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We apply artificial neural network (ANN) for recognition and classification of electroencephalographic (EEG) patterns associated
with motor imagery in untrained subjects. Classification accuracy is optimized by reducing complexity of input experimental data.
From multichannel EEG recorded by the set of 31 electrodes arranged according to extended international 10-10 system, we select
an appropriate type of ANN which reaches 80± 10% accuracy for single trial classification. Then, we reduce the number of the EEG
channels and obtain an appropriate recognition quality (up to 73± 15%) using only 8 electrodes located in frontal lobe. Finally, we
analyze the time-frequency structure of EEG signals and find that motor-related features associated with left and right leg motor
imagery are more pronounced in the mu (8–13Hz) and delta (1–5Hz) brainwaves than in the high-frequency beta brainwave
(15–30Hz). Based on the obtained results, we propose further ANN optimization by preprocessing the EEG signals with a
low-pass filter with different cutoffs. We demonstrate that the filtration of high-frequency spectral components significantly
enhances the classification performance (up to 90± 5% accuracy using 8 electrodes only). The obtained results are of
particular interest for the development of brain-computer interfaces for untrained subjects.

1. Introduction

The development of brain-computer interfaces (BCIs) is a
very challenging and important task of neuroscience and
neurotechnology. The BCIs are highly demanded in many
fields of science and technology, including medicine, high
technology, and industry [1–4]. The most striking examples
of possible BCIs’ application are rehabilitation of patients
with cognitive and motor disabilities, assessment of con-
sciousness, communication, mind-controlled exoskeletons,
manipulators, robots and other complex technical devices
[4–6], human education using BCI with biological feedback,
and so on.

Usually, BCI is based on the analysis of noninvasive
electroencephalography (EEG) signals recorded by electrodes

placed on skin surface of a head. EEG is a widespread
inexpensive method for brain research which gives a deep
insight into brain functionality related to various human
activities. However, the treatment of multichannel EEG sig-
nals is a very sophisticated task because they are nonstation-
ary, high-dimensional, and extremely noisy [7, 8]. All these
factors make difficult the recognition and classification of
specific motor-related or percept-related patterns in a single
trial mode [9, 10] and require extensive statistical measures.

From a practical point of view, the development of real-
time compact BCIs and consumer headsets requires the
reduction of the number of EEG channels to an optimal set,
which would contain necessary information about under-
lying brain processes [11, 12]. Such reduction is aimed
to minimize the size of the ANN structure and decrease
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the computation cost and memory volume for obtained data.
Furthermore, some researchers emphasize that irrelevant
EEG channels may add extra noise and redundant informa-
tion that can reduce signal processing accuracy [12].

Among existing approaches for EEG data analysis
(e.g., time-frequency analysis [13] and methods of nonlinear
dynamics [14]), the most promising and effective tools for
classification of single EEG trials are based on artificial neural
networks (ANNs) [12, 15, 16]. The successful application of
ANNs requires careful selection of their parameters, which
can significantly vary depending on a particular task and
different subjects [17]. Therefore, the optimization of EEG
input data (dimensionality reduction, filtering, etc.) and
channel selection is one of the key problems for the develop-
ment of efficient ANN-based BCIs. Traditional methods of
dimensionality reduction include principal component anal-
ysis (PCA) and linear discriminant analysis (LDA), where the
original features are mathematically projected onto a lower
dimensional space. However, such methods are nongeneric
and require the input data optimization for every subject
due to strong intersubject variability [8] and a lack of associ-
ation of ongoing optimization with physiological processes in
the brain. These problems are particularly relevant for
untrained subjects [8] and create difficulties for the develop-
ment of a universal BCI.

Indeed, many BCI studies involve specially trained sub-
jects, since the classification of brain activity patterns during
motor imagery of untrained subjects is significantly more
difficult and hence poorly studied [18, 19]. Although the
training is able to increase severity of EEG features and
makes the recognition process easier for ANN-based algo-
rithms [20], it cannot be effectively used for patients with
motor and mental disabilities [16, 21]. Therefore, the crea-
tion of a universal BCI enable to work with untrained
subjects would be useful for motor rehabilitation of such
patients. Recent research reveals the possibility of performing
classification of motor imagery EEG patterns of untrained
volunteers, but only for healthy subjects, who can control
their limbs. However, this is a very serious problem for
paralyzed patients with motor system pathologies due to
their inability to imagine the movement [22]. Besides, the
comparison of the motor imagery response in brain activity
between trained and untrained subjects reveals significant
differences. In particular, BCI-naïve subjects exhibit activa-
tion in the dorsolateral prefrontal cortex, and right and left
insula, not detected in BCI-trained subjects [23].

