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However, the ANN model, involving 4 inputs and 4 
hidden neurons and calibrated on the basis of pine 
dataset, was accurate and robust enough to predict 
the aspect ratio of micro/nanofiber materials obtained 
from other cellulose sources including very differ-
ent softwood and hardwood species such as Spruce, 
Eucalyptus and Aspen (R = 0.84). The neural network 
model was able to capture the nonlinearities involved 
in the data providing insight about the profile of the 
aspect ratio achieved with further homogenization 
during the fibrillation process.

Keywords Lignocellulosic micro/nanofibers · 
Machine learning · Artificial neural networks

Introduction

Nanostructured cellulose, broadly known as nano-
cellulose (NC), has attracted much interest from the 
scientific and technological community due to its 
outstanding properties, bio-based origin, biocompat-
ibility, capacity to be easily functionalized, and bio-
degradability (Klemm et al. 2018). Taking advantage 
of the hierarchical structure of lignocellulosic fib-
ers, NC is usually produced by means of top-down 
approaches, this is deconstructing the cell wall into 
nanosized cellulosic materials, which may exhibit 
different morphology, composition and structural 
attributes depending on the raw material, production 
strategy and treatment intensity (Li et al. 2021b). The 

Abstract In this work a wide sample analysis, 
under similar conditions, has been carried out and a 
calibration strategy based on a careful selection of 
input variables combined with sensitivity analysis has 
enabled us to build accurate neural network models, 
with high correlation (R > 0.99), for the prediction 
of the aspect ratio of micro/nanofiber products. The 
model is based on cellulose content, applied energy, 
fiber length and diameter of the pre-treated pulps. The 
number of samples used to generate the neural net-
work model was relatively low, consisting of just 15 
samples coming from pine pulps that had undergone 
thermomechanical, kraft and bleached kraft treat-
ments to produce a significant range of aspect ratio. 
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literature reports two main top-down structures: cel-
lulose nanofibers (CNFs) and cellulose nanocrystals 
(CNCs), which differ in terms of production meth-
ods, morphology, structure, and properties (Kim et al. 
2015). On the one hand, CNFs consist of fibrils with 
nanosized diameters with a high aspect ratio, above 
50, high surface area, ranging from 100 to 350  m2/g, 
and great ability to form strong, flexible, and dimen-
sionally stable  3D-structured networks due to the 
presence of both amorphous and crystalline regions 
(Tarrés et  al. 2017a). Further, depending on the 
fibrillation degree, they might be referred to as cel-
lulose microfibers (CMFs) or microfibrillated cellu-
lose (MFC). In addition, when the starting material 
contains lignin, some authors referred to this class 
of CNFs as lignocellulosic nanofibers (LCNFs) or 
lignocellulosic micro/nanofibers (LCMNFs) (Fer-
rer et  al. 2012; Tarrés et  al. 2017b; Serra-Parareda 
et  al. 2021c). On the other hand, the CNC produc-
tion process consists of acid hydrolysis, which dis-
solves most of the amorphous fraction and results in 
rod-like structures in the nano domain. These differ-
ent structural characteristics confer CNFs and CNCs 
great opportunities in many productive sectors, such 
as papermaking, biocomposites, filtration, biomedi-
cine, or electronics, to name a few (Boufi et al. 2016; 
Klemm et al. 2018; Isogai 2020). Indeed, according to 
a recent report published by MarketsandMarkets™ in 
2020, the NC market is expected to grow from USD 
297 million in 2020 to USD 783 million by 2025, at 
a compounded annual growth rate (CAGR) of 21.3%, 
including both high-volume and high-added value 
applications (Future Markets Inc. 2020). However, 
these market expectations will be solely accom-
plished if industrial production of NC is successfully 
implemented and, today, there are still some limiting 
factors hindering this industrial deployment (Foster 
et al. 2018; Balea et al. 2021a).

