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Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser in-
duced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited
for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple
treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this ap-
proach and consequently emphasizes the advantage of using artificial neural networks well suited for
non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of
real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network
is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, cop-
per and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of
soils.

© 2012 Published by Elsevier B.V.
1. Introduction

Laser-induced breakdown spectroscopy (usually called LIBS) is a
multi-elemental analytical technique based on the analysis of the
atomic spectral lines present in the spectrum of the light emitted by
a laser-induced plasma [1]. Nowadays, LIBS is used for both qualita-
tive and quantitative analyses with the possibility of fast and on-site
measurements in conjunction with small or in some cases even no
sample preparation [2]. Thus, LIBS presents good qualities in the
framework of environmental monitoring and more specifically on
soil analysis. Several studies have been conducted on this topic by dif-
ferent groups [3] with interesting details on the LIBS instrumentation
and on sample preparation. However, let's emphasize that soils are
complex and heterogeneous samples and high predictive ability is
not expected in the case of on-site analysis. As a consequence LIBS
should be considered only as a useful tool for smart sampling of the
site, but not as an alternative of the reference ICP-AES laboratory
method [3,4]. Moreover, it is well established that LIBS like other an-
alytical methods suffers from matrix effects, i.e. when the physical
properties and the chemical composition of the sample affect the sig-
nal despite the fact that the analyte concentration remains constant
[1] [5]. Matrix effects are evidenced in LIBS not only in the case of
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clearly different matrixes (e.g. water, steel, soil, etc…), but also in
the case of different matrixes of soils. For example the LIBS emission
intensities of barium were found to vary as follows: carbonate>
oxide>sulfate>chloride>nitrate [6] in soil. Moreover, the authors
reported that no single physical property (enthalpy of formation, va-
porization, fusion, heat capacity, entropy…) could explain by itself
the characteristics of the plasma emission. In addition, the ablated
mass being strongly correlated to the emission, it is easy to under-
stand that many physical and chemical parameters can affect the ab-
lation and consequently the plasma emission. Depending on the
nature of soils (calcareous, argillaceous, organic…), the absorptivity
can vary over a wide range. Indeed, a mixture of sand containing
graphite was found to absorb four times and to provide a LIBS signal
for the analyte twice the value of a cellulose sand mixture [6]. In ad-
dition, the plasma temperature Te and the electron density Ne are
ideal parameters to probe the differences between the two soil sam-
ples due to matrix effects since they are very sensitive to the soil ma-
trix composition [7]. This problem of matrix effect can be usually
overcome by the use of matrix-matched samples for the calibration
step but unfortunately, this approach can't be applied to soils because
of the huge diversity of natural soils. Moreover, sample preparation
like dissolution before ICP analysis is efficient to remove the matrix
effects but on-site measurements require minimum preparation and
consequently this approach is not suitable.

Quantitative LIBS is generally based on the construction of a cali-
bration curve namely the LIBS signal versus the concentration of the
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Fig. 1. Schematic of the three-layer artificial neural networkused for LIBS analysiswith the
two basic flows of learning: forward for function signals and backward for errors signals.
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analyte. This method is univariate by definition since the LIBS signal is
related to the peak intensity or peak area of the selected spectral line
considered as the most relevant to describe the analyte. This simple
approach is obviously not suitable to deal with matrix effects and sev-
eral ways of normalization have been applied to reach better predic-
tive ability. Let's first mention the normalization by an internal
standard, namely a selected spectral line related to a chemical ele-
ment among the major elements of the sample. For example, iron is
frequently selected to normalize LIBS spectra of steel samples [8]. In
this case, the spectral line chosen for iron may correspond to a transi-
tion with an upper energy level close to the one of the transition con-
sidered for the analyte. However, the use of an internal standard is
not possible in the case of soil samples because there is no chemical
element in the soil matrices with constant concentration or even
with known different values of concentration [9,10]. Other ways of
normalization have been proposed such as normalization by the
whole spectrum [7] or by the acoustic signal monitored during the
plasma ablation and supposed to be proportional to the ablated
mass [11]. Finally, these different solutions of normalization efficient-
ly allow reducing the experimental fluctuations due to physical pa-
rameters such as laser energy, focusing conditions, or sample
moisture but are not sufficient to remove matrix effects due to the
chemical composition of the samples.