Currently, one of the most important tasks in neurosci-
ence and neurotechnology is the development of effective
and universal methods for optimizing input data, in par-
ticular, by reducing signal complexity, for further processing
with ANNs.

A promising approach to solving the above problems is
the optimization of the input dataset based on the knowledge
of the laws of the processes occurring in the brain when
making some action, such as motor imagery. The simplest
and intuitively clear method for the feature space reduction
is a decrease of the number of EEG channels, basing on
the time-frequency analysis. In general, the analysis of
the time-frequency structure of multichannel EEG allows

the brain areas detection, where a significant increase or
a decrease in the energy of particular brain rhythms
reflects motor activity or motor imagery (event-related
synchronization/desynchronization) [19].

Thus, in this paper, we focus on the development of an
efficient classification algorithm. It should be noted that in
the case of supervised learning algorithms, the classification
performance strongly depends on the dataset used for train-
ing. The training dataset must be balanced and representative
to provide a good generalization ability of ANN. Here, we
propose an approach for optimization of input dataset based
on the high-pass filtration of input EEG data with different
cutoff values and the selection of particular EEG channels,
with the aim to detect the most effective spatial EEG config-
uration to obtain maximum classification accuracy. At the
same time, it is known that different types of human activity
cause responses in different cortical areas. Therefore, the
second aim is to study the influence of the number of ana-
lyzed EEG channels (or electrodes) on the quality of leg
motor imagery recognition and the optimization of the
electrode selection.

It should be noted that the considering development
of the methods for EEG patterns recognition associated
with imaginary leg movements is of crucial importance
for creation of BCIs which would help in therapy of patients
with various motor disorders after trauma or stroke by using
prostheses, exoskeletons, or anthropomorphic robots.

The paper structure is as follows. In Materials and
Methods, we describe the design of our experiment, provide
information about participants and equipment, and give
insight into methods of preprocessing and channel selection
and classifiers used for numerical analysis. In Results, we first
propose the optimal structure of ANN and the optimal
strategy of training set selection in order to obtain maximal
classification accuracy. Then, we run the classifier for differ-
ent combinations of EEG channels. Next, we apply the
high-pass filtration to input dataset with different cutoff
values. Finally, we discuss and generalize the obtained results
in Conclusions.

2. Materials and Methods

2.1. Participants. The experimental work began with forma-
tion of a group of subjects, which initially consisted of
conditionally healthy volunteers only. Then, we selected
individuals with normal body weight calculated according
to the Quetelet body mass index (BMI). At this stage, all
volunteers signed an informed medical consent to participate
in the experimental work and received all necessary explana-
tions about the process, including their agreement for further
publication of the results.

As a result, the main part of experimental work
involved 12 subjects, both males (8 persons) and females
(4 persons). The volunteers were informed about the
importance of a full night rest for good experimental data
and result quality. Our studies were organized until 2 p.m.
with natural lighting.

The experimental studies were performed in accordance
with the Declaration of Helsinki and approved by the
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local research Ethics Committee of the Yuri Gagarin State
Technical University of Saratov.

2.2. Experimental Design and Equipment. The posture of all
subjects was verified and remained almost unchanged during
all work. They sat on a comfortable special armchair, with
both legs without shoes lying straight on stand and arms
lying on the armrests. At the first experiment stage, the
EEG of a passive wakefulness state was recorded. It consisted
of 3-minute EEG recording with open eyes, 3 minutes with
closed eyes, and 4 minutes in a convenient state for the test
condition. During this 10-minute recording time, we recom-
mended, if possible, to abstain from all conscious motor
activity. At the second experimental stage, the subjects per-
formed tasks according to text commands appeared on the
screen. We used the “BenQ” monitor with a 1920× 1080
resolution and a 60Hz screen refresh rate. At the same time,
we placed on the screen an image of a person in the reclining
position raising his leg as follows. The leg was in a free state,
slightly bent at the knee, the foot also freely extended the leg
line, and no special movement was performed to pull the toes
up or forward. The leg rises in the hip joint up to an angle of
40–45 degrees.

