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ABSTRACT
Speaker diarization finds contiguous speaker segments in an
audio recording and clusters them by speaker identity, with-
out any a-priori knowledge. Diarization is typically basedon
short-term spectral features such as Mel-frequency cepstral
coefficients (MFCCs). Though these features carry average
information about the vocal tract characteristics of a speaker,
they are also susceptible to factors unrelated to the speaker
identity. In this study, we propose an artificial neural network
(ANN) architecture to learn a feature transform that is opti-
mized for speaker diarization. We train a multi-hidden-layer
ANN to judge whether two given speech segments came from
the same or different speakers, using a shared transform of
the input features that feeds into a bottleneck layer. We then
use the bottleneck layer activations as features, either alone
or in combination with baseline MFCC features in a multi-
stream mode, for speaker diarization on test data. The re-
sulting system is evaluated on various corpora of multi-party
meetings. A combination of MFCC and ANN features gives
up to 14% relative reduction in diarization error, demonstrat-
ing that these features are providing an additional independent
source of knowledge.

Index Terms— speaker diarization, artificial neural net-
works, discriminative feature extraction

1. INTRODUCTION

Speaker diarization addresses the problem of “who spoke
when” in a multi-party conversation. It is an unsupervised
task, as there is no a-priori knowledge of the speakers or
the number of speakers in a conversation [1, 2]. It has been
studied in various domains such as broadcast news [3], tele-
phone calls [4], and more recently focusing on spontaneous
meeting room conversations [2, 5, 6]. The main issues in
performing speaker diarization of meeting room recordings
arise due to far-field audio (background noise and room re-
verberation) and conversational speech (short speaker turns
and interruptions).

State of the art systems for speaker diarization use an ag-
glomerative (bottom-up) clustering framework [7, 8]. These
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systems typically use short-term spectral characteristics, such
as Mel-frequency cepstral coefficients (MFCCs) to represent
the vocal tract characteristics of a speaker, as features for
diarization. Recently factor-analysis based techniques,which
are popular in the speaker-verification domain, have been
adapted to the speaker diarization task [9]. These methods
cluster i-vectors extracted from speech segments using a co-
sine similarity measure to provide speaker diarization output.
Experiments on summed telephone channels have shown that
i-vector based methods improve the performance of speaker
diarization when compared to the traditional MFCC features.
Another approach based on feature transforms uses linear
discriminant analysis (LDA) after initial passes of diariza-
tion to obtain discriminative features [10]. However, noneof
these methods developed for two-party telephone conversa-
tions have so far been applied to multi-party, conference-style
meetings.

In this work, we propose to use an artificial neural net-
work (ANN) trained as a classifier to extract features for di-
arization. We train the ANN classifier on a related task: to
decide whether two given speech segments belong to same or
different speakers. We hypothesize that the hidden layers of a
network trained in this fashion should transform spectral fea-
tures into a space more conducive to speaker discrimination.
We propose to use the hidden layer activations from the bot-
tleneck layer of the network as a new feature for speaker di-
arization. We conduct experiments to evaluate the usefulness
of the bottleneck features for the task of speaker diarization
on various meeting-room data sets.

The paper is organized as follows. Section 2 presents a
brief overview of speaker diarization system based on hid-
den Markov model/Gaussian mixture model (HMM/GMM)
framework. Section 3 presents the method of using the pro-
posed ANN based classifier as feature extractor for speaker
diarization. Section 4 reports the experimental results onvar-
ious meeting room datasets. Section 5 presents the conclu-
sions and future directions.



2. HMM/GMM BASED SPEAKER DIARIZATION
SYSTEM

A HMM/GMM based speaker diarization system represents
each speaker by a state of an HMM and models the state
emission probabilities using GMMs. Letci denote theith
speaker cluster (HMM state), andbi denotes the emission
probability distribution corresponding to speaker cluster ci.
Then we model the log-likelihoodlog bi(st) of input feature
st for clusterci using a GMM as:
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the weights, means and covariance matrices respectively of
therth Gaussian mixture component of clusterci. Clustering
in an agglomerative framework starts by over-estimating the
number of speaker clusters and uniformly segmenting a given
audio recording. At each iterative step, we merge the clus-
ters that are most similar. We measure the similarity between
two clusters using a modified Bayesian information criterion
(BIC) [11] and we merge the clusters that produce the high-
est BIC score. The modified BIC criterion [11] gets rid of
the penalty term based on the number of parameters in the
original BIC formulation, by keeping the number of parame-
ters the same before and after the merge. The modified BIC
criterionBIC(ci, cj) for two clustersci andcj is given by:

BIC(ci, cj) =
∑
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wherebij is the probability distribution estimated over the
combined data of clusterci andcj . After each merge step,
a Viterbi decoding pass segments the speech data with the
new speaker cluster models. A minimum duration constraint
on each state prevents rapid speaker changes. The clustering
stops when no two clusters have a BIC score greater than zero.

When multiple feature streams are present, a separate
GMM is estimated for each feature stream, and a weighted
combination of the individual stream log-likelihoods gives
the combined log-likelihood. For the case of two feature
streamsx andy, let b(x)i , b(y)i denote the probability distribu-
tions estimated from streamsx, y respectively for clusterci.
The combined log-likelihood for clusterci is:
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wheres(x)t , s(y)t are the feature vectors corresponding to fea-
ture streamsx, y respectively,w(x), w(y) are the weights of
the feature streams, such thatw(x) + w(y) = 1. We esti-
mate the weightsw(x), w(y) on a held out development data

set. The baseline HMM/GMM diarization system used in the
current study is modelled after the state-of-the-art system de-
veloped by ICSI [7].

3. ANN FEATURES FOR SPEAKER DIARIZATION

Artificial neural networks are extensively used in supervised
tasks such as speaker recognition and identification. Koniget
al. [12] used a multi-layer perceptron (MLP) with five layers,
trained to classify speakers, as a feature extractor. TheirMLP
was discriminatively trained to maximize speaker-recognition
performance. They used the outputs from the second hid-
den layer (units of which had linear activation function) as
features in a standard GMM-based speaker-recognition sys-
tem. The rationale behind using hidden-layer activations as
features is that the initial layers of a network that is trained
to classify different speakers will transform the input features
into a space more conducive to speaker discrimination, and
thus make the classification task easier.

Speaker diarization is an unsupervised task and there is
no a-priori information about the speakers. Therefore, in this
work, we propose a neural network that is trained to classify
two given speech segments (about 500 ms each) as belonging
to the same or different speakers. We extract features from
this network to use as a new stream in an HMM/GMM di-
arization model. Fig. 1 shows the architecture of the four-
layer network we use in this work. We split the input layer of
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Fig. 1. An ANN architecture to classify two given speech seg-
ments as belonging to same or different speakers. The dotted
box indicates the part of the network used to generate features
for diarization after the full network is trained.

the network into two halves, left and right, to represent acous-
tic features belonging to the two speech segments being com-
pared. The first hidden layer (bottleneck) is also split intotwo
halves similar to the input layer, so each half receives input
from the respective input segment i.e., the right half of thehid-
den layer only gets input from the right half of the input layer



Table 1. Meeting corpus statistics as used in experiments,
including numbers of distinct speakers, meeting room sites,
and number of meetings used as part of train, development
and test sets.

Corpus Speakers Sites Meetings
Train Dev Test

AMI 150 3 148 - 12
ICSI 50 1 - 20 55
NIST-RT 100 6 - - 24

and the left half from the left half of the input layer. We tie the
weight matrices (denoted by W in Fig. 1) connecting the right
and left halves of input and hidden layers so that the network
learns a single common transform for all speakers. The sec-
ond hidden layer connects each half of the first hidden layer
to the output layer. The output layer has two units denoting
the class labels—-same or different speakers—deciding the
identity/non-identity of the speakers providing the two input
speech segments (segment1, segment2 in Fig. 1). All the hid-
den layers have sigmoid activation functions and the output
layer has a softmax function to estimate the posterior proba-
bilities of the classes (same/different). We train the network
using a cross-entropy objective function.