Moreover, quantitative LIBS has also been performed without cal-
ibration through the so-called calibration-free LIBS [10] algorithm,
which is supposed to get rid of matrix effects. This physical model is
based on specific hypotheses: conditions of local thermodynamic
equilibrium satisfied, optically thin and homogeneous plasma, and
stoichiometric ablation. Finally, all the chemical elements must be
detected in order to retrieve all the absolute concentrations. Correc-
tions have been applied to the basic algorithm in order to compensate
for self-absorption but the question of stoichiometry was not studied
in details and remains open. The calibration-free approach was ap-
plied to the analysis of soil samples in a preliminary study but the
predictive ability was very low and it was decided to continue by
using calibration.

With or without calibration, quantitative LIBS also suffers from
spectral interferences. This is especially true for soils since many
chemical elements can be present in the matrix, some of them with
low number of spectral lines (e.g. Al, Si) and some other with a very
high number of spectral lines (e.g. Fe, Ti, Mn, Ca) rising up the risk
of spectral interference [12]. Consequently, quantitative LIBS remains
very challenging and specific studies should be conducted either to
take into account the matrix effect through advanced data processing
in the case of the approach with calibration or to discuss the condi-
tions of stoichiometry for applying the calibration-free algorithm.

In this context, this paper focuses on advanced quantitative LIBS anal-
ysis with calibration. Multivariate analysis was already recommended
for the quantitative LIBS analysis of soil samples [9], [13]. Indeed, LIBS
quantitative analysis of soils by chemometrics was first introduced by
Wisbrun et al. in 1994 [14]. Later, Sirven et al. [15] used partial least
square regression (PLS) to quantify chromium in artificially prepared
soil samples and obtained a good improvement of prediction of concen-
trations compared to univariate calibrationmethod. But at the opposite,
Essington et al. [12] applied PLS to LIBS and ICP-AES data from natural
soils originating from East Tennessee and obtained relative errors of
prediction not smaller than the one provided by univariate approach.
They also noticed that the analytically viablemethods of analysis are de-
fined by an average relative error of prediction below 20%. Moreover,
artificial neural network (here after called ANN) was applied to LIBS
for qualitative purposes like classification of polymers [16], or identifi-
cation of soils [17] and also for quantification [18]. Indeed, Sirven et al.
[15] quantified chromium in soil samples by ANN applied to LIBS data
with interesting discussion on the selection of input data for the ANN,
and Ferreira et al. [19] reported quantitative LIBS analysis of copper in
soils by ANN.
In this paper, the principle of a 3-layer artificial neural network in
the specific case of quantitative LIBS is explained, and the selection of
the spectral lines in order to obtain the best predictive ability for the
ANN is detailed. The advantage of using the ANN for quantitative LIBS
is illustrated in this paper in the case of selected chemical elements
present in natural soil samples and analyzed directly on-site with a
transportable LIBS system.

2. Artificial neural networks for laser-induced
breakdown spectroscopy

It is well established that the behavior of the LIBS signal as a function
of the concentration of a given analyte can often be nonlinear, especially
due to self-absorption effect. As a consequence, linear regression might
become insufficient and a nonlinear model might become necessary to
efficiently process LIBS spectra for quantitative analysis. Artificial neural
network (ANN) is a network of interconnected neurons characterized
by nonlinear activation functions. So, it is by definition the ideal tool
to describe nonlinear behaviors [20]. In this work, a simple 3-layer
perceptron architecture was chosen. Selected LIBS data were feeding
the input layer while the output layer was in charge to generate the
value of the predicted concentration of the analyte. Indeed, the ANN
was exploited here to predict the concentration of one chemical ele-
ment at a time. The hidden layer was present for interconnecting the
input and output layers. The 3-layer perceptron is recognized to be
very efficient for quantification purposes [15,19,21]. Fig. 1 is a general
scheme of the ANN used in this study. Each neuron compares the sum
of all theweighted input signals connected to it to a value of bias, name-
ly an activation threshold and generates an output signal by applying
the sigmoid function to the results of this calculation. This algorithm
of forward propagation starts with random values of weights and bias.
Let's emphasize that the dataset is split into two subsets: the calibration
set used to train the network and the validation set used to check the
predictive ability of the network. Starting with the calibration set, the
first output value generated by the ANN is compared to the actual
value and the error between the actual and the predicted values is
used in a back-propagation algorithm to adjust the values of the
weights and bias for a second iteration and so on. Then, the two —