Each subject participated in one experiment lasting
about 30 minutes during which he/she had to perform
two types of tasks:

(i) Real movement of left/right leg (raising a leg in a hip)

(ii) Imaginary movement of left/right leg

The real movements in the first task were performed in
order to make the subjects clearer how exactly they should
imagine the movement by performing the second task. Each
task proceeded by a whistle signal and followed by pauses of
random durations (5–10 seconds). Thus, the second stage

included two types of real and two types of imaginary move-
ments, in particular, real movements of legs, both left and
right, and imaginary movements of the same limbs. For the
motor imagery tasks, pause durations were increased (from
8 to 18 seconds). In addition, for motor imagery tasks, a
photo of “exemplary” movement performance was not dem-
onstrated. After the tasks were completed, the EEG of the
passive wakefulness state was recorded during 5 minutes.

The multichannel EEG was recorded at a 250Hz sam-
pling rate from P = 31 electrodes with two reference elec-
trodes placed at the standard ear positions of the extended
10-10 international system (see Figure 1(b)) [24]. To register
the EEG data, we used a cup with Ag/AgCl electrodes
placed on the “TIEN–20” paste. Immediately before plac-
ing the electrodes, the head skin was rubbed with abrasive
gel “NuPrep” for increasing skip conductivity. Usually the
impedance values varied within 2–5 kΩ. The EEGs were
recorded with the electroencephalograph “BE Plus LTM”

(EB Neuro SPA) which possessed the registration certificate
number FSZ 2011/10629 of 20.09.2011 from the Russian
Federation Federal Service of Health Care and Social Devel-
opment Control. This equipment complies with the follow-
ing certificates: UNI EN ISO 9001/ISO 9001:2008, EN
46001 ISO 13485:2012, QSR 21 CFR Part 820 Federal Law.

Training and testing of the ANN were performed for
every subject using two datasets containing 6000 points each
(24 seconds of recorded EEG) for imaginary movements of
the left and right feet. Each dataset consisted of the combina-
tion of eight 3 s EEG trials corresponding to a particular
movement for every subject. Half of the datasets, chosen at
random, were used to train the ANN, and the remaining half
to test it.

The classification was carried out with the help of ANN
trained on back propagation algorithms. For each subject,
the ANN training process was carried out anew.
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Figure 1: (a) Classification accuracies for support vector machine (SVM), multilayer perceptron (MP), radial basis function (RBF), and linear
network (LN) averaged over all subjects; (b) position of electrodes according to extended 10-10 international system on human head;
and (c) general model of ANN, where each input neuron xi i = 1, 2,… , n receives data from one of n = 31 electrodes; N li and Nki are
neurons of hidden layers, and xn+1 is output neuron. The horizontal bars with asterisk show that RBF classification accuracy
significantly exceeded the accuracy rates of both SVM and MLP according to the statistical analysis using paired t-test.
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The ANN initial parameters were chosen taking into
account the following considerations. The number of ANN
inputs was equal to the number of EEG channels. The
number of neurons in the output layer was one, because
the output can only be 0 or 1. Initially, the minimum
number of neurons in the hidden layer was chosen to be
5. Further training of such a network was conducted by
monitoring the control error and verifying the classifica-
tion result to reduce the error. If the control error
decreased as compared with the previous step, the number
of neurons in the hidden layer was increased, and the
above procedure was repeated. This was done until both
the training and the control errors saturated at low
enough values, which barely decreased when more neurons
were added to the hidden layer.

2.3. Preprocessing and EEG Channel Selection. The recorded
data were low-pass filtered with cutoffs at f c

1 = 4Hz and
f c

2 = 15Hz. Table 1 contains detailed information about
each channel combination according to the channels’ position
on the human head (see also Figure 1(b)).

2.4. ANN-Based Classifiers. ANNs are widely used for pro-
cessing neurobiological signals extracted by various methods
including MEG and EEG. The most common technology
to detect various kinds of brain activity, both normal
and pathological, is based on EEG recordings [25, 26],
although recently Wu et al. [27] introduced a new approach
for MEG data classification using a support vector machine
(SVM) with a radial basis kernel function, which was
shown to be an effective method for right and left temporal
lobe epilepsy recognition. In the present paper, we analyze
different types of ANNs in order to reveal most convenient
configurations. Here, we implement machine learning
algorithms for the analysis of multichannel EEG signals,

designed on the base of the MATLAB package containing
ANN methods.