After training the network, we use the first hidden layer
activations, before applying the sigmoid function, as features
for speaker diarization in a HMM/GMM system. To generate
features from the network, we give a speech segment as input
to one half of the input layer and extract activations at the cor-
responding half of the bottleneck layer. It should be noted that
it does not matter to which half a speech segment is given as
input to generate features since, the weight matrices connect-
ing left and right halves of input layer to the corresponding
halves in bottleneck layer are tied.

4. EXPERIMENTS AND RESULTS

We now describe our data, methodology, and experiments.
As our system is based on features learned from a separate
task, we report the classification performance of the feature-
training system (the ANN), as well as diarization performance
of the overall system.

4.1. Datasets used in experiments

Our experiments make use of meeting room recordings from
various corpora: AMI [13], ICSI [14], and 2006/2007/2009
NIST-RT [15]. Table 1 summarizes the characteristics of
these data sets. The AMI data set is split into train and test
sets of 148 and 12 meetings, respectively. The test and train
sets are disjoint in speakers. We use only speech data from
the AMI train set to train the neural network classifier de-
scribed in Section 3. Twenty ICSI meetings are set aside for
the purpose of development and tuning, and the remaining

Table 2. Classification error rate of the ANN after training,
on AMI data

Train Cross-validation Test Chance
20% 21% 35% 50%

55 ICSI meetings form an additional test set. All NIST-RT
evaluation sets (2006/2007/2009) are also used for testing.

4.2. ANN training and feature generation

We trained the ANN to classify two given speech segments
as from either same or different speaker, using data from the
AMI corpus. To avoid skewing the training toward particular
speakers we sampled 50 utterances from each of 138 speak-
ers. Each utterance has a duration of about 10 seconds. The
cross validation (CV) set contained 10 utterances from each
speaker in the training set. The AMI test set contains all the
utterances from the 12 speakers which are not part of the train
set (cf. Table 1).

Manual speech transcripts had been forced-aligned to the
close-talking microphone recordings to obtain frame-level
speaker labels. For training purposes we removed speech
segments containing overlapping speech. As input features
we extracted 19 MFCCs from a frame of 30 ms with a frame
increment of 10 ms. The two halves of the input layer (seg-
ment 1, segment 2) each have a context of 500 ms, i.e., 51
frames. The dimensions of the two halves of the bottleneck
layer (first hidden layer) is 20. The dimensions of the second
hidden layer is 100 and the dimensionality of the output layer
is 2, corresponding to the two classes (same/different). The
network thus contains969 × 2 (input), 20 × 2 (bottleneck),
100 (2nd hidden) and 2 (output) units.

The objective function for the ANN was cross entropy;
training used error back propagation and stochastic gradient
descent for 25 epochs. For ANN training and performance
evaluation, an equal number of same- and different-speaker
speech segment pairs was sampled, making chance error rate
50%. After training, the classification performance (error
rate) was as shown in Table 2. Despite not having seen any of
the test speakers in training, the network did perform much
better than chance on the unseen speakers. Test set error was
roughly half-way between training and chance error rates.

After training the network, we obtain new features for the
test data by feeding 500ms (50 frames) of acoustic features
around a given frame to one half of the input-bottleneck layer
portion of the ANN (see Fig. 1). The output values, before
the sigmoid non-linearity, were fed as feature vectors to the
HMM/GMM diarization system.

4.3. Speaker diarization evaluation

We performed speaker diarization experiments on different
test sets to evaluate the usefulness of the features obtained



Table 3. Speaker error rates obtained on various test sets for
different feature streams. ANN denotes the bottleneck features
obtained from the neural net classifier and ANN + MFCC
denotes the multi-stream combination.

Data-set MFCC ANN ANN + MFCC
AMI 25.1 32.0 21.5
ICSI 20.6 25.8 18.4

RT-06 14.1 32.5 13.9
RT-07 11.3 25.3 11.8
RT-09 16.8 25.9 18.7

from the neural network classifier, comparing performance to
that of the standard 19-dimensional MFCCs typically used for
speaker diarization. We also combined the bottleneck features
with the MFCCs in a multi-stream fashion as described in
Section 2 to exploit any complementary information present
in the two feature streams. We fixed the weights when com-
bining these two streams to 0.9 for the MFCC stream and 0.1
for the bottleneck features, based on experiments on the de-
velopment subset of the ICSI corpus (cf. Table 1). We re-
port performance using the diarization error rate (DER), the
standard evaluation metric used in the NIST-RT evaluation
campaigns [15]. DER is the sum of speech/non-speech error
and speaker error, measured as a percentage of total speaker
time. Speech/non-speech segmentation is typically handled
by a preprocessing step (known as speech or voice activity
detection) to the diarization algorithm. In order to focus eval-
uation on the speaker clustering aspect of the diarization task,
we used the reference speech/non-speech segmentation in all
our experiments. The DER in our experiments therefore con-
sists entirely of speaker errors.