The industrial deployment of NC production 
and, more concretely, CNF production, is limited 
by several factors, such as the huge variety of start-
ing materials, the different production methods, and 
the intensity of pretreatments and fibrillation, among 
others (Serra-Parareda et  al. 2021b). For instance, 
CNFs can be produced from wood, annual plants, 
agricultural residues (i.e. straw), recovered paper, or 
even the cellulosic fractions of sewage sludge from 
papermaking activities have been reported as poten-
tial starting material (Osong et  al. 2013; Espinosa 

et al. 2016; Tarrés et al. 2017a; Filipova et al. 2020; 
Kumar et al. 2020). This, together with the variety of 
chemical, enzymatic and mechanical processes and 
the multiple equipment available for fibrillation (i.e. 
high-pressure homogenizers, grinders, or microflu-
idizers) make the correlation between raw material 
characteristics, treatment nature and intensity, fibrilla-
tion method, and CNF properties a challenging task, 
usually unconceivable with conventional computa-
tional methods (Henriksson et  al. 2007; Saito et  al. 
2007; Solala et al. 2012; Taheri and Samyn 2016; Gu 
et al. 2018; Filipova et al. 2020; Serra-Parareda et al. 
2021b).

The selection of appropriate characterization meth-
ods for CNFs is becoming a topic of great interest. In 
a previous work, the challenges on NC characteriza-
tion were identified and highlighted, which showed 
the need of developing real-time monitoring strate-
gies and robust correlations between easy-to-measure 
variables and morphological features of CNFs (Balea 
et  al. 2021a). In this line, Desmaisons et  al. (2017) 
proposed a multi-criteria method to quantify the qual-
ity of CNFs, leading to a quality index. They already 
identified that there are several variables influencing 
the resulting properties and characteristics of CNFs 
and proposed the method for benchmarking purposes 
of different NC products. This represented a great 
advance on the state of the art, although the method 
reported is time consuming and requires excessive 
processing of the sample, which may lead to error 
during sample preparation (i.e. nanopaper produc-
tion) (Tarrés et al. 2019).

The importance of nanostructured cellulose for 
several applications encourages the development of a 
model able to link a set of easy-to-measure operation 
variables and initial fiber characteristics to the mor-
phological features of mechanically obtained CMNFs 
and LCMNFs. A reliable mathematical model in this 
case may contribute to improve the process monitor-
ing ability, making possible the introduction of con-
trol schemes. Concerning LCMNF and CMNF pro-
duction processes, even when considering all possible 
treatment technologies, the literature lacks accurate 
models. Because the rheological behaviors of suspen-
sions are often dominated by the suspended particle’s 
shape and size (Kangas et al. 2014), useful mathemat-
ical models based on rheological measurements have 
been developed to predict morphological features of 
CNCs and CNFs (Iwamoto et al. 2014; Tanaka et al. 
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2014; Wu et  al. 2014, 2017; Serra-Parareda et  al. 
2021d). In general, these models are an adaptation 
of the well-known relationship between the intrin-
sic viscosity of suspensions and the dynamics of rod 
shape molecule or colloidal particles in dilute region, 
which is ultimately dependent on the aspect ratio (or 
the average length) of rigid rod-like particles (Hubbe 
et  al. 2017; Li et  al. 2021a). Although interesting 
nanofibril information can be found through this 
rheological strategy, it has been recognized that this 
approach loses accuracy when dealing with materi-
als involving a wide range of aspect ratios (Iwamoto 
et  al. 2014) and/or surface charges (Wu et  al. 2017, 
2019). On the one hand, those long fibers would be 
considered as semi-flexible rods rather than rigid 
rods, making the modeling approach no longer valid. 
On the other hand, the surface charge density of 
CNFs influences the electroviscous effect in the cel-
lulose suspensions, playing a role on the viscosity 
measurements (Dimic-Misic et al. 2018).

The complexity of the relationships between 
the cellulose fibers morphology and the rest of the 
properties encouraged the use of several modeling 
approaches. Artificial neural networks (ANNs) are 
considered an attractive tool when working with com-
plicated processes for which consolidated phenom-
enological equations are not available. This math-
ematical modeling approach is based on the ability of 
the human brain to learn from the experience, which 
means that the mathematical model may be “trained” 
with a series of patterns to predict variables of interest 
(Himmelblau 2000). The ANN model may improve 
its capacity to establish predictions when subjected 
to a relatively large sample data set. This technique 
has been applied for many years in several processes 
and nowadays has experienced a great boost with 
the popularization of machine learning algorithms 
and intelligent systems, which have been used for 
efficient handling of massive and complex data sets. 
Recently, the use of neural networks in the frame of 
the machine learning tools applied to the cellulose 
composites segment was reviewed, showing interest-
ing applications related to different systems including 
the paper production (Torrents-Barrena and Pellicer 
2021). In a related effort, Almonti et al. explored the 
use of ANNs to the prediction of the length of fibers 
of samples obtained from a cellulose refining process 
involving four conical refiners for paper production 
(Almonti et  al. 2019). The input variables of these 

ANN models included fiber contents, fillers amount, 
net refining power, pulp flow rate, refiner geometry, 
wear rate (considered as the hours of operation) and 
the mean length of incoming fibers. The final ANN 
model obtained after the application of statistical 
techniques for input variable reduction was in good 
agreement with the experimental data  (R2 = 0.98). 
However, to the best of our knowledge, this tool has 
not yet been used to model the aspect ratio of LCM-
NFs, which would surely contribute to diminish 
uncertainty during the production processes of NC 
products.

