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Abstract: The utilization of ordinary Portland cement (OPC) in conventional concretes is synonymous
with high carbon emissions. To remedy this, an environmentally friendly concrete, alkaline-activated
slag concrete (AASC), where OPC is completely replaced by ground granulated blast-furnace slag
(GGBFS) industrial waste, is one of the currently pursued research interests. AASC is not commonly
used in the construction industry due to limitations in experience and knowledge on the mix pro-
portions and mechanical properties. To circumvent great labour in the experimental works toward
the determination of the optimal properties, this study, therefore, presents the compressive strength
prediction of AASC by employing the back-propagation artificial neural network (ANN) modelling
technique. To construct this model, a sufficiently equipped experimental databank was built from the
literature covering varied mix proportion effects on the compressive strength of AASC. For this, four
model variants with different input parameter considerations were examined and the ideal ANN
architecture for each model with the best input number–hidden layer neuron number–output number
format was identified to improve its prediction accuracy. From such a setting, the most accurate
prediction model with the highest determination coefficient, R2, of 0.9817 was determined, with an
ANN architecture of 8-18-1 containing inputs such as GGBFS, a fine to total aggregate ratio, sodium
silicate, sodium hydroxide, mixing water, silica modulus of activator, percentage of sodium oxide
and water–binder ratio. The prediction accuracy of the optimal ANN model was then compared to
existing ANN-based models, while the variable selection was compared to existing AASC models
with other machine learning algorithms, due to limitations in the ANN-based model. To identify
the parametric influence, the individual relative importance of each input variable was determined
through a sensitivity analysis using the connection weight approach, whose results indicated that the
silica modulus of the activator and sodium silicate greatly affected the AASC compressive strength.
The proposed methodology demonstrates that the ANN-based model can predict the AASC compres-
sive strength with a high accuracy and, consequently, aids in promoting the utilization of AASC in
the construction industry as green concrete without performing destructive tests. This prediction
model can also accelerate the use of AASC without using a cement binder in the concrete matrix,
leading to produce a sustainable construction material.
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1. Introduction

Currently, ordinary Portland cement (OPC), also known as conventional cement, is
the most extensively used cementitious material in the construction industry [1]. Cement
has long been applied as a binder in construction materials since ancient times [2,3]. With
the rapid development of infrastructure and growth in population, the global demand for
cement for construction and building purposes has increased in direct correspondence to
the enhancing need for concrete usage [4,5]. Approximately, 4.1G tonnes of cement were
produced globally in 2019, and such a high amount remained since 2014. According to
Widera and Stone [6], cement manufacturing is one of the most energy-intensive processes
and the largest source of greenhouse gas emissions among all industrial processes. Further-
more, the fabrication of cement is associated with a large amount of carbon dioxide (CO2)
emissions being released into the atmosphere [5,7–12].

To mitigate the anthropogenic emission of carbon dioxide, one current prospective
practice is the utilisation of supplementary cementitious materials (SCMs) as the replace-
ment of OPC [13–16]. This exercise has contributed broadly to much construction material
innovations lately. Some examples, to note a few, include natural pozzolans, ground granu-
lated blast-furnace slag (GGBFS) [17–19], fly ash (FA) [3,12,20–22], rice husk ash [23–25],
and silica fumes [26–29]. In terms of convention, partially replacing OPC with slag-based
SCMs, such as GGBFS, produces slag concrete, while substituting the cement completely
with GGBFS results in alkali-activated slag concrete (AASC). As the cement content is
100% replaced by SCMs (GGBFS), it leads to a reduction in the activation ability of GGBFS.
Hence, to enhance the strength, an alkaline activator is commonly used to activate the
clinker-free (cement-free) SCMs. The concrete, which uses activated SCMs in the mix,
is alternately defined as alkali-activated concrete. AASC that employs alkali-activated
GGBFS is receiving increasing attention as an alternative to OPC concrete (OPCC) [30].
Through the replacement of traditional OPC as a binder with alkali-activated slag (AAS),
less energy is required in production, with lowered CO2 emissions from the clinker-free
cement fabrication. To put things into perspective, the production of 1 tonne of slag re-
quires approximately 1300 MJ of energy and releases around 0.07 tonnes of CO2, whereas
the production of an equivalent amount of OPC requires up to 5000 MJ of energy cou-
pled with high CO2 emissions amounting to 1 tonne [31]. The utilization of AASC is an
environmentally supportive solution to reduce carbon emissions, as the effective use of
industrial by-products in concrete fabrication not only reduces the amount of CO2 and
energy required, but also alleviates burdens on the environment in the form of landfills
and pollution.