The conducted analysis revealed that the fastest and
accurate recognition of motor imagery EEG patterns can be
achieved with the following ANN configurations:

(i) Radial basis function (RBF) network with 251
neurons in hidden layer, 31 input and 1 output
linear neurons

(ii) Multilayer perceptron (MLP) with one hidden layer
consisted of 15 neurons with hyperbolic tangent as
an activation function, 31 input linear neurons and
one output neuron with logistic activation function

(iii) Support vector machine (SVM-RBF) with nonlinear
kernel based on radial basis function with values
0.01<γ< 0.1 and 2000 support vectors in summary
(1000 for each class)

We also used a linear network (LN) for more representa-
tive results which demonstrated how the ANN operated with
complex nonlinear data. The LN is the simplest model which
consists of one input layer and one output layer with a linear
activation function. Although this model is capable of solving
simple classification tasks, the recognition of nonlinear data
requires additional hidden layers with nonlinear activation
functions given by a multilayer perceptron model.

2.5. Time-Frequency Wavelet-Based Analysis. The time-
frequency analysis is based on the continuous wavelet
transform [28, 29].

W a, τ =
1

a

∞

−∞

x t ψ
t − τ

a
dt, 1

where parameters a and τ characterize the scale and transla-
tion of wavelet function ψ, and x t is the analyzed EEG

Table 1: Channel configuration in 10-10 international electrode scheme with corresponding brain areas.

Brain area Used channels Designation

Full placement (FP)
Fpz

, Fp1
, Fp2

, Fz, F3, F4, F7, F8, FCz, FC3, FC4, FT7, FT8, T3, T4, T5, T6,

CPz, CP3, CP4, TP7, TP8, Pz, P3, P4, Cz, C3, C4,Oz,O1,O2

S1

Right hemisphere (RH) Pz, P3, P4, Cz, C3, C4,Oz,O1,O2 S2

Left hemisphere (LH) Fp2
, F4, F8, FC4, FT8, T4, T6, CP4, TP8, P4, C4,O2 S3

Parietal, occipital, and central lobes (P +O + C) Pz, P3, P4, Cz, C3, C4,Oz,O1,O2 S4

Frontal and temporal lobes (Fp + F + T) Fpz
, Fp1

, Fp2
, Fz, F3, F4, F7, F8, T3, T4, T5, T6 S5

Parietal and occipital lobes (P +O) Pz, P3, P4,Oz,O1,O2 S6

Parietal and central lobes (P + C) Pz, P3, P4, Cz, C3, C4 S7

Central and temporal lobes (C + T) Cz, C3, C4, T3, T4, T5, T6 S8

Frontal lobe (F + Fp) Fpz
, Fp1

, Fp2
, Fz, F3, F4, F7, F8 S9

Temporal lobe (T) T3, T4, T5, T6 S10

Central lobe (C) Cz, C3, C4 S11

Parietal lobe (P) Pz, P3, P4 S13

Middle Fp1
, F3, F7, FC3, FT7, T3, T5, CP3, TP7, P3, C3,O1 S14

4 Complexity



signal. The complex-valued Morlet wavelet is chosen as the
mother function

ψ η = π−1/4eiω0ηe−η
2/2, 2

with ω0 = 2π being the central frequency of the Morlet
and i = −1.

The wavelet energy spectrum E t, f =W2 t, f is calcu-
lated in the frequency band f ∈ 1, 30 Hz (f = 1/a). For each
EEG channel, the wavelet energy spectra ER f and EL f
associated, respectively, with right leg and left leg motor
imagery are calculated by averaging E t, f over the indicated
frequency band and over each experimental session, (RE),
(IM), or (BCG) as

ER,L f =
t∈R,L

E t′, f dt′ 3

In the frequency ranges of δ-band (1–5Hz), μ/α-band
(8–13Hz), and β-band (15–30Hz), the energy values ER,Lδ

,
ER,Lμ

, and ER,Lβ
are calculated for each EEG channel by aver-

aging spectrum ER,L f over the corresponding frequency
band as

ER,Lμ,β,δ
= f ∈μ−band

f ∈β−band

f ∈δ−band

ER,L f ′ df ′

4

Finally, for each band, the differences between the energy
values ERδ − ELδ, ERμ − ELμ, ERβ − ELβ associated with right
leg and left leg motor imagery are calculated.