For all the above, in this work, authors propose an 
ANN model to estimate the aspect ratio of CMNFs 
and LCMNFs as a function of the variables that can 
be characterized during the process and/or fiber char-
acteristics that are usually provided by the supplier. 
The present work proposes this ANN using results 
available in the literature, as well as some other prop-
erties and characteristics that have been determined 
for this work. The sensitivity of the aspect ratio pre-
dictions to a set of inputs was verified, to retain the 
ANN model with high generalization ability. Addi-
tionally, ANN model validation tests were performed 
to infer the accuracy of the model when subjected to 
new materials. Overall, the present work significantly 
contributes to the development of industrially feasible 
processes for CMNF and LCMNF production, being 
the first work in the literature dealing with the use of 
ANNs in this field.

Experimental

Experimental data set

ANN models were constructed based on experimen-
tal data previously published by our group (Balea 
et  al. 2021b; Sanchez-Salvador et  al. 2021a; Serra-
Parareda et al. 2021b). In short, 20 types of LCMNFs 
and CMNFs were produced combining mechanical 
refining and high-pressure homogenization (HPH) 
from different raw materials, namely (1) spruce 
(Picea abies), (2) pine (Pinus radiata), (3) eucalyp-
tus (Eucalyptus globulus) and (4) aspen. Pine pulps 
had undergone thermomechanical, kraft and bleached 
kraft treatments (TMP, UKSP and BKSP), while the 
spruce pulp was a bleached thermomechanical pulp 
(BTMP), but all of them are softwood. In the case of 
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aspen pulp, it consisted of a thermomechanical pulp 
counting on two sulfur and chlorine free bleaching 
stages (Heinzel group). Finally, the eucalyptus pulp 
consisted of a bleached kraft pulp, kindly provided 
by Ence Celulosas y Energía, S.A. (Spain). All pulps 
have been previously used by authors in previous 
studies, as reported in Table 1. As it will be later dis-
cussed, pulps from pine were used for ANN model-
ling, while spruce, eucalyptus and aspen pulps were 
used for validation purposes.

The pulps were subjected to mechanical refin-
ing and HPH, gradually increasing the number of 
passes from 3 to 9 and pressure from 300 to 900 bar. 
This resulted in five HPH levels, ranging from 5.67 
to 19.72  kWh/kg. Details on the pulps used for the 
LCMNF production are provided as supplementary 
material, in Table S1, while the characteristics of the 
obtained LCMNFs as function of the HPH intensity 
are provided in Table S2.

Artificial neural network modeling

An ANN is a structure formed by simple processor 
elements, called neurons, interconnected through uni-
directional unions associated with weights accord-
ing to the chosen architecture. A typical neuron is 
shown in Fig. 1. The neuron has n inputs,  x1,  x2, …, 
 xn. These inputs can come from other units or from 
some external source, being multiplied by weights 
 (wi). When introduced into the neuron, they are 
summed up and a constant sign (b, bias) is added to 
the weighted sum. The resulting signal (U) is trans-
formed by typically non-linear functions, called acti-
vation functions, generating the output (Y). ANN 
models can assume many different configurations. In 
the simplest case, usually called as the feed-forward 

ANN structure, three different layers are employed: 
the input layer, the hidden layer, and the output layer. 
The input layer is fed by values of several input vari-
ables. The output layer provides the desired process 
response. The backpropagation procedure is normally 
used to estimate the ANN model parameters during 
the so-called model training or calibration step.

Feedforward ANN were trained using Leven-
berg–Marquardt backpropagation algorithm. All the 
feedforward networks were designed with only one 
hidden layer. The activation functions adopted were 
hyperbolic tangent and linear to hidden and output 
layer, respectively. According to Haykin, the hyper-
bolic tangent promotes a faster network learning 
because it is an anti-symmetric activation function 
(Kubat 1999). The weights and biases were initialized 
following the Nguyen-Widrow initialization algo-
rithm (Nguyen and Widrow 1990).