forward and backward — algorithms are consecutively repeated over
all the data (from all the samples of the calibration set) in order to
achieve a good training of the ANN. The well-known statistic tool called
cross-validation is finally exploited to evaluate the predictive ability of
theANN. It consists in feeding theANNwith the data of both the calibra-
tion and the validation sets. Then, the concentration of each sample
from these two subsets is calculated by the ANN and the predictive abil-
ity is evaluated by the calculation of the root mean square error (RMSE)
values for each subset, defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ci−ĉ ið Þ2
vuut ð1Þ
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where ci and ĉ i are the actual and the calculated values of concentra-
tions, respectively, and N is the number of samples. RMSE can be calcu-
lated either for the calibration (RMSEC) or the validation (RMSEP) sets
of data.

The cross-validation algorithm is applied to optimize the parame-
ters of the ANN namely the number of neurons in the hidden layer,
the speed of convergence and the memory of the network, and to
stop early the training before over-fitting [20]. RMSE is frequently
chosen to evaluate the predictive ability of the models of calibration;
however it provides an absolute value, here in mg/kg for the con-
centrations. The best model corresponds to minimum values of
RMSEC and RMSEP simultaneously. In this study, two other figures
of merit were used instead of RMSE to evaluate the predictive ability
of the ANN, namely the average relative error of calibration REC (%)
resulting on a calculation over the calibration set and the average rel-
ative error of prediction REP (%) based on the validation set [15,22],
and defined as follows:

REC %ð Þ ¼ 100
Nc

XNc

i¼1

jci−ĉ ij
ci

ð2Þ

REP %ð Þ ¼ 100
Np

XNp

i¼1

jci−ĉ ij
ci

ð3Þ

where Nc and Np are the numbers of samples in the calibration and
prediction (or validation) sets, respectively. REC and REP were pre-
ferred to RMSE because they provide percentage instead of absolute
values. Moreover, RMSE is strongly influenced by the highest values
of concentrations, which is not the case for REC and REP. Consequent-
ly, even if the figures (REC, REP) evaluate the predictive ability of the
models in a similar way as RMSE, they finally offer an easier interpre-
tation over the whole range of concentrations. Furthermore, while
the value of RMSE, here in mg/kg, doesn't allow direct conclusion,
the percentage values of REC and REP can be directly compared to
percentage reference values.

3. Experimental

3.1. Sample preparation

On-site quantitative LIBS analyses were conducted on an oldmining
site located in the South of France which potentially offered a wide
range of concentrations for different chemical elements andwhich is es-
pecially known for presenting high concentrations of lead and zinc as
well as barium and calcium. From a smart sampling assisted by the
use of a portable XRF device (Niton XL3t800, Thermo Scientific), 70
samples (soils, ore concentrates and ore dumps) were collected across
and surrounding the site covering a wide range of heavy metal rate.

Each sample was sifted at 2 mmmaximum grain size in order to en-
sure the fast elimination of leaves, roots and gravels. Indeed, gravels in
soil sample are not contaminated but may false the results of on-site
LIBS analysis by a nugget effect. Then each sample was split into two
parts, one dedicated to direct LIBS analysis and the other one to later lab-
oratory ICP-AES analysis supposed to provide the actual values of con-
centration in order to evaluate the predictive ability of LIBS. The part of
each sample dedicated to LIBS was completely dried with the use of a
microwave oven in order to remove any bias on the LIBS signal due to
moisture. Indeed, the higher is the moisture level the lower is the LIBS
signal [23]. Finally the dried soils were prepared as pressed pellets of
13 mmdiameter by applying 8 tons/cm2 for 2 minwith amanual press.

