

2
. The local grid point is denoted by

L, and the neighboring points are denoted by x − h, x − 2h, x − 3h,
x + h, x + 2h . . . y − h, . . . z − h . . . as Fig. 1 shows. Throughout the
study, the grid space h of LES is taken as h ≙ Δ/2 unless
otherwise specified. As discussed, the models corresponding to
Npq ≙ 1, 2, 3 will be denoted by ANNSGM-7-49, ANNSGM-13-169,
and ANNSGM-19-361, respectively.

For the stability of the training process,43,44,58 the pri-
mary inputs (ΛL

1 . . .Λ
L

4 ) are normalized to the range ∥0, 1∥ by x̂

≙
x−min{xDNS}

max{xDNS}−min{xDNS} , while the secondary inputs (∂ui∂xk
∣L+s1)(∂uj∂xk

∣L+s2)
and the outputs τij are scaled to O(1) by x̂ij ≙

xij
xminmax

with

xminmax ≙
1
6∑3

i=1∑i
j=1

max{xDNSij }−min{xDNSij }
2

. The mean squared error

(⟨ 1
6∑3

i=1∑i
j=1(τAijpredicted − τAijDNS)2⟩) is finally minimized by the back-

propagation method57 to optimize the values ofW l
ij and bli.

III. DNS DATABASE AND THE FILTERED DNS

In the current study, the DNS data are obtained from the direct
numerical simulation of a forced incompressible isotropic turbu-
lence at the Taylor Reynolds number Reλ ≈ 250 on a uniform grid

TABLE I. Numerical simulation parameters and one-point statistical quantities for
10243 grid resolution of incompressible turbulence.

Reso. Reλ η/hDNS LI/η λ/η ν urms ωrms ε

10243 259 1.01 233 31.7 0.001 2.29 26.3 0.69

of 10243. The grid space is denoted by hDNS. The numerical param-
eters and one-point statistics of the DNS are detailed in Table I.67,82

With this configuration, ηhDNS is close to 1.01, giving a resolution
of kmaxη ≈ 2.11 with kmax ≙ N/3 ≙ 2π/3hDNS being the maximum
wavenumber. We note that a resolution of kmaxη ≥ 2.1 guarantees
the convergence of the kinetic energy at all wavenumbers.75,83 The
kinematic viscosity ν is taken to be 0.001. The root mean squared

(rms) value of vorticity is defined as ωrms
≙

√⟨ωiωi⟩.
The numerical simulations of the incompressible homogeneous

isotropic turbulence are performed in a cubic box of (2π)3 with
periodic boundary conditions. A pseudospectral code is applied for
the numerical simulations on a uniform grid.67,75 A second order
two-step Adams–Bashforth scheme is used for time integration. Full
dealiasing is implemented using the two-thirds rule.84 The veloc-
ity field is forced by fixing the energy spectrum within the two
lowest wavenumber shells with f (k ≙ 1)/ f (k ≙ 2) ≈ 3.17,85 where
f (k) represents the component of the large-scale forcing ℱ at
wavenumber k.

In the current machine-learning process, all the training data
are generated through the filtered DNS field. The filtered variables
and the corresponding SGS stress τij are obtained using a Gaussian
filter given by1

G(r) ≙ ( 6

πΔ2 )1/2 exp(−6r2
Δ
2 ), (21)

where the filter width is Δ ≙ nhDNS. Figure 2 illustrates the veloc-
ity spectrum of the DNS and the filtered DNS data at filter width
Δ ≙ 16hDNS, corresponding to Δ/η ≈ 16, which covers well the iner-
tial subrange. In Fig. 2, the cutoff wavenumber is defined as kc ≙ π/Δ.
It is found that 5% of the turbulent kinetic energy resides in the SGS
field at Δ/hDNS ≙ 16. In the a priori analysis, the training data are

FIG. 2. Velocity spectrum of direct numerical simulation of a forced incompressible
isotropic turbulence with a uniform grid of 10243. Diamond represents the cutoff
wavenumber kc = 32 with a filter width of Δ = 16hDNS.
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FIG. 3. Learning curves of the proposed models for the unclosed SGS stress.

invariably generated at this filter width. However, the results turn
out to have wide applicability to other filter widths as we shall see
later.

IV. TRAINING OF THE ANN-SGMs
AND A SIMPLIFIED MODEL

In the training of the ANN, 4 × 643 of the 10243 filtered data
points at filter width Δ ≙ 16hDNS are randomly selected for ANN
training. 70% of the data are used for training and the rest for
testing. The network is trained by the Adam algorithm to update

W l
ij and bli

86 for 200 iterations with the batch size being 4000. The
training and testing losses for the three proposed ANN-SGMs are
shown in Fig. 3. As can be seen, 200 iterations are sufficient for con-
vergence. Since the learning curves of the training and testing sets
almost merge, the trainings are free from over-fitting. Furthermore,
the impact of the hyperparameters (i.e., the size of the artificial neu-
ral network: the number of layers and the number of neurons in each
layer) on the ANN has been analyzed, and the network structure
4 : 20 : 20 : No turns out to be adequate.

The a priori accuracy of the ANN-SGM framework is exam-
ined in detail in Appendix A. Overall, the ANN-SGMs yield very
high (close to 0.99) correlation coefficients for the SGS stress,
which is much higher than that of the traditional velocity gradi-
ent model. With increasing number of considered stencil locations,

the accuracy exhibits a saturation (cf. Appendix A). Seven stencil
locations turn out to be adequate for the current analysis.