3. Results

In our study, EEG signals were obtained from 12 subjects via
the set of 31 recording electrodes. At the first stage, the ANN
input was presented in a vector form of N = 31 dimension
(x1,… , xN) (see Figure 1(c)). The EEG trials were classified
into two groups (left leg imagery and right leg imagery) with
the help of ANNs with different configurations: SVM, MP,
RBF, and LN (see Materials and Methods for detailed
description of the ANNs structure).

In Figure 1(a), the classification accuracy of each net-
work was calculated for all 31 EEG channel. The data were
averaged over all subjects and shown as mean± SD. One
can see that network of linear neurons did not exhibit sig-
nificant performance with accuracy less than 65% for most
subjects. At the same time, the results obtained for SVM,
RBF, and MLP demonstrated averaged classification accu-
racy of 76.5%, 77.9%, and 72.4%, respectively. Having
compared these ANN architectures, one can find RBF to
be the most optimal architecture, which classification
accuracy significantly exceeded the accuracy rates of both
SVM and MLP (n = 12, ∗P > 0 05 via paired sample t-test).

The demonstrated accuracy score of 77.9% was achieved
for a nonoptimized input, that is, for the whole set of EEG
channels containing oscillations in a wide frequency range.
However, previous studies show that if one takes into

account all possible features of a multichannel EEG for
the classification task, the results have an extremely high-
dimensional feature space that significantly increases input
complexity and decreases the accuracy rate. According to
this observation, here, we propose to decrease the input
feature space basing on spatial and frequency representations
of the motor-related EEG.

In order to reduce the number of EEG channels, we
analyze the RBF-based accuracy rate obtained for different
predefined sets of channels (see Materials and Methods for
detailed description of predefined channels’ combinations).
Having compared the results of such classification, we
optimize the channels’ combination to obtain satisfactory
classification accuracy using a small number of electrodes.

In Figure 2(a), the values of classification accuracy
are shown for 9 most representative configurations (see
Table 1 for the description of all considered configurations).
Figure 2(b) shows the number of the channels belonging to
each configuration. In Figure 2(c), the marked brain areas
show the regions where the recording electrodes are located.
One can see that the most accurate result is obtained using
combination S1 which corresponds to full placement (31
electrodes) (see Figure 2(a)). At the same time, despite the
best recognition performance, we cannot consider this
combination as optimal due to a large number of channels
(see Figure 2(b)).

The recognition in right and left hemispheres (S2 and S3,
resp.) does not show significant results. The reason of
poor performance of RBF in these areas can be the fact
that motor imagery causes the response in remote brain
areas; thus, the best recognition score can be obtained
using the combination of the electrodes which location is
capable to catch this interaction. With this aim, we con-
sider S5 corresponding to the combination of frontal and
temporal lobes (F + Fp + T). One can see that among
other channels’ combinations (except for S1), S5 provides
the best recognition quality.

One can see that frontal lobe covers the largest brain area,
and its combination with temporal lobes still contains too
many electrodes. Considering these areas separately, we can
note S9 as the most appropriate choice due to a smaller num-
ber of channels (8 electrodes versus 12 in S5) and about the
same level of the classification score. It should be noted
that frontal lobe is strongly associated with motor activity
(e.g., walking), decision making, and many other impor-
tant cognitive and emotional aspects [30, 31]. This result
is in agreement with the previous research [19, 32], where
the time-frequency analysis revealed highly pronounced
arm’s motor imagery events in event-related desynchroni-
zation of delta band in frontal cortex.