3.2. Transportable laser-induced breakdown spectroscopy setup

A commercial instrumentwas used for on-site LIBSmeasurements of
soils (MobiLIBS III, IVEA SAS). This complete system used a quadrupled
Nd:YAG laser at 266 nm running at 20 Hz repetition rate, with a pulse
duration of 5 ns FWHM. In this study, the laser energy was optimized
at the fixed value of 4.2 mJ and then the resulting irradiance was
43 GW/cm2. This optimal irradiance enabled to obtain high sensitivity
for the elements of interest and good repeatability for plasma–sample in-
teraction for the soil samples. The light emitted by the plasma was col-
lected with a patented achromatic telescope and injected in a 3-meter
fused silica optical fiber of 550 μm diameter. An Echelle spectrometer
was used with a resolution power λ/Δλ, close to 4000 from 200 to
900 nm, and equipped with an intensified CCD camera. The software
AnaLIBS (IVEA SAS) was used to control the experimental parameters
and for the data processing. The MobiLIBS system was integrated in a
van, as amobile laboratory, in order to allow on-site LIBSmeasurements.

Each LIBS spectrumwas the result of 20 laser shots accumulated at
the same point of the sample, with a gate delay of 300 ns and a gate
width of 3 μs. In order to estimate the macroscopic composition of
each analyzed sample and to reduce the effects of heterogeneity, 64
spectra were acquired for each sample and one single average spec-
trum was finally calculated for each sample. This average spectrum
was used for quantitative analysis. Let's point out that statistics was
however calculated by running five times the ANN calculation with
different initial random values of the weights but always with the
same input spectra.

4. Results and discussion

Since soil samples are highly heterogeneous, a localized LIBS anal-
ysis at the microscopic scale is a non-sense when the chemical com-
position of the whole sample is investigated. Consequently, it's
necessary to average many micro-scale LIBS spectra in order to obtain
an effective spectrum closer to the reality of the sample constituents.
In this work, each LIBS spectrum exploited for quantitative analysis
was the result of averaging 64 LIBS spectra which are taken at differ-
ent locations of the pellet surface, as detailed in the previous section.
In parallel to the LIBS analysis, the same samples were analyzed by
ICP-AES in order to get values of concentrations considered as the
actual values. Processing these ICP-AES data through Principal Com-
ponent Analysis (PCA) confirmed that the two major elements for
these soils were calcium and barium. However, the samples were
spread in the plane of the principal components and no small-size
cluster was observed. This result demonstrated that the geological
site analyzed during this campaign could not be separated into distin-
guishable sub-areas with clear different characteristics but at the
opposite had to be considered as a whole single site, even if the con-
centration in major elements varied a lot from one location to the
other.

The 3-layer ANN developed to process the LIBS data from the soil
samples was built from the cross-validation method, as discussed
above. Consequently, our data set was divided into the calibration
set (3/4 of total data) and the validation set (1/4 of total data). The
calibration set was used to build the quantitative model while the val-
idation set was used to test the model. Let's emphasize that a specific
ANN was built for each chemical element. As a consequence, the
calibration and validation sets were also different from one chemical
element to the other in order to exploit the whole range of concen-
trations in each case. This process has no negative consequence on
the quantification of each chemical element.