Taking the ANNSGM-7-49 model as an example, we exam-
ine the dimensionless coefficients gs1s2 through their mean values in
Table II. As observed, the mean values vary across multiple orders
of magnitude. Apparently, the major contributions, bold-faced in
Table II, are from the terms associated with the local grid point
(i.e., the elements in the first row and the first column) and the
self-associated neighboring terms (i.e., the elements in the diago-
nal line). The rest of the terms are at least one order smaller than
the “leading order” (gLL) and “second order” (gLx−h, . . . gx−hL, . . .)
terms. The standard deviations of the dimensionless coefficients√⟨(gs1s2 − ⟨gs1s2⟩)2⟩ normalized by the mean values ⟨gs1s2⟩ are
shown in Table III. As observed, the coefficients of the dominant
terms are more narrowly distributed (i.e., the deviations are two
orders smaller than themean values). For the “less important” terms,
the mean values and their deviations are “closer,” indicating a wider
distribution. In light of these observations, it is natural to consider
only these dominant terms so as to potentially condense the model
without a large sacrifice of accuracy.

In this attempt, we artificially set the coefficients of the
less important terms to zero. Taking the ANNSGM-7-49 model,
for instance, the simplified version, abbreviated as ANNSGM-
7-19, contains 1 + 6 × 3 ≙ 19 terms (cf. Table II). Comparisons
between the ANNSGM-7-19 and ANNSGM-7-49 models are given
in Appendixes B and C in terms of the a priori and a posteriori
accuracies, respectively. As it turns out, the ANNSGM-7-19 model
gives almost the same performance as the ANNSGM-7-49 model.
In this case, we will only examine in detail the capability of the
ANNSGM-7-19 model in the a posteriori LES.

To close the current section, we examine the average coeffi-
cients of the ANNSGM-7-19model in Table IV. Themost important
observation is that the distribution of coefficients is more uniform
compared with the ANNSGM-7-49 model. This should be expected
due to the isotropic nature of the flow. However, this trend is not so
significant for the ANNSGM-7-49 model (cf. Table II) presumably
due to the numerical noise induced by the large number of stencil
terms. In this sense, the ANNSGM-7-19 model is also more robust
than the ANNSGM-7-49 model. It is also worth noting that the sym-
metry of the SGS stress is not incorporated in Eq. (18). However, the
symmetry of the model coefficients in Table IV, to a large extent,
guarantees the symmetry of the SGS stress. In this case, we will take
the ANNSGM-7-19model as an example to examine the ANN-SGM
framework in LES.

TABLE II. Mean values of the coefficients gs1s2 for the ANNSGM-7-49 model at filter width Δ = 16hDNS. Boldface denotes the values of the dominant terms.

⟨gs1s2⟩ s1 ≙ L s1 ≙ x − h s1 ≙ x + h s1 ≙ y − h s1 ≙ y + h s1 ≙ z − h s1 ≙ z + h

s2 ≙ L +1.9 × 10
−1

−1.4 × 10
−2

−1.4 × 10
−2

−1.5 × 10
−2

−1.5 × 10
−2

−2.7 × 10
−2

−2.7 × 10
−2

s2 ≙ x − h −2.1 × 10
−2

+1.6 × 10−2 −5.0 × 10−4 +6.0 × 10−4 −1.3 × 10−6 +3.2 × 10−3 +3.4 × 10−3

s2 ≙ x + h −2.1 × 10
−2

−4.6 × 10−4 + 1.6 × 10−2 −4.0 × 10−4 −1.9 × 10−4 +4.0 × 10−3 +4.0 × 10−3

s2 ≙ y − h −1.9 × 10
−2

−1.9 × 10−4 −4.0 × 10−4 + 1.6 × 10−2 −3.8 × 10−4 +1.3 × 10−3 +1.5 × 10−3

s2 ≙ y + h −2.1 × 10
−2

−6.0 × 10−5 −5.8 × 10−5 −1.6 × 10−4 + 1.6 × 10−2 +2.5 × 10−3 +2.7 × 10−3

s2 ≙ z–h −1.4 × 10
−2

−5.5 × 10−4 −3.8 × 10−4 −2.3 × 10−4 −2.1 × 10−4 + 1.6 × 10−2 −5.9 × 10−4

s2 ≙ z + h −1.3 × 10
−2

−4.6 × 10−4 −4.2 × 10−4 −2.3 × 10−4 −3.2 × 10−4 −5.5 × 10−4 + 1.5 × 10−2
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TABLE III. Standard deviations of gs1s2 normalized by mean values for the ANNSGM-7-49 model at filter width Δ = 16hDNS. Boldface denotes the values of the dominant terms.