Finally, similarly to [19], we carried out the time-
frequency analysis of motor-related EEGs in order to find
brain areas, where the neural dynamics exhibit the most
pronounced differences during right and left leg imagery.
The time-frequency analysis was performed with the help
of wavelet decomposition in three frequency bands: delta
(1–5Hz), alpha (8–12Hz), and beta (15–30Hz) (see Material
and Methods for detailed description). In every band, the
wavelet energy was calculated for each movement type
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by its averaging over all corresponding EEG trials. In
Figure 3(a), the differences between the energy values cor-
responding to right and left hand imagery are painted by
different color. One can see that in the beta frequency

band (15–30Hz), the difference is homogeneously distrib-
uted over the cortex, and it is difficult to find the region where
such differences are most pronounced. In the 8–12Hz range,
the maximal difference is achieved for frontotemporal area
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(in our notation, for channel combination S5), while the
minimal difference is obtained in central and parietal areas
(combinations of S7 and S13) that coincide with premotor
cortex location [33]. Finally, in the low-frequency band
(1–5Hz), one can observe the most pronounced differences
in frontal lobe (S9), central lobe (S11), and occipital lobe. In
the cases of alpha and delta rhythms, one can distinguish
the most pronounced difference in the right hemisphere.

Such features of the time-frequency EEG structure affect
the ANN performance. In Figure 3(b), the histograms show
classification accuracy (mean± SD) achieved via the RBF
network for different types of input EEG: nonfiltered EEG
and filtered with cutoffs at f c

1 = 4Hz and f c
1 = 15Hz. One

can see that in the case of 31 EEG channels (S1), the exclu-
sion of spectral components above 15Hz leads to an increase
of classification accuracy (from 76% to 82%). Instead, in the
case of smaller number of channels, an increase of classifica-
tion accuracy for 15Hz filtration becomes smaller (from
73% to 77% for frontal EEG (S9) and from 70% to 73% for
parietal and central EEG (S7)). For the case of parietal
EEG, where the analysis of wavelet energy averaged over
8–12Hz does not reflect changes between left and right hand
movements, the f c

1
filtration does not lead to an increase of

classification accuracy.
Having considered the classification accuracy obtained for

EEG filtered with cutoffs at f c
1 = 4Hz (i.e., spectral compo-

nents above 4Hz are excluded), one can see a further increase
of classification accuracy for all channel combinations.

The obtained results evidence the correlation between
the performance of ANN-based classification and features
of EEG signals in both spatial and frequency domains.
The extraction of such features by analyzing EEG in
group of participants and its use for preprocessing input
data allows a significant increase (from 72% to 90% for
frontal EEG) (n = 12, ∗P < 0 01 via paired sample t-test) to
the classification accuracy of single EEG trials in all subjects
in the group.

4. Discussion

The classification of EEG trials associated with motor
imagery using artificial neural networks is a widely explored
research topic by many researchers in different fields of sci-
ence [34]. In terms of artificial intelligence, it is essential to
reveal how artificial neural networks establish complex
dependencies in nonlinear and nonstationary signals in order
to reach significant progress in the development of ANN-
based systems. Along with classification of motor-related
EEG, it is also especially important to classify other types of
brain activity, such as epilepsy patterns [35], sleep stages
[36], and mental disorders [37].

In the classification problem of motor-related EEG
algorithms, ANNs demonstrate high (more than 90%) classi-
fication accuracy. At the same time, an effective use of such
classifiers requires fine adjustment of the network parameters
with account for individual features. In order to minimize the
individual variability, in the present work, we have optimized
the ANN based on the EEG data of 12 untrained volunteers.

At the first step, we have compared different ANN struc-
tures and achieved the accuracy rate of 78± 10% for radial
basis function (RBF) network and 76± 12% for support
vector machine (SVM) in the case of the 31-channel input.
It is known that SVM is considered as the most promising
tool for classification of single EEG trials [38]. In particular,
Ma et al. [39] described SVM as a technique which allowed
to solve the problems associated with small sample sizes
and high dimensions and could achieve classification accu-
racy above 83.5%. In this context, the best performance has
been obtained for SVM with nonlinear kernel based on radial
basis function (RBF-SVM). It was shown that while the use of
linear SVM with spatial and temporal principal component
analysis (PCA) demonstrated 73% accuracy [40], RBF-SVM
allowed to reach up to 93% accuracy in combination with
independent component analysis (ICA) [41] and 81% in
combination with genetic algorithm (GA) [42, 43]. The radial
basis function (RBF) neural network architecture was applied
by Barios et al. [44] to classify patients with chronic renal
failure and demonstrated 86.6% accuracy without optimiza-
tion. Later, Pei et al. [45] with improved RBF network
demonstrated 87.14% accuracy in classification of left and
right hand motor imagery tasks. More recently, Hamedi
et al. [46] compared the performance of RBF with SVM
and multilayer perceptron (MLP) in the classification task
of motor-related EEG. As a result, the RBF network demon-
strated the classification accuracy much higher than MLP,
while the SVM-RBF accuracy was 3% greater.