4.1. Quantitative analysis by standard linear calibration

Soils are complex samples containing many chemical elements
and thus related to LIBS spectra characterized by hundreds of atomic
lines. In the case of aluminum which is one of the major elements for
these soils (in the concentration range of % i.e. tens of g/kg), four per-
sistent lines of Al I (308.215; 309.271; 394.400; 396.152 nm) were
detected and identified thanks to the NIST atomic database [24]. For
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each of these lines, the value of the correlation coefficient R2 after a
calibration with regular linear least squares regression was found to
be between 0.01 and 0.2 which demonstrates that there was no linear
correlation between the LIBS signal and the concentration of alumi-
num. Fig. 2a displays the result of the linear regression obtained
with the Al I-line at 309.271 nm. Here, the 64 original spectra for
each sample were used to build 10 average spectra (each new spec-
trum was the result of an average of 6 or 7 spectra) and the error
bars correspond to the standard deviation of these ten spectra. In
the case of copper which is a trace element (in the concentration
range of mg/kg) two significant lines of Cu I (324.754; 327.396 nm)
were exploited from the same NIST atomic database. Again for these
two lines, the linear correlation was too low with R2=0.79 for the
324.754 nm line and R2=0.81 for the 327.396 nm line (see Fig. 2d).
In order to emphasize the fact that these correlation factors were
not sufficient for quantitative analysis, relative errors of calibration
(REC) and prediction (REP) were calculated for the 327.396 nm line.
The results were REC=43% and REP=37%, far above the value of
20% discussed earlier and considered by ourselves as the limit value
for on-site analysis. In the case of iron which was one of the major el-
ements of these soil samples, tens of atomic lines were identified
from the NIST atomic database but again the linear correlation for
each of them was poor. As an example, the Fe I line at 404.581 nm
provided the results reported hereafter: R2=0.75, REC=48%, and
REP=46% (see Fig. 2b) while the Fe I line at 375.823 nm gave R2=
0.7626, REC=50%, and REP=48%. Here again, the univariate quanti-
tative analysis of iron seems to be difficult. Our last example to illus-
trate quantitative LIBS through regular linear calibration method is
dedicated to calcium. In these soils, calcium was one of the major
elements and LIBS provided a series of spectral lines identified from
the NIST atomic database. Compared to other chemical elements,
Fig. 2. Univariate calibration curves, namely LIBS intensity vs. concentration, for Al (a), Fe (b
detailed in the text.
the results obtained for calcium were much better with for example
for the Ca I line at 610.272 nm R2=0.88, REC=26%, REP=24% (see
Fig. 2c). This relatively good result might be related to the fact that
calcium was one of the two most influencing elements, like barium,
as revealed by the PCA results. However, despite of the better correla-
tion observed with calcium, the relative errors were still too high for
quantitative analysis with acceptable predictive ability. This prelimi-
nary study motivated us with working on chemometrics in order to
achieve quantitative LIBS analyses of soil samples. Artificial neural
network (ANN) was chosen as the most promising approach to over-
come both matrix effects and nonlinearities in the calibration.

4.2. Quantitative analysis by artificial neural network

In this study, artificial neural network (ANN) was applied to LIBS
data through the algorithm of the Igor Pro 6.11 software as already
reported in Ref. [15]. The first step consisted in training the 3-layer ar-
tificial neural network starting with random values of weights and
bias. Here it's worth pointing out that because the initial values
were randomly chosen, the output value of the ANN was never exact-
ly the same while the calculation was repeated, even if the input
values were kept unchanged. To overcome this specific characteristic
of fluctuation with the ANN, the cross-validation step was always re-
peated five times for each model in order to ensure that the best
learning parameters were chosen, namely the number of hidden
nodes, learning rate, momentum, and number of iterations. Repeating
the cross-validation step five times also permitted to select the input
data from the LIBS spectra offering the best quantitative predictive
ability using ANN model. All the ANN parameters and the input data
were chosen by minimizing both the average value of the error of
prediction and its standard deviation over the five repetitions.
), Ca (c), and Cu (d) in the case of soil samples. Error bars represent standard deviations