√
⟨(gs1s2−⟨gs1s2 ⟩)2⟩
⟨gs1s2 ⟩ s1 ≙ L s1 ≙ x − h s1 ≙ x + h s1 ≙ y − h s1 ≙ y + h s1 ≙ z − h s1 ≙ z + h

s2 ≙ L +1.8 × 10
−2

−1.7 × 10
−2

−2.6 × 10
−2

−3.4 × 10
−2

−1.5 × 10
−2

−2.2 × 10
−2

−2.2 × 10
−2

s2 ≙ x − h −3.7 × 10
−2

+1.9 × 10
−2

−4.4 × 10−1 +4.5 × 10−1 −1.5 × 102 +1.2 × 10−1 +1.2 × 10−1

s2 ≙ x + h −3.4 × 10−2 −4.3 × 10−1 +2.3 × 10
−2

−1.0 × 10−1 −1.1 × 10−1 +0.9 × 10−1 +0.8 × 10−1

s2 ≙ y − h −2.8 × 10−2 −5.2 × 10−1 −3.3 × 10−1 +2.6 × 10
−2

−5.7 × 10−1 +2.5 × 10−1 +2.2 × 10−1

s2 ≙ y + h −2.2 × 10−2 −5.7 × 10−1 −5.2 × 10−1 −7.5 × 10−1 +1.6 × 10
−2

+0.8 × 10−1 +1.1 × 10−1

s2 ≙ z − h −2.6 × 10−2 −1.6 × 10−1 −2.2 × 10−1 −2.7 × 10−1 −3.2 × 10−1 +2.0 × 10
−2

−5.8 × 10−1

s2 ≙ z + h −2.7 × 10−2 −1.6 × 10−1 −3.6 × 10−1 −5.2 × 10−1 −1.1 × 10−1 −6.2 × 10−1 +2.5 × 10
−2

TABLE IV. Spatially averaged value for the coefficients gs1s2 of the ANNSGM-7-19 model at filter width Δ = 16hDNS. Boldface denotes the non-zero values, corresponding to
the dominant terms of the ANNSGM-7-49 model in Tables II and III.

⟨gs1s2⟩ s1 ≙ L s1 ≙ x − h s1 ≙ x + h s1 ≙ y − h s1 ≙ y + h s1 ≙ z − h s1 ≙ z + h

s2 ≙ L +1.8 × 10
−1

−1.6 × 10
−2

−1.6 × 10
−2

−1.6 × 10
−2

−1.6 × 10
−2

−1.7 × 10
−2

−1.6 × 10
−2

s2 ≙ x − h −1.7 × 10
−2

+1.7 × 10
−2 0 0 0 0 0

s2 ≙ x + h −1.6 × 10
−2 0 +1.6 × 10

−2 0 0 0 0

s2 ≙ y − h −1.6 × 10
−2 0 0 +1.6 × 10

−2 0 0 0

s2 ≙ y + h −1.6 × 10
−2 0 0 0 +1.6 × 10

−2 0 0

s2 ≙ z − h −1.6 × 10
−2 0 0 0 0 +1.7 × 10

−2 0

s2 ≙ z + h −1.6 × 10
−2 0 0 0 0 0 +1.6 × 10

−2

V. A POSTERIORI TEST OF THE ANN-SGM

In the a posteriori test, LESs are performed at Reλ ≈ 250 using
the same time integration scheme as in DNS. Meanwhile, three grid
resolutions are adopted, namely, 1283, 643, and 323, corresponding
to filter widths Δ ≙ 16hDNS, Δ ≙ 32hDNS, and Δ ≙ 64hDNS, respec-
tively. Here, the different filter widths are chosen to test the range of
applicability of the proposed ANN-SGM. However, the key results
and analyses are only for the Δ ≙ 16hDNS case, for which the inertial
subrange is well covered.1 We investigate and validate the perfor-
mance of the ANNSGM-7-19 model using the filtered DNS result
as benchmarks. Meanwhile, other popular LES models are intro-
duced for comparison, including implicit LES (ILES), the dynamic
Smagorinsky model (DSM), and the dynamic mixed model (DMM).
The grid size of LES is invariably taken at h ≙ Δ/2.

The implicit-LES (ILES) is based on a numerical viscosity with-
out explicit modeling for the SGS stress.24–28 To avoid the insta-
bility often encountered in gradient-type SGS models, a dissipative
numerical method is introduced with higher numerical dissipation
at larger wavenumbers, namely,67

u ≙ u − Δt ⋅ C
I
0( k

k0
)nu, k0 ≙ N/3, (22)

where n ≙ 4, CI
0 ≙ 3, N is the number of LES grids, and k0 is the

largest wavenumber in LES due to the two-thirds dealiasing rule.
This configuration is invariably used for all models in the a posteri-
ori test for consistency. It was shown that the numerical dissipation
is necessary to generate the flux of kinetic energy to smaller scales,
which cannot be resolved at the LES grids.67 The grid scale is cho-
sen to be smaller than the filter width to ensure that the numerical

dissipation does not significantly affect the high accuracy of SGS
models.

The spirit of the dynamic Smagorinsky model (DSM) is the
assumption that the SGS stress at different filter widths in the inertia
subrange is rigorously similar in an eddy viscosity form.1 By exploit-
ing the Germano identity,9 the DSM model can be written as6,8,10,16

τ
A
ij ≙ τij −

δij

3
τkk ≙ −2C

2
sΔ

2∣S∣Sij, (23)

with Δ being the primary filter width, ∣S∣ ≙ (2SijSij)12 being the char-
acteristic filtered rate of strain, and C2

s calculated dynamically as

C
2
s ≙
⟨ℒ ijℳ ij⟩⟨ℳ klℳ kl⟩ , (24)

with ℒ ij ≙ ũiuj − ũiũjαij ≙ −2Δ
2∣S∣Sijβij ≙ −2Δ̃2 ∣̃S∣̃Sij, and ℳ ij ≙ βij

− α̃ij. Here, following the convention,1 an overbar denotes the fil-
tering operation at scale Δ, a tilde represents a coarser filtering
(Δ̃ ≙ 2Δ), and a tilde over an overbar denotes a double filtering.