The selection criterion of the input data for ANN 
modelling was based in a two-fold approach. First, out 
of the available data, those variables involving time-
consuming methodologies were not considered and 
only those characteristics able to be measured rap-
idly and/or in real-time were considered for model-
ling. This first selection resulted in a set of variables, 
which is reported in Tables S1 and S2, that was used 
for determining the relative strength (RS) of each 
variable, as well as the optimal ANN architecture 
based on the lowest MSE and the highest R. In this 
sense, both water retention value (WRV) and yield 
of nanofibrillation were discarded. WRV provides 
a good indication of the fibrillation degree of ligno-
cellulosic materials, both at micro and nanoscale. 
Indeed, it has been already proposed as monitoring 

Table 1  Previously published studies by the authors of the 
selected pulps and purpose in ANN model development

Pulp Purpose Reference

Pine TMP Modelling Serra-Parareda et al. (2021b)
Pine UKSP Modelling Serra-Parareda et al. (2021b)
Pine BKSP Modelling Serra-Parareda et al. (2021b)
Spruce BTMP Validation Serra-Parareda et al. (2021b)
Eucalyptus BKHP Validation Sanchez-Salvador et al. 

(2021a)
Aspen TMP Validation Balea et al. (2021b)

Fig. 1  Typical neuron receiving n inputs and a bias to produce 
an output signal (Y)
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parameter of the fibrillation degree of nanostructured 
cellulose (Gu et al. 2018). However, in a recent study, 
the correlation between specific surface area (SSA) 
and WRV was found to not follow a linear relation-
ship in lignin-containing micro/nanostructured cellu-
lose, which indicates that WRV may be influenced by 
additional effects to morphological changes (Serra-
Parareda et al. 2021c). The HPH process contributes 
to the release of lignin, influencing the surface chemi-
cal composition and, thus, modifying the hydrophi-
licity of the LCMNFs as they are passed through an 
HPH. This has been already reported by other authors 
and limits the use of this parameter for monitoring the 
fibrillation degree, as chemical composition should 
be continuously monitored as well (Qua et al. 2011; 
Jonoobi et al. 2015). In addition, the determination of 
WRV is time consuming, as it requires drying stages 
to quantify the amount of retained water (Gu et  al. 
2018). Regarding the yield of nanofibrillation, it was 
excluded from the input data set due to the required 
time to determine the amount of nanosized fraction, 
as it requires a centrifugation stage followed by dry-
ing of the sediment until constant weight (Tarrés et al. 
2017a; Sanchez-Salvador et al. 2022).

Regarding the output variable, the aspect ratio 
was selected due to its significance for a wide range 
of applications and, in addition, for its relationship 
between other characteristics of CMNFs and LCMNF 
suspensions. As an example, the aspect ratio directly 
influences the reinforcing potential of LCMNFs when 
incorporated into paper and polymer matrices, the 
rheological behavior of LCMNF suspensions and 
their network forming capacity, particularly in porous 
materials such as aerogels (Tanaka et al. 2015; Boufi 
et  al. 2016; Oksman et  al. 2016; De France et  al. 
2017; Sanchez-Salvador et  al. 2020; Serra-Parareda 
et al. 2021d).

All possible combinations of inputs were used to 
generate different networks to predict the aspect ratio 
of the micro/nanomaterial products and the one that 
provided the best response to test data was selected. 
The same strategy was adopted to define the number 
of neurons in the hidden layer. Figure 2 illustrates the 
architecture of a typical feedforward ANN trained in 
the current work.

Table 2 summarizes the variables and range values 
investigated for ANN modelling, which only included 
data from Pine TMP, Pine UKSP and Pine BKSP.

Fig. 2  Feedforward ANN 
structure for a multiple 
input and single output 
problems
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The dataset included 15 samples based on pine 
pulps (TMP, UKSP and BKSP), which was normal-
ized between 0.0 and 1.0 and randomly partitioned 
into 3 subsets, namely training, validation and test-
ing data (70%, 15% and 15% of experimental data, 
respectively). The numerical verification of the per-
formance of the networks was done by computing 
the mean square error (MSE), which is minimized 
during the network training process. According 
to Eq.  1, MSE considers the sample differences 
between predicted values ( ̂yj ) and observed ones 
( yj ). Additionally, the correlation coefficient (R) 
was evaluated in accordance with Eq.  2, where ӯ 
stands for the arithmetic mean of experimental val-
ues of the output variable.