image of Fig.�2


Fig. 3. Comparison chart of the Ca concentration (%) measured by ICP-AES (black) and
by LIBS and ANN (gray) for the validation set of soil samples. Error bars correspond to
the standard deviation of five repetitions of the ANN calculation (same input data, dif-
ferent initial random weights). The ANN parameters are: number of hidden nodes=4,
learning rate=0.1, momentum=0.1, number of iterations=19,000.
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The input data of the ANN were the peak intensities of the LIBS
spectra at the selected wavelengths. In order to normalize these
input data prior to the processing through the ANN, each of them
was divided by the maximum value calculated over all the spectra
at the same wavelength. For aluminum, four input data were selected,
corresponding to the four persistent lines already discussed in the
previous section of this paper. Including these four lines at the same
time as input data of the ANN, the relative errors of calibration and
prediction were found to be REC=(29.1±2.2)% and REP=(29.1±
3.8)%, respectively. Let's emphasize here that the values of standard
deviation were calculated after five repetitions with the same input
data but different initial random values of weights and bias. But,
even if this result was much more satisfying than the one obtained
with the univariate approach described in the previous section, it
was still not sufficient for on-site quantitative analysis of soils regard-
ing the criterion of 20% already discussed.

For calcium, more than 40 lines were detected in the LIBS spectra in
the range 250–800 nm. Introducing 42 lines as input data of the ANN,
the relative errors were found to be REC=(13.2±0.6)% and REP=
(15.1±0.3)%. In this case, both the training and the prediction ability
of the ANN were satisfying. However, reducing the number of input
data is of major interest to avoid redundancy and to reach the best pre-
dictive ability of ANN with the minimum input data. Consequently we
proposed the following approach to select the smallest number of the
most relevant spectral lines: 1 — starting with the list of persistent
lines provided by the NIST atomic database [24], 2 — remove from the
list the lines with fundamental level as lower level of the transition in
order to reduce the self-absorption effect mainly observed with these
lines, 3 — remove from the list the lines characterized by low
signal-to-noise ratio, namely below a threshold value that can be ad-
justed from case to case, and 4 — if no line is listed after the first three
steps, restart the process canceling the step 2 since if only resonant
lines are detected, the data processing must be based on them.
According to this approach applied to our LIBS spectra of soil samples,
the number of input data for the ANN in the case of calcium analysis de-
creased from 42 to 10 (Table 1) while the predictive ability was slightly
increased with REC=(11.2±0.4)% and REP=(13.3±0.2)%. This clear-
ly demonstrated that the number of input data could be easily reduced
without affecting the predictive ability of the ANN and Fig. 3 reports the
results of the predicted concentrations of the validation set by ANN
compared to the reference values given by ICP-AES. This result provides
muchmore details than the REC and REP values. Indeed, it clearly dem-
onstrates that this ANN model was well suited for the whole range of
concentrations.

The same approach was then applied to iron and the number of
input data was reduced to 11, reported in Table 1. In this case, the
relative errors were found to be REC=(15.3±1.1)% and REP=
(20.1±1.2)% that is very close to the threshold of 20%, our target
for on-site analysis.

For copper, the fourth step of the approach was applied since only
two resonant lines were detected, namely Cu I at 324.754 nm and Cu I
at 327.396 nm. Thus, by introducing these two lines inside the ANN,
Table 1
Wavelength (nm) of the spectral lines of Al, Ba, Ca, Cu, Fe and Ti selected for LIBS anal-
ysis by ANN.

Element Wavelength (nm) of selected spectral lines

Al 308.215, 309.271, 394.400, 396.152
Ba 652.731, 659.532, 669.384, 705.994, 728.029
Ca 442.544, 443.568, 445.478, 558.875, 610.272, 612.221,

616.217,643.907, 646.256, 649.378
Cu 324.754, 327.396
Fe 278.81, 358.119, 373.486, 374.556, 374.826, 374.948, 375.823,

382.042, 388.628, 404.581, 438.354
Ti 365.349, 375.285, 395.633, 395.82, 399.863, 498.173, 499.106

Fig. 4. Results for the Al concentrations with an ANNmodel based on Al and Ca spectral
lines as input data. The ANN parameters are: number of hidden nodes=8, learning
rate=0.1, momentum=0.2, number of iterations=7000. (a) Correlation between
Al concentrations measured by LIBS and ANN and by ICP-AES for the calibration set.
(b) Comparison chart of the Al concentration (%) measured by ICP-AES (black) and
by LIBS and ANN (gray) for the validation set. Error bars correspond to the standard de-
viation of five repetitions of the ANN calculation (same input data, different initial ran-
dom weights).
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Table 2
Average relative errors of calibration (REC) and prediction (REP) in the case of quanti-
tative analysis of copper in soils by LIBS for different sets of input data of the ANN. The
number of nodes in the hidden layer is also given.