The dynamic mixed model (DMM)17,19 is a combination of the
scale-similarity model and the eddy-viscosity model.1 This model
guarantees sufficient dissipation with the eddy-viscosity part while
retaining the high correlation coefficient of scale similarity part. To
briefly describe the dynamic procedure in the DMMmodel, we first
write the Germano identity, given by9

L
A
ij ≙ T

A
ij − τ̃

A
ij , (25)

with TA
ij ≙ Tij −

δij
3
Tkk, where Tij ≙ ũiuj − ũiũj is the SGS stress at fil-

ter width Δ̃, and LAij ≙ Lij −
δij
3
Lkk with Lij ≙ ũiuj − ũiũj representing
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the resolved stress.1 A square error is obtained by replacing τAij and

TA
ij with the modeled stresses τAmodel

ij and TAmodel
ij , yielding

Emodel ≙ ⟨(LAij − LAmodel
ij )2⟩, (26)

where LAmodel
ij ≙ TAmodel

ij − τ̃Amodel
ij . By assuming the coefficients are

scale invariant and minimizing the right-hand side of Eq. (26), we
obtain a set of equations for the coefficients, including the SGS stress
terms at scales Δ and Δ̃18,22,87

τ
Amodel
ij ≙ C1h

A
1ij + C2h

A
2ij, (27)

T
Amodel
ij ≙ C1H

A
1ij + C2H

A
2ij, (28)

where hA1ij ≙ −2Δ
2∣Sij∣Sij, hA2ij ≙ h2ij −

δij
3
h2kk, h2ij ≙ ûiuj − ũiũj, HA

1ij

≙ −2Δ̃2 ∣̃Sij ∣̃Sij, HA
2ij ≙ H2ij −

δij
3
H2kk, and H2ij ≙ (ÐÐ→ũiũj − ⃗̃ui⃗̃uj) with the

right arrow denoting the filtering at filter width 4Δ. These yield

C1 ≙
⟨N2

ij⟩⟨LAijMij⟩ − ⟨MijNij⟩⟨LAijNij⟩⟨N2
ij⟩⟨M2

ij⟩ − ⟨MijNij⟩2 , (29)

C2 ≙
⟨M2

ij⟩⟨LAijNij⟩ − ⟨MijNij⟩⟨LAijMij⟩⟨N2
ij⟩⟨M2

ij⟩ − ⟨MijNij⟩2 , (30)

whereMij ≙ H
A
1ij − h̃

A
1ij and Nij ≙ H

A
2ij − h̃

A
2ij

All the LESs are performed on a grid resolution of h ≙ Δ/2 with
filter widths Δ ≙ 16, 32, 64hDNS. The value FGR ≙ 2 (FGR ≙ Δ/h),
which is the ratio of the filter width to the grid space, ensures that
the differences between the LES and the filtered DNS are mainly due
to the modeling errors of the SGS terms.88–95 The ratio of the time

steps in LES and DNS is kept at ΔtLES/ΔtDNS ≙ 10 for all the LESs,
where ΔtLES and ΔtDNS are the time steps for LES and DNS, respec-
tively. In this research, the time discretization error of the LES is
small and thus neglected.88–95 As we shall see, both the flow statis-
tics and the instantaneous field can be accurately predicted by the
current ANN-SGM in the a posteriori test.

Due to the stationary nature of the flow, all the results are
time-averaged values, except for the result of the instantaneous field
(Figs. 9, 10, 15, and 16).

A. A posteriori tests at filter width Δ = 16hDNS

Figure 4 displays the velocity spectrum of the ANNSGM-7-19
model together with the results from the DNS and the filtered DNS
(fDNS). The results of the ILES, DSM, and DMM models are also
shown in Fig. 4. As expected, the velocity spectrum of DNS has a

long inertial regime with the k−5/3 scaling.1 The filtered DNS spec-
trum is lower than that of DNS especially at high wavenumbers after
the cutoff value (cf. Fig. 2) since the small scale energy is filtered
out. The error in the ILES result increases as k increases. As Fig. 4
illustrates, the DSM and DMM models tend to overestimate the
spectrum at larger scales (small wavenumber) while they underes-
timate it at small scales (large wavenumber). On the other hand, the
ANNSGM-7-19 model recovers nearly the whole range of velocity
spectra except a small deviation from the filtered DNS result near the
cutoff wavenumber. As for efficiency, the ratio of the computational
cost of LES using different SGS models is found to be ILES (no-
model): SM (Smagorinsky model): DSM: DMM: ANNSGM-7-19
≙ 0.4:0.72:1:1.5:4 (it should be noted that the ratio is 0:0.32:0.6:1.1:3.6
for the subgrid modeling cost only). For comparison, the ratio of the

FIG. 4. Spectrum of velocity for LES
at a grid resolution of 1283(h = Δ/2) in
the a posteriori test at filter width of
Δ = 16hDNS (a) at wavenumber k < 100
and (b) at wavenumber k < 20.