The optimization of the ANN architecture was 
performed by minimizing the testing error, consid-
ering repeated neural network calculations involv-
ing different combinations of inputs (3–10) and 
number of neurons in the hidden layer (1–12).

(1)MSE =
1

N

n∑

j=1

(
yj − ŷj

)2

(2)R =

����
�1 −

∑n

j=1

�
yj − ŷj

�2

∑n

j=1

�
yj − y

�2

Special attention was given towards reducing the 
ANN architecture’s size, and consequently diminish-
ing the number of weights, thus avoiding overfitting 
the calibration experimental data. To accomplish 
that, the level of significance of input variables was 
assessed by sensitivity analysis using the procedure 
proposed by Yoon et al. in accordance to Eq. 3 (Yoon 
et  al. 1993). This equation measures the relative 
strength (RSji) between the ith input and the jth out-
put variables, where wki is the weight between the kth 
hidden neuron and the ith input, and wjk is the weight 
between the jth output and the kth hidden neuron, 
considering an ANN model with n hidden neurons 
and m inputs. All the calculations were carried out in 
Matlab R2019a software.

Results and discussion

ANN input selection: pine pulps analysis

To discriminate the importance of each input vari-
able on the aspect ratio of the micro-nanofibers, sev-
eral ANNs were trained considering the architecture 

(3)RSji(%) =

∑n

k=0

�
wki − wjk

�

∑m

i=0

���
∑n

k=0

�
wki − wjk

����

× 100%

Table 2  Ranges of the 
experimental data used for 
ANN modelling (published 
elsewhere and available in 
Tables S1 and S2)

Type of variable Variable Range Units

Pulp characteristics (input) Cellulose content 47.9–85.3 wt%
Hemicellulose content 8.7–22.9 wt%
Insoluble lignin content 0.5–15.8 wt%
Soluble lignin content 3.4–11.2 wt%
Length weighted in length 377–449 µm
Diameter 20.7–29.3 µm
Fines content 33.1–54.5 %
Carboxyl content 53–66 µeq/g

Process parameters (input) HPH—Energy consumption 5.67–19.72 kWh/kg
Consistency 0.89–0.98 wt%

LCNF characteristics (input) Cationic demand 148–210 µeq/g
Transmittance at 600 nm 2.5–12.7 %
Consistency index “K” 0.222–7.679 –
Flow behavior index “n” 0.204–0.373 –

Output Aspect ratio 51–217 –
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3-5-1 (i.e., 3 inputs, 5 neurons in the hidden layer and 
1 output) for which all possible combinations of the 
14 inputs were used on the basis of variables reported 
in Table  1. The dataset employed during these pre-
liminary modeling tests was based on the characteri-
zation data of LCMNFs produced from pine pulps 
(TMP, UKSP and BKSP). The procedure yielded 364 
ANN input combinations. All of them were calcu-
lated 1000 times and the one that provided the low-
est MSE to the testing subset was selected for each 
combination. These 364 ANN models were ranked 
in terms of MSE and the top-10 ANN models were 
selected to assess the most frequent inputs, as sum-
marized in Fig. 3. The evaluation of inputs revealed 
that there were 3 variables which never appeared as 
inputs for these top-10 models: rheological variables 
coming from the power law model (coefficients K and 
n) and the optical transmittance at 600 nm. Checking 
when these variables would leave from zero and reach 
at least the unit in this graph, it would be necessary to 
plot the top-43 (K), top-44 (transmittance) and top-
49 (n). From these results, it seems that, regardless of 
the well-recognized relationship between rheologi-
cal parameters and the aspect ratio, there are several 
other variables that deserves priority when we want to 
describe the aspect ratio using a nonlinear approach 
(Moberg et al. 2017).