Output Input
element

Number of
input

Number of
hidden nodes

REC (%) REP (%)

Cu Cu 2 5 35.5±3.5 31.9±4.4
Cu Cu, Ca 12 3 22.3±9.7 25.8±7.4
Cu Cu, Ba 7 6 27.3±2.7 27.7±3.1
Cu Cu, Fe 13 5 16.6±1.9 17.4±1.2
Cu Cu, Ti 9 6 19.1±3.3 20.2±1.4
Cu Cu, Ba, Ca, Fe, Ti 33 7 12.5±0.8 13.7±1.5

Table 3
Average relative errors of calibration (REC) and prediction (REP) in the case of quanti-
tative analysis of aluminum, calcium and iron in soils by LIBS after optimizing the input
data of the ANN. The number of nodes in the hidden layer is also given.

Output Input
element

Number of
input

Number of
hidden nodes

REC (%) REP (%)

Al Al, Ca, Ba, Fe, Ti 37 11 18.7±0.8 19.3±2.1
Ca Ca, Ba, Fe, Ti 33 6 9.4±0.4 15.2±0.8
Fe Fe, Ba, Ca, Ti 33 11 15.5±0.6 16.8±0.9
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the relative errors obtained were REC=(36.2±3.5)% and REP=
(32.3±4.4)% which was above the threshold of 20% and consequent-
ly not acceptable for on-site analysis of copper. As an intermediate
conclusion, let's point out that quantitative LIBS below 20% of error
was achieved using ANN for two major elements, namely iron and
calcium, but not for aluminum, also a major element nor for copper
which was a trace element. Consequently, instead of introducing in
the ANN input data coming from only the chemical element to be
quantified, namely the analyte, we studied the advantage of introduc-
ing other input data from other chemical elements in order to better
take into account the well-known matrix effects.

This new advanced method was tested first on aluminum, which
means that the ANN was used to quantify the concentrations of alu-
minum and input data were constituted not only by Al lines but
also by Ca lines. More precisely, the 4 lines of aluminum discussed
above were introduced in the ANN and the 10 lines of calcium
(resulting of the selection described above) were also introduced. In
this case, the relative errors were found to be REC=(17.1±1.2)%
and REP=(15.3±1.6)%, which should be compared to the original
values of REC=(29.1±2.2)% and REP=(29.1±3.8)%, with only
input data from aluminum. This clearly demonstrates that the intro-
duction of 10 spectral lines of calcium offers a significant advantage
to the quantitative analysis by ANN. Fig. 4a displays the results of
the predicted concentrations for samples belonging to the calibration
set. This clearly shows a good correlation between the concentrations
predicted by ANN and the reference concentrations of Al obtained by
ICP-AES. Fig. 4b displays the concentrations predicted by ANN for
samples belonging to the validation set, namely sample not used to
build the ANN model, compared to the reference values of ICP-AES.
Fig. 5. Comparison chart of the Cu concentration (ppm) measured by ICP-AES (black)
and by LIBS and ANN (gray) for the validation set of soil samples. The ANN model is
based on selected (Cu, Ba, Ca, Fe, Ti) lines and the ANN parameters are: number of hid-
den nodes=7, learning rate=0.4, momentum=0.1, number of iterations=14,000.
Error bars correspond to the standard deviation of five repetitions of the ANN calcula-
tion (same input data, different initial random weights).
One can conclude that the advanced selection of input data for the
ANN applied here appears to be very efficient to overcome the matrix
effects since the predicted values are really close to the reference ones
over the whole range of concentrations.