FIG. 5. PDF of normal and shear com-
ponents of the SGS stress τij in the a
posteriori test at filter width Δ = 16hDNS:
(a) normal component of SGS stress and
(b) shear component of SGS stress.
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FIG. 6. Structure functions in the a pos-
teriori analysis at filter widthΔ = 16hDNS:
(a) SL

2, (b) SL
4, and (c) SL

6.

computational cost of LES using the current model to the previous
“black-box” model67 is 4:256, clearly demonstrating the efficiency

of the current ANN-SGM framework considering the very small
sacrifice of accuracy.

We now compare the probability density functions (PDFs)

of anisotropic SGS stress τAij (≙ τij −
δij
3
τkk) for the ANNSGM-7-19

model with other SGS models in Fig. 5. The SGS stress is normalized
by the root mean square (rms) value of the true SGS stress obtained

FIG. 7. PDF of the normalized velocity
increment in the a posteriori test at filter
width Δ = 16hDNS: (a) r = Δ, (b) r = 2Δ,
(c) r = 4Δ, and (d) r = 8Δ.
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FIG. 8. PDF of the SGS flux in the a posteriori test at filter width Δ = 16hDNS.

from the filtered DNS field, calculated as τ
A f DNS
ijrms ≙

√⟨(τA f DNS
ij )2⟩.

Again, ⟨⋅⟩ denotes a spatial average. Here, only one component of
the normal stress and one component of the shear stress are pre-
sented due to the isotropic character of the flow. The PDFs of τAij are
almost symmetric for isotropic turbulence. Clearly, the ANNSGM-
7-19 model predicts best the SGS stress, while both the DSM and
DMM models predict a narrower PDF. Meanwhile, we also observe

that the DMM model performs better in the prediction of the SGS
stress than the DSMmodel.

Next, we analyze the spatial structures of the LES flow field
using the structure functions and PDFs of the velocity increment.
The longitudinal structure function of velocity can be written as

S
L
n(r) ≡ ⟨RRRRRRRRRRR

δru

urms

RRRRRRRRRRR
n⟩, (31)

where δru ≙ ∥u(x + r) − u(x)∥ ⋅ r̂ is the longitudinal increment of
the velocity at the separation r with r̂ ≙ r∣r∣. Here, the velocity incre-
ment is normalized by the rms velocity urms. For isotropic flow, we
can arbitrarily choose the direction and take r in the x direction for
simplicity. As Fig. 6 illustrates, the structure functions at large sep-
arations can be accurately predicted by all the models. This is not
surprising due to the nature of LES. As the separation r/Δ decreases,
ILES does a poor job, predicting a value higher than the filtered DNS
result, whereas the structure functions from the DSM and DMM
models are lower than the filtered DNS result at small separation
and their errors go up as n increases. In contrast, the ANNSGM-
7-19 model can accurately predict structure functions at the whole
range of scales.

The PDFs of the normalized velocity increment are shown in
Fig. 7. As Fig. 7 depicts, all the models have reasonable agreement
with the filtered DNS result at large r. At smaller r, the DSM, DMM,
and ILESmodels show some discrepancies, consistent with the trend

FIG. 9. The instantaneous field of nor-
malized vorticity in the a posteriori test
at filter width Δ = 16hDNS: (a) fDNS, (b)
DSM, (c) DMM, and (d) ANNSGM-7-19.
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FIG. 10. Time evolution of the kinetic energy in the a posteriori test at filter width
Δ = 16hDNS.

in Fig. 6. Again, the ANNSGM-7-19 model agrees well with the
filtered DNS result at both small and large separations.

In the study of turbulence, a very important and intriguing phe-
nomenon is the energy cascade. In this regard, we examine the SGS
flux, defined by1

Π ≙ −τijSij, (32)

which constitutes a direct representation of the rate of energy trans-
fer to the residual field (small scale) from the resolved field (large
scale).We note that this transport of energy is entirely due to nonlin-
ear interactions, and it can be negative (i.e., backscatter). The PDFs
of the SGS flux are displayed in Fig. 8. As shown, the ANNSGM-7-19

model predicts accurately the energy transfer between the resolved
and the SGS fields. The DSM predicts a strictly positive SGS flux,
thus no backscatter. This is not surprising due to the formulation of
the model [cf. Eq. (24)]. The DMM model, on the other hand, does
predict a backscatter. However, the backscatter is much weaker in
intensity than the filtered DNS.

In Fig. 9, we show the instantaneous vorticity field normal-
ized by the rms value at arbitrarily selected xy cross sections of the
domain in order to scrutinize the coherent structure of the flow
field.67 Here, all the models are initialized to the same condition and
run for t/τ ≙ 5.34 with τ being the large-eddy turnover time, defined
by τ ≙ LI/urms. As shown in Fig. 9, the ANNSGM-7-19 model sim-
ulates reasonably well the vorticity field with most of the flow struc-
tures recovered. On the other hand, the predicted vorticity fields by
the DSM and DMM models are quite different compared with the
filtered DNS. We also note that the result of DSM is very close to
that of the DMM due to the similarity in their formulations (they
both have a “Smagorinsky part”). The evolution of the kinetic energy
k(t) with time is illustrated in Fig. 10. As can be seen, the evolution
of the kinetic energy predicted by the ANNSGM-7-19 model is the
closest to the filtered DNS result.