Another interesting remark from these results 
is the deep influence of the chemical composition 
of the LCMNFs upon the output variable. This is 
expected because the dataset involved samples with 
a wide interval of chemical composition patterns, 
which ultimately may contribute to explain the 
aspect ratio behavior. In addition, the HPH process 

was based on constant application of energy, which 
provides a more relevant role to inherent character-
istics, rather than process conditions. However, the 
influence of chemical composition on the resulting 
LCMNF characteristics has been previously high-
lighted by several authors, particularly the effect 
of residual lignin and hemicellulose (Syverud 
et  al. 2011; Ferrer et  al. 2012; Delgado-Aguilar 
et  al. 2016; Tarrés et  al. 2017b). For this same 
reason, the cationic demand (CD), in the range of 
148–210 µeq/g for pine pulps) appears as the most 
frequent input on the top-10 ANN models. Indeed, 
the best 6 ANN models on this list included CD as 
input, which clearly shows the importance of this 
variable. Experimental evidence from our previous 
work demonstrated that CD was mainly dependent 
on the HPH intensity and well correlated to the rhe-
ological parameter K (Serra-Parareda et al. 2021b). 
In addition, the CD has been also reported to have 
a direct influence on the SSA of fibers and fines, 
which may also influence the aspect ratio of the 
resulting LCMNFs (Serra-Parareda et al. 2021a).

These results support the idea that the HPH inten-
sity, represented by the applied energy, and K lose 
their relevance on the description of the aspect ratio 
if the CD is employed as input in the ANN model. 
However, this does not mean that these former vari-
ables should be discarded from the investigation, 
because here we restricted ourselves to the specific 
case of 3-5-1 ANN modeling architecture, which 
means that they could be important for other architec-
ture training. Indeed, the CD has been reported to be 
strongly correlated with fibrillation energy regardless 
the fibrillation equipment (Tarrés et al. 2020).

Fig. 3  The most frequent 
ANN inputs considering a 
3-5-1 architecture: top-ten 
ANN models
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Based on the previous results, the relative strength 
(RS) of the different inputs on the predicted aspect 
ratio was evaluated. ANNs were calculated repeat-
edly considering many inputs (8) and 10 neurons in 
the hidden layer. For these calculations, certain vari-
ables were removed from the dataset (transmittance, 
K, n and carboxyl content) since preliminary tests 
indicated no significant influence on ANN modeling. 
CD was also excluded from the dataset, as the pre-
liminary tests revealed that this variable hampered the 
contribution of HPH on the aspect ratio models. This 
was completely expected, as the aspect ratio deter-
mination may be influenced by the surface charge of 
the LCMNFs due to the selected methodology for its 
determination, namely gel point (Sanchez-Salvador 
et al. 2021b). Figure 4 summarizes the mean relative 
strength of the inputs upon the aspect ratio predicted 
by ANN models with 8-10-1 architecture. Note that 
there are 3 inputs linked to the chemical composition 
with negligible impact on the ANN output: hemicel-
lulose (2.9%), insoluble lignin (− 1.8%) and soluble 
lignin (0.2%). Also, the impact of the fines contents 
was negative. On the other hand, concerning the most 
relevant inputs which positively influenced the aspect 
ratio, in order of importance, Length, HPH, Diameter 
and Cellulose content were identified.

From the previous sensitivity analysis, additional 
ANN modeling was performed considering the reduc-
tion of the input variables to the 4 inputs outlined 
above, and different amounts of hidden neurons. The 
performance of these ANN models trained with pine 

dataset for training (75% of the whole dataset), vali-
dation (15% of the dataset) and testing (15% remain-
ing) is summarized in Table  3, considering ANN 
architectures with 4 or 3 inputs (by removing the 
Diameter in the input layer). It can be verified that the 
ANN models provide very good experimental data 
fitting for all architectures, yielding high correlation 
coefficient (R > 0.99) for either the training or the 
validation subset. Concerning the 4-input ANN mod-
els, the reduction of the number of hidden neurons 
from 6 to 3 improved all the performance parameters, 
leading to enhanced R (training, validation, and test-
ing subsets) and reduced MSE. Further hidden neu-
ron reduction seems to be not advantageous for the 

Fig. 4  RS of the selected 
input variables over output 
variable according to Yoon 
et al. for ANN models con-
sidering 8-10-1 architecture 
(Yoon et al. 1993)

Table 3  ANN models performance with HPH, Length, Diam-
eter and Cellulose content

a Tests performed excluding the variable Diameter in the input 
layer

ANN architecture Correlation coefficient (R)