The same protocol was repeated for the analysis of copper. In this
case, the 10 lines of calcium were added to the 2 lines of copper to
build the input data set of the ANN. But unfortunately, the advantage
was not significant in this case, (see Table 2, line 2). Thus, it was de-
cided to add other input data based on spectral lines of other chemical
elements, namely iron, titanium and barium. For these three ele-
ments, the spectral lines were selected according to the standard ap-
proach described above for calcium. The selected lines for Fe, Ti and
Ba are reported in Table 1. The addition of extra lines from different
elements always resulted in better predictive ability of the ANN (see
Table 2) and the lines related to iron provided the best improvement
with REP=(17.1±1.2)%. And finally, the addition of spectral lines
from the four matrix elements (Ca, Fe, Ti, Ba) significantly improved
the quantitative analysis of copper with REP=(14.2±1.5)%. The re-
sults of the predicted values of the copper concentration for samples
belonging to the validation set are displayed in Fig. 5. This demon-
strates the existence of an additive effect of the extra input data to
improve the prediction ability of the ANN.

Following the same approach, the ANN provided values of REP
below 20% for Al, Ca and Fe (Table 3). However, adding extra input
data was not always the best solution as one can conclude in the
case of Ca and Al. Moreover, in the case of Fe, the improvement was
really clear as displayed in Fig. 6. Indeed, the predicted values of con-
centration for samples belonging to the validation set were found to
be very close to the values provided by ICP-AES. So finally, for this
specific geological site, the use of selected lines of (Ca, Fe, Ti, Ba) as
input data of the ANN was demonstrated to be quite efficient for
the quantitative analysis of major elements such as Fe, Ca, Al as well
as trace elements such as Cu.
Fig. 6. Comparison chart of the Fe concentration (%) measured by ICP-AES (black) and
by LIBS and ANN (gray) for the validation set of soil samples. The ANN model is based
on selected (Ba, Ca, Fe, Ti) lines and the ANN parameters are: number of hidden
nodes=11, learning rate=0.05, momentum=0.02, number of iterations=7000.
Error bars correspond to the standard deviation of five repetitions of the ANN calcula-
tion (same input data, different initial random weights).

image of Fig.�5
image of Fig.�6
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5. Conclusion

A transportable LIBS system was successfully exploited for on-site
LIBS measurements of soil samples. Quantitative analysis was achieved
by artificial neural network (ANN) to overcome the matrix effects and
the nonlinear behavior of the calibration. Univariate analysis was dem-
onstrated to be unsatisfactory for on-site analysis thanks to a series of
demonstrations and ANN was successfully applied to selected LIBS
data. It was demonstrated that the spectral lines from the analyte
were not sufficient as input data of the ANN to reach good predictive
ability and that extra lines from other chemical elements were neces-
sary to improve the prediction ability of the ANN.

One single ANN model was built for each single chemical element
to be analyzed. With the ANN, the relative error of prediction (REP)
was found to be below 20% for matrix elements like Ca and Fe, for
major element like Al (in the % range) and also for trace element
like Cu (in the mg/kg range). This predictive ability for quantitative
analysis is perfectly suitable in the framework of on-site quantitative
analysis of soils. In addition, let's also emphasize that the well-known
problem of overfitting was carefully controlled during this work via
the average relative error of calibration (REC) value. Indeed, when
the value of REC was very low compared to those of REP, overfitting
was evidenced and the related ANN model was rejected.

Our future work will be organized in different steps. First, the ANN
built after a first campaign will be used for quantitative LIBS analysis
during a second campaign on the same site. This is to check the sen-
sitivity of the ANN to different experimental conditions and to deal
with independent data. Indeed, in the work reported here, the two
data sets used for calibrating and testing the ANN were not indepen-
dent because the samples were from the same site and the spectra
were recorded during the same campaign. Testing the ANN calculated
here on data coming from a second campaign on the same site is con-
sequently of major interest. The other axis of our work consists in
using the ANN model built on this specific site to the analysis of sam-
ples extracted from another site. This is to study the sensitivity to the
matrix effects. These two steps are necessary to go ahead with on-site
LIBS analysis of soils by the use of ANN.
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