B. A posteriori tests at larger filter widths Δ = 32hDNS

and Δ = 64hDNS

To test the applicability of the current ANN method at fil-
ter widths larger than the training one (i.e., Δ ≙ 16hDNS), we rerun
the a posteriori tests at filter width Δ ≙ 32hDNS and Δ ≙ 64hDNS to
examine some of the major results in Subsection V A. Now, the cor-
responding grids applied in the LESs are 643 and 323, respectively.

FIG. 11. Spectrum of velocity for LES in
the a posteriori test at larger filter widths:
(a) Δ = 32hDNS and (b) Δ = 64hDNS.

FIG. 12. PDF of normal and shear com-
ponents of the SGS stress τij in the a
posteriori test at filter width Δ = 32hDNS:
(a) normal component of SGS stress and
(b) shear component of SGS stress.
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FIG. 13. PDF of normal and shear com-
ponents of the SGS stress τij in the a
posteriori test at filter width Δ = 64hDNS:
(a) normal component of SGS stress and
(b) shear component of SGS stress.

FIG. 14. PDF of the SGS flux in the a
posteriori test at larger filter widths: (a)
Δ = 32hDNS and (b) Δ = 64hDNS.

FIG. 15. The instantaneous field of nor-
malized vorticity in the a posteriori test
at filter width Δ = 32hDNS: (a) fDNS, (b)
DSM, (c) DMM, and (d) ANNSGM-7-19.

AIP Advances 11, 055216 (2021); doi: 10.1063/5.0053590 11, 055216-12

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 16. The instantaneous field of nor-
malized vorticity in the a posteriori test
at filter width Δ = 64hDNS: (a) fDNS, (b)
DSM, (c) DMM, and (d) ANNSGM-7-19.

We apply the same weights and biases obtained from the training at
Δ ≙ 16hDNS due to the assumed independence of the model coeffi-
cients gs1s2 on filter width as per Eq. (18). In other words, the depen-
dence of the SGS stress on the filter width is completely attributed to
the Δ2 term. This turns out to be not a bold assumption as both the
Δ ≙ 32hDNS and the Δ ≙ 64hDNS cases yield satisfactory results.

In the numerical configuration, we apply the same type of
time advancing scheme as in the Δ ≙ 16hDNS case. The predictions
of the ILES, DSM, and DMM models are also reproduced. Shown
in Fig. 11 are the velocity spectra at Δ ≙ 32hDNS and Δ ≙ 64hDNS.
At Δ ≙ 32hDNS, the result of the ANNSGM-7-19 model almost
merges with the filtered DNS result. For the Δ ≙ 64hDNS case, the
ANNSGM-7-19 model still gives the most satisfactory prediction
among the tested models despite some discrepancies in the middle
range.

The PDFs of the SGS stress and SGS flux at Δ ≙ 32hDNS and
Δ ≙ 64hDNS are displayed in Figs. 12–14. Again, the SGS stress is
normalized by the root mean square (rms) value of the true SGS
stress similar to Fig. 5. Overall, the result from the ANNSGM-7-19
model is the closest to the filtered DNS result in all these compar-
isons. Interestingly, the ANNSGM-7-19 model accurately predicts
the backscatter in a consistent manner (cf. Fig. 14), whereas the
positive branches of the PDFs of the SGS flux are not perfectly
recovered at coarser grids. It is worth noting that even though the
positive energy transfer is underestimated, numerical instability is

not encountered due to the applied dissipative numerical scheme, as
shown in Eq. (22).

The snapshots of the vorticity fields for the Δ ≙ 32hDNS and
Δ ≙ 64hDNS cases are given in Figs. 15 and 16 at the same instant

FIG. 17. Spectrum of velocity in the LES for the ANNSGM-7-19 model in the a
posteriori test at a different forcing, f(k = 1)/ f(k = 2) ≈ 5.79. Here, the filter
width is Δ = 32hDNS.
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(i.e., t/τ ≙ 5.34). To compare with the Δ ≙ 16hDNS case, we take the
same color bar limits as in Fig. 9. As Figs. 15 and 16 suggest, the
performance of the ANNSGM-7-19 model is quite promising espe-
cially for the Δ ≙ 32hDNS case, for which the differences between the
ANNSGM-7-19 model and the other two models (i.e., DSM and
DMM) are even larger than the Δ ≙ 16hDNS case. In addition, the
maximum vorticity level is found to drop as the grids become coarser
(cf. Fig. 9). In fact, this should be expected since larger vorticity
generally exists in smaller vortexes, causing a larger shearing.

Finally, we test the performance of the ANNSGM-7-19 model
under a different forcing ratio of f (k ≙ 1)/ f (k ≙ 2) ≙ 5.79 in Fig. 17.
Here, the Tayor Reynold number Reλ is ∼269. As observed, the cur-
rent ANNSGM-7-19 model still gives a quite satisfying prediction,
demonstrating its applicability at different flow parameters.

VI. CONCLUSIONS

In this study, the subgrid-scale (SGS) stress of incompressible
isotropic turbulence is reconstructed by artificial neural network-
based spatial gradient models (ANN-SGMs). The invariants of the
velocity gradient tensor are chosen as inputs of the neural network.
The dimensionless model coefficients are obtained from the final
hidden layer. The influence of the neighboring stencil locations is
explicitly incorporated after the final hidden layer in an effort to
unravel the intriguing nonlinear structure of the SGS stress.