The analysis of scientific literature allows us to conclude
that the initial accuracy rate of the classification of motor-
related EEG reaches 80% when the optimization is not appli-
cable, and effective optimization algorithms can increase
accuracy up to 95%. Such a decrease of the accuracy in the
case of nonoptimized EEG is caused by an extremely high-
dimensional feature space of input data and reported not
only for motor-related tasks. In particular, Hagmann et al.
[47] revealed that 200 hours of single-channel EEG recording
contains 12% noise leading to erroneous classification. Fur-
thermore, 80% of the EEG features turned out irrelevant in
the case of Alzheimer’s disease diagnosis [48].

It should be noted that optimization algorithms are
mostly based on the mathematical projection of original
features onto a lower dimensional space. The basic methods
for the feature selection are based on filter, wrapper, and
hybrid approaches [49]. Genetic algorithms based on ANNs
are effectively used for feature optimization of biological
signals, such as electroencephalography (EEG) and electro-
corticography (ECoG). For instance, a genetic algorithm
was used by Li et al. [43] for optimization of the input chan-
nels combination for the MLP-based neural network and
relevance evaluation of each EEG channel to a current task.
It was revealed that the channel selection provides better
understanding of results obtained by the classifier. Another
method of EEG data selection for classification was proposed
by Tomida et al. [11]. The method was based on the estima-
tion of true covariance matrices of each motor imagery task.
In another study, Sreeja et al. [50] revealed that selection of
30 electrodes placed on premotor cortex, supplementary
motor cortex, and primary motor cortex in combination with
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preprocessing provides up to 95% accuracy of motor imagery
EEG classification.

Despite the demonstrated possibility of optimization
techniques to significantly increase classification accuracy,
they strongly depend on initial data features, which along
with motor-related features include other patterns related
to individual subject characteristics that require preliminary
calibration of the classifier for each subject. According to this
fact, in our study, we propose the optimization method based
on the motor-related EEG features based on the spatiotem-
poral and time-frequency EEG analysis in the group of sub-
jects. Such approach allowed us to reach up to 90± 5%
classification performance with only 8 electrodes by using
an optimal set of EEG spectral components. Recently, Yang
et al. [12] reported the 80% accuracy using 10 channels
and 86% for 6 channels, obtained with a MLP-based neural
network using a genetic algorithm. In addition, Tam et al.
[51] achieved highest average accuracy rate of 90% for 8
channels using a spatial filtering method. It is worth men-
tioning that Arvaneh et al. [52] proposed a novel sparse
common spatial pattern (SCSP) algorithm for optimization
and obtained SVM-based classification accuracy of 81.63%
using 13 channels.

Thus, the level of classification accuracy obtained with
our approach is higher than that achieved with the help of
other optimization algorithms. At the same time, since our
method is based on the time-frequency and spatiotemporal
EEG features, it is valid for all subjects, and therefore, its
accuracy is much less affected by individual variability.

5. Conclusions

We have applied artificial neural networks for recognition
and classification of single EEG trials associated with right
and left leg motor imagery in untrained volunteers. By focus-
ing on optimization of classification accuracy, we have
reduced complexity of input data. In the context of optimiza-
tion, we have made the optimal selection of both a set of EEG
channels and a frequency band with the help of preliminary
analysis of spatiotemporal and time-frequency EEG features
that allowed us to reach up to 90± 5% classification accuracy
using 8 electrodes only. We have compared our results
with the results recently obtained using other optimization
algorithms (e.g., genetic algorithm, common spatial pattern
optimization, and filtering method) and shown that our
approach (i) yields higher accuracy than other methods
and (ii) is valid for all subjects, and therefore, the accuracy
is not affected by individual feature variability.

The developed method is universal because its accuracy is
almost independent of the subject’s personality. We believe
that our approach can be used to increase efficiency of
brain-computer interfaces (BCIs) designed for untrained
subjects or a group of subjects.
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