Table 3 reports the speaker error rates obtained for various
feature streams: MFCC, bottleneck features from an ANN
classifier (ANN), and the multi-stream combination of MFCC
and bottleneck features (MFCC + ANN). We see that, on their
own, bottleneck features do not work as well as MFCC fea-
tures. However, when the ANN features are combined with
MFCCs in a multi-stream system, the speaker error reduces
from 25.1% (MFCC) to 21.5% (ANN + MFCC) on the AMI
test set and from 20.6% (MFCC) to 18.4% (ANN + MFCC)
on the ICSI test set.

The results on the NIST-RT data sets (RT-06, RT-07,
RT-09) are less promising. The bottleneck features do not
decrease the error even when combined with the MFCC
features. We hypothesize that this is because the NIST-RT
datasets were collected from a multitude of sites, encom-
passing a variety of acoustic environments and recording
equipment. The ANN, while learning a notion of speaker
identity, may have learned to ignore nuisance factors as they
occurred in the AMI meetings, but not necessarily as found
in other environments.1

1While the AMI corpus was itself collected at three differentsites, the

Table 4. Speaker errors obtained on AMI and ICSI datasets
for matched and mismatched training conditions.

Train Test MFCC ANN + MFCC Rel. change
AMI AMI 25.1 21.5 -14.3%
AMI ICSI 20.6 18.4 -10.7%
ICSI ICSI 20.6 15.1 -26.7%

It stands to reason that the ANN features could be trained
to perform better on the RT data given matched training data.
Unfortunately, no such data was available for the various
NIST-RT sites. To further investigate the effect of train/test
mismatch we ran an additional experiment using the ICSI
corpus, where we did have spare data that could be used for
training. While the AMI-trained features did improve the
diarization error on ICSI data, we trained a second ANN on
the non-test portion of the ICSI corpus, with results as shown
in the last row of Table 4. The relevant results from training
on AMI data also listed for comparison.

We find that, as expected, the performance on ICSI test set
is much improved with matched training data, with the rela-
tive error reduction going from 10.7% to 26.7%. This relative
reduction surpasses the result on the AMI test set, which is
likely due to the fact that, unlike for the AMI data, there are
shared speakers in the training and test portions of the ICSI
corpus.2

5. CONCLUSIONS AND FUTURE WORK

We have developed a speaker diarization framework that uses
ANNs as trainable acoustic feature extractors. The ANN is
first trained to classify pairs of speech segments as belong-
ing to the same or different speakers, while forcing the raw
MFCC features to undergo a shared transform via a bottle-
neck layer. The learned transform can then be applied to un-
seen data to generate features that are combined with base-
line MFCCs as input to a standard agglomerative clustering
diarization system. We find that the resulting system reduces
speaker error substantially (11–14% relative) when trained on
data that is reasonably matched to the test data (AMI or ICSI
test data when trained on AMI speakers not seen in testing).
With some speakers seen in training (as when training and
testing on ICSI meetings) the reduction is more dramatic. Our
method thus provides an effective way to adapt a diarization
system to available training data without requiring specific
knowledge of the speakers present in testing, something that
the standard GMM/HMM diarization framework does not al-
low.

In future work, we plan to explore variants of the frame-
work presented here. First, we arrived at the network dimen-

general setup and recording equipment was standardized.
2Speaker overlap was unavoidable in the ICSI train/test setssince a small

number of speakers occur in a large number of meetings.



sions using only prior experience with similar ANN applica-
tions, and need to systematically optimize input window size
and layer dimensions for our task. We also plan to investi-
gate deeper and recurrent neural net architectures as feature
extraction networks.
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