In the a priori analysis, we show that the current model can give
quite high correlation coefficients and low relative errors. Inspired
by the trends of the model coefficients gs1s2 (Table II), we con-
structed a simplified model (ANNSGM-7-19), which is used to test
the a posteriori performance. In the a posteriori analysis, the spectra
and statistical properties of the velocity field as well as the instan-
taneous vorticity structures predicted by the ANNSGM-7-19 model
are comprehensively explored, and good agreements are achieved
when compared against the filtered DNS result at grid resolution
1283(i.e., Δ ≙ 16hDNS). More importantly, the a posteriori efficiency
of the current ANN-SGM framework is found to be two orders
higher than the previous models of the “black-box” type.

Furthermore, we have tested the applicability of the ANNSGM-
7-19 model at larger filter widths Δ ≙ 32hDNS and Δ ≙ 64hDNS
with grids 643 and 323, respectively. Again, the ANNSGM-7-19
model gives satisfactory performance and reasonable agreements are
achieved with the filtered DNS result. These observations consis-
tently demonstrate the merits of the current ANN-SGM framework
as a promising tool in the reconstruction of SGS stress for large-eddy
simulations.

We note that, due to the uniform grids applied, the current
work is not intended for wall bounded turbulence or body fitted
coordinate systems. In such problems, the applied grid is generally
non-uniform. Existing work96 has shown that the aspect ratio of the
computational mesh can have tangible effects on the flow even in
the isotropic case. Consequently, the aspect ratio of the local grid as
well as the distance from the wall would have to be considered in the
inputs of the ANN so as to potentially build a satisfying SGS model.

Certainly, to construct ANN-based LES models with higher
accuracy and wider applications, more knowledge on the physical
mechanisms behind LES should be incorporated. In any case, the
current semi-explicit approach provides a practical and robust alter-
native to improve the accuracy of the SGS stress. More importantly,

it sheds light on the potential mathematical forms of the SGS term,
inspiring more rigorous theoretical considerations in future works.
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APPENDIX A: A PRIORI PERFORMANCE
OF THE ANN-SGM FRAMEWORK

We assess the a priori accuracy of the ANN-SGM framework
in this appendix by examining the correlation coefficient C(H), the
relative error Er(H) and the normalized root-mean-square value
DN(H) defined, respectively, by

C(H) ≙ ⟨(H − ⟨H⟩)(Hmodel
− ⟨Hmodel⟩)⟩(⟨(H − ⟨H⟩)2⟩⟨(Hmodel
− ⟨Hmodel⟩)2⟩)12 , (A1)

Er(H) ≙
√⟨(H −Hmodel)2⟩√⟨H2⟩ , (A2)

DN(H) ≙
√⟨(Hmodel

− ⟨Hmodel⟩)2⟩√⟨(H − ⟨H⟩)2⟩ , (A3)

whereH stands for the real unclosed terms obtained from the filtered
DNS field,Hmodel is the modeled term, and ⟨⋅⟩ denotes the averaging
over the entire spatial volume.

Table V shows the correlation coefficients, the relative errors,
and the normalized root mean square value DN of τij for the differ-
ent models in the testing set at filter width Δ/hDNS ≙ 16. The tradi-
tional velocity gradient model (VGM),17,18 given by τij ≙

Δ
2

12
∂ui
∂xk

∂uj
∂xk

,

and the scale-similarity model (SSM), given by τij ≙ ui uj − uiuj, are
also introduced here for comparison. As can be seen, the ANN-
based models have the highest SGS accuracy. Meanwhile, the VGM
model performs better than the SSM model. The correlation coeffi-
cients are about 0.985 for the ANNSGM-7-49 model and 0.99 for the
ANNSGM-13-169 and ANNSGM-19-361 models. The normalized
root mean square value DN also illustrates the good performance
of the ANN-based models as they are all very close to unity. With
no surprise, the accuracy increases when more spatial information
is included. However, the improvement from the ANNSGM-13-
169 model to the ANNSGM-19-361 model is minimal, reflecting a
saturation.

To illustrate the applicability of the ANN-SGM framework in
the a priori test, we show the correlation coefficients and relative
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TABLE V. Correlation coefficient (C), relative error (Er ), and normalized root mean

square value (DN ) of τij for the testing set with different models at filter width Δ

= 16hDNS.

τ11 τ22 τ33 τ12 τ13 τ23

C

ANNSGM-7-49 0.985 0.985 0.984 0.981 0.981 0.982
ANNSGM-13-169 0.989 0.990 0.989 0.987 0.987 0.987
ANNSGM-19-361 0.991 0.991 0.991 0.988 0.988 0.988
VGM 0.945 0.944 0.945 0.946 0.948 0.947
SSM 0.920 0.919 0.921 0.907 0.910 0.909

Er

ANNSGM-7-49 0.135 0.134 0.135 0.197 0.194 0.192
ANNSGM-13-169 0.111 0.109 0.111 0.165 0.164 0.161
ANNSGM-19-361 0.106 0.105 0.105 0.157 0.155 0.155
VGM 0.368 0.375 0.369 0.333 0.329 0.332
SSM 0.538 0.545 0.537 0.541 0.536 0.542

DN

ANNSGM-7-49 0.972 0.971 0.981 1.019 1.000 1.019
ANNSGM-13-169 0.981 0.981 0.990 1.019 1.000 1.018
ANNSGM-19-361 0.981 0.981 0.981 1.000 1.000 1.000
VGM 0.757 0.757 0.769 0.870 0.857 0.854
SSM 0.512 0.500 0.511 0.566 0.569 0.562

TABLE VI. Correlation coefficient (C) and relative error (Er ) of τij for the testing set
with different models at filter widths Δ = 32hDNS and Δ = 64hDNS.