Training Validation Testing MSE

4-6-1 0.9981 0.9918 0.9876 4.14E-03
4-4-1 0.9993 0.9989 0.9984 5.43E-04
4-3-1 0.9997 0.9995 0.9988 2.42E-05
4-2-1 0.9979 0.9991 0.9986 4.72E-04
4-1-1 0.9920 0.9946 0.9887 2.72E-03
3-3-1a 0.9993 0.9992 0.9989 7.42E-05
3-2-1a 0.9955 0.9985 0.9978 7.43E-04
3-1-1a 0.9917 0.9973 0.9895 1.36E-03
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system under investigation, because it compromises 
the MSE and R-testing performance. In fact, from 
these results, it can be concluded that the optimum 
number of neurons in the hidden layer is 3, since it 
provided the best ANN model performance in tests 
involving both 4 and 3 inputs. Finally, Fig.  5 shows 
a very good agreement between experimental data 
and ANN model predictions (normalized data) during 
the neural networks training, indicating that the ANN 
models calculated here are good enough to capture 
the nonlinearities behind the dataset for the prediction 
of the aspect ratio, also revealing the high quality of 
models involving solely 3 hidden neurons.

The fibrillation intensity has been reported to 
directly influence the morphology of micro- and 
nanostructured cellulose. Indeed, increasing HPH 
intensity usually leads to higher surface area, which 
indicates significant changes on morphology, but also 
on a significant reduction of fiber length (Ang et al. 
2019). However, the applied energy to lignocellulosic 
fibers influence the resulting characteristics of LCM-
NFs in different ways, depending on other aspects 
such as chemical composition, initial fiber length, 
and the presence of functional groups at fiber surface 
(i.e. carboxyl groups in TEMPO-mediated oxidation) 

(Rodionova et  al. 2013; Rojo et  al. 2015; Filipova 
et  al. 2018; Serra-Parareda et  al. 2021d). In fact, 
this was already observed by Turbak et al. (1983) in 
their renowned study on properties, uses and com-
mercial potential of microfibrillated cellulose, where 
the authors already reported the need of adjusting the 
fibril length prior to fibrillation (Turbak et al. 1983). 
In a more recent review, the effect of hyper inertial 
flows over the properties of micro- and nanostruc-
tured cellulose has been studied, indicating that fibril 
morphology may be altered by means of modifying 
flow patterns. Indeed, authors identified that hyper 
inertial flow, occurring in microfluidizers and high-
pressure homogenizers, had different effect on long 
and short fibers, clearly indicating that fiber length 
directly influences the morphological changes that 
fibrils experience (Redlinger-Pohn et al. 2022).

ANN model validation with other fiber sources

The developed ANN models were validated with 
additional LCMNFs, which did not take part of the 
modelling, training, testing and first validation pro-
cesses. Concretely, LCMNFs from Spruce BTMP 
(Serra-Parareda et  al. 2021b), Eucalyptus BKHP 

Fig. 5  Comparison between experimental and ANN predictions of aspect ratio using different ANN model architectures (see 
Table 3)
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(Sanchez-Salvador et  al. 2021a) and Aspen TMP 
(Balea et al. 2021b) were used, as reported in Tables 
S1 and S2 from the Supplementary Material.

Figure  6 shows the predictions of aspect ratio 
compared to the experimental values after applying 
an ANN architecture of 4-4-1. Although not exhibit-
ing the best performance among the models summa-
rized in Table 3, this architecture was selected due to 
its versatility and good performance to the selected 
LCMNFs, yielding a suited correlation (R = 0.84) 
regardless the fiber source. The values reported in 
Fig. 6 were organized in five levels of HPH intensity, 
represented in pairs from left to right. As it can be 
clearly seen, a good agreement between ANN model 
predictions and experimental data occurred for the 
Aspen TMP LCMNFs. Despite the offset between 
predictions and experimental data for Aspen TMP, 
the model could follow the slight increase of the 
aspect ratio with the homogenization. Recall that the 
ANN models trained here were based exclusively on 
Pine patterns, which could increase the risk of model 
failing when subjected to data from very different 
materials. Proper predictions were provided by the 
ANN model for Eucalyptus BKHP. As shown in the 
graph, although some loss of accuracy did occur for 
some of these samples, the model was able to follow 
extremely well the experimental values of aspect ratio 
for the first 3 HPH levels. Indeed, similarly to the 
case of model predictions for Aspen TMP, the neural 
network seemed to capture the dynamics of increase 
of the aspect ratio with the severity of the HPH. This 
behavior of Eucalyptus BKHP was observed before 

and attributed to a fibrillation effect linked to the 
decrease in the diameter of the original fibers due to 
peeling (Sanchez-Salvador et  al. 2021a). Moreover, 
the ANN model provided satisfactory predictions of 
aspect ratio for Spruce BTMP. For these fibers, even 
though the model overestimated the aspect ratio, pre-
dictions indicated no increase of this characteristic 
with further homogenization, likewise in the Spruce 
BTMP experimental data. These results show that 
there is a set of features that govern the aspect ratio of 
LCMNFs produced from different wood sources, and 
that empirical neural network models can be built to 
correlate them fairly well.