τ11 τ22 τ33 τ12 τ13 τ23

C(Δ ≙ 32hDNS)
ANNSGM-7-49 0.948 0.947 0.949 0.944 0.943 0.942
VGM 0.901 0.898 0.902 0.912 0.915 0.910
SSM 0.873 0.875 0.873 0.866 0.868 0.867

Er(Δ ≙ 32hDNS)
ANNSGM-7-49 0.301 0.303 0.298 0.329 0.335 0.338
VGM 0.502 0.515 0.503 0.425 0.421 0.432
SSM 0.649 0.660 0.649 0.616 0.613 0.625

C(Δ ≙ 64hDNS)
ANNSGM-7-49 0.915 0.922 0.919 0.923 0.921 0.915
VGM 0.864 0.866 0.868 0.893 0.894 0.883
SSM 0.827 0.845 0.831 0.857 0.859 0.843

Er(Δ ≙ 64hDNS)
ANNSGM-7-49 0.355 0.351 0.342 0.402 0.399 0.409
VGM 0.582 0.606 0.585 0.470 0.466 0.490
SSM 0.711 0.730 0.709 0.631 0.619 0.651

TABLE VII. Correlation coefficient (C), relative error (Er ), and normalized root mean

square value (DN ) of τij for the testing set of the ANNSGM-7-49 model and the
ANNSGM-7-19 model at filter width Δ = 16hDNS.

τ11 τ22 τ33 τ12 τ13 τ23

C

ANNSGM-7-49 0.985 0.985 0.984 0.981 0.981 0.982
ANNSGM-7-19 0.985 0.985 0.984 0.981 0.981 0.982

Er

ANNSGM-7-49 0.135 0.134 0.135 0.197 0.194 0.192
ANNSGM-7-19 0.135 0.134 0.135 0.197 0.196 0.194

DN

ANNSGM-7-49 0.972 0.971 0.981 1.019 1.000 1.019
ANNSGM-7-19 0.972 0.971 0.981 1.019 1.018 1.018

errors for Δ/hDNS ≙ 32 and 64 in Table VI, using the model devel-
oped for Δ/hDNS ≙ 16 for the seven-point stencil case. As can be
seen, the a priori accuracy drops from the training accuracy, which
is expected for a larger filter width. Nevertheless, the accuracies are
still much higher than the VGMmodel as shown in Table VI. Again,
the results of the scale-similarity model (SSM) are shown for com-
parison. Similar to the Δ/hDNS ≙ 16 case, the SSM model performs
slightly worse than the VGMmodel when Δ/hDNS ≙ 16 and 32.

APPENDIX B: A PRIORI TEST OF THE ANNSGM-7-19
MODEL

In this appendix, we show the a priori performance of the
ANNSGM-7-19 model, which contains only the dominant terms, as
discussed in Sec. IV. As shown in Table VII, this simplified model
exhibits almost the same accuracy except a negligible difference in
the relative errors and the normalized rms values. The influence of
this finding is twofold: it not only saves the computing efforts in the
training process but also facilitates a faster LES.

APPENDIX C: A COMPARISON BETWEEN
THE ANNSGM-7-49, ANNSGM-7-19, ANNSGM-1-1,
AND VGM MODELS

The energy spectra and PDFs of the SGS flux are com-
pared in this appendix among the ANNSGM-7-19, ANNSGM-7-
49, ANNSGM-1-1, and VGM models. The ANNSGM-1-1 model
corresponds to the case where only the local gradients are consid-
ered. Here, we adopt two different FGRs (FGR ≙ Δ/h), which are
the ratios of the filter width to the grid space. As shown in Figs. 18
and 19, at FGR ≙ 2, the predictions of the ANNSGM-7-19 and the
ANNSGM-7-49 models are very close to the filtered DNS result.
The ANNSGM-1-1 and VGM models yield slightly worse predic-
tions (the ANNSGM-1-1 model performs slightly better than the
VGM model), but the differences among these models are not very
large. However, the differences become much more pronounced at
FGR ≙ 4: While the result of the ANNSGM-7-19 model still agrees
reasonably well with the filtered DNS result, the ANNSGM-1-1
model performs much worse, showing a strong sensitivity to the
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FIG. 18. Spectrum of velocity in the
LES for the ANNSGM-7-49, ANNSGM-
7-19, ANNSGM-1-1, and VGM models:
(a) FGR = 2 and (b) FGR = 4.

FIG. 19. PDF of the SGS flux in the
LES for the ANNSGM-7-49, ANNSGM-
7-19, ANNSGM-1-1, and VGM models:
(a) FGR = 2 and (b) FGR = 4.

applied grids (FGRs). Also worth noting is that the VGM model,
unlike the ANNSGM-1-1 model, turns out to be less sensitive to
the FGR value since its predictions are closer to the filtered DNS
result than the ANNSGM-1-1 result at FGR ≙ 4. Meanwhile, the dif-
ferences between the ANNSGM-7-19 and ANNSGM-7-49 models
are very little in both cases so that the ANNSGM-7-19 model is
sufficient.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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