Spruce BTMP, coming from softwood, exhibited a 
similar behavior to the Pine pulps selected for mod-
elling, testing, and training of the developed ANNs. 
This indicates that the developed ANN models based 
on Pine data could be useful for other softwood spe-
cies. This might be expectable, as thermomechanical 
pulps from softwood species were included in the 
model, and it exhibits similar cellulose, hemicellu-
lose, and lignin content to Pine TMP. However, fiber 
length was significantly different, and because this 
feature has shown the highest relative strength out of 
all the selected input variables (as seen in Fig. 4), this 
may explain the overestimation of the aspect ratio of 
the model compared to experimental values. Appar-
ently, the developed ANN with the 4-4-1 architecture 
provides excellent estimations with thermomechani-
cal pulps, as Aspen TMP exhibited the lowest dif-
ferences between experimental and predicted values. 
This may be explained by the similarities in both 

Fig. 6  Independent valida-
tion results of aspect ratio 
predicted by ANN model 
4-4-1 at different (and 
increasing) HPH levels
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chemical composition and morphology of Aspen 
TMP, Spruce BTMP and Pine TMP, although the 
first is a hardwood specie. The most significant dif-
ference between those LCMNFs obtained from Aspen 
TMP and the rest was found in the transmittance at 
600  nm (except for Eucalyptus BKHP, which does 
not contain lignin and this measurement may be ham-
pered), indicating that the higher presence of lignin 
promoted fibrillation and increase on surface area 
rather than effects on aspect ratio (Rojo et al. 2015). 
Finally, Eucalyptus BKHP, another hardwood specie, 
also led to LCMNFs whose characteristics fitted the 
predictive model, particularly at low HPH intensity. 
This may be explained by the differences between 
eucalyptus and pine. BKHP has been reported to be 
less crystalline than BKSP, which may limit the fiber 
fragmentation during fibrillation and, thus, leading to 
longer fibers. As the ANN models were prepared with 
softwood species, this might not be considered and, 
thus, at higher HPH intensity, higher error (Syverud 
et al. 2011; Tarrés et al. 2019).

Conclusions

The use of ANN to model the morphological features 
of the micro-nanocellulose segment is still an origi-
nal area of study. One difficulty with this approach is 
the need for a large amount of experimental data to fit 
the model. In this work, ANNs were trained to pre-
dict the aspect ratio of (ligno)cellulose micro/nanofib-
ers. The calibration dataset was constructed using 
only data from Pine pulps described in earlier works 
including just 15 samples that had undergone thermo-
mechanical, kraft and bleached kraft treatments. The 
selection of input variables of the fibrillation process 
was carried out thoroughly, combining with the inter-
pretation of the behavior of the actual process condi-
tions, allowing to identify that the aspect ratio could 
be properly described by four main inputs: cellulose 
contents, applied energy, the mean fiber length and 
the mean diameter of the pre-treated pulps. The neu-
ral model based on these 4 inputs and on 4 neurons 
in the hidden layer showed excellent correlation with 
the dataset used in the calibration (R = 0.9993), vali-
dation (R = 0.9989) and testing (R = 0.9984) stages. 
In addition, the neural model showed good abil-
ity to predict the aspect ratio of nanofiber materials 
obtained from different cellulose sources (R = 0.84) 

including softwood pulp from Spruce BTMP, and 
(to a greater extent) hardwood pulps from Eucalyp-
tus BKHP and Aspen TMP. Besides, the model was 
able to provide interesting insight into the evolution 
of the aspect ratio with the progressive increase of 
the energy applied throughout the fibrillation pro-
cess. These results are encouraging and show that the 
neural network modeling strategy presented here is 
quite useful to predict the aspect ratio of (ligno)cel-
lulose micro/nanofibers on the basis of a set of easy-
to-measure operation variables and initial fiber char-
acteristics, which makes this technique very attractive 
from an industrial perspective in order to control de 
product quality.
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