Several existing studies have found that AASC exhibits excellent properties compared
to the traditional OPCC [19,32]. Thomas et al. [33] concluded that AASC, compared to
OPCC, offers a lower heat of hydration, faster hydration rate, higher early strength, flexural
and compressive strength, and better durability in an aggressive environment. Bakharev
et al. [34] revealed that AASC is more durable in a sulphate environment compared to
OPCC, as deduced from the observation that OPCC’s strength decrease was greater and
that products of degradation and microstructural changes were observed on the surface of
OPC samples after up to 12 months of exposure to sodium sulphate solution. Despite such
advantages, previous studies have also shown that AASC has a higher autogenous and
drying shrinkage rate than OPCC. Thus, it is crucial to form a clear understanding of the
mechanical strength and properties of any new type of concrete, such as AASC, in both its
beneficial characteristics and limitations before adopting it in practice.

In the construction industry, the compressive strength test is customarily carried out
for concrete samples at the ages of 3 days, 7 days, and 28 days for quality assurance and
quality control. Nonetheless, a waiting period of 28 days can be taxing both in time, labour,
and cost. The 28-day strength evaluation is a mandatory requirement, as it confirms the
quality and the desired strength of the material. Kabir et al. [35] stated that, generally,
concrete mix design is based on the code recommendation, field/past experiences, or
trial mixtures. Any error or variation that occurs in the mix design or during the mix
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preparation may cause the strength test result to not attain the designed concrete strength;
hence, causing the entire mixing process to have to be repeated. There have been several
strength prediction models developed [36–38]. Since AASC remains rarely adopted in
construction, to determine the suitable design mix for specific design strength, experiments
and tests are customarily required. To circumvent this laborious event, a good strength
prediction model would be a more convenient method to estimate the characteristic strength
of AASC at the early stage before performing the optimisation of the mixture in achieving
the desired concrete strength.

Recent modelling advances have seen an upward trend and many beneficial con-
tributions of machine learning or artificial neural network (ANN) in characterising the
mechanical properties of construction materials [39] or structural prediction [40]. Observa-
tionally complying findings have been reported in these studies. Moreover, predicting the
compressive strength through a machine learning algorithm [41–44] is a nondestructive
technique, where only a little or no sample preparation is required [45].

Thus, the laborious, as well as cost and time-consuming experiment event can be
hugely reduced in the design mix determination. The utilization of the prediction model
can not only reduce the cost and time for testing, but it also allows more economical use
of raw materials for a high sustainability merit and prevents unnecessary construction
failures. It has not escaped the authors that much research and development has already
been carried out in the prediction models for concrete compressive strength. It is notable to
see, however, that most of the previous prediction models were derived for conventional
concretes, i.e., OPC concretes. In this context, these previous prediction models may not
work accurately for the prediction of AASC compressive strength. This study, therefore,
fulfils this gap by developing a strength prediction model of AASC for a safe and reliable
application in the construction industry.

The proposed model is developed as shown in Figure 1 using ANN. Previously
published data are gathered for data bank development. The selection of a variable and
ANN architecture can also be determined from a previous study to be adapted to the
current study.
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Figure 1. The flow of prediction model development.

The MATLAB Deep Learning Toolbox is used to train and analyse the developed data
bank. The accuracy of the developed model is examined before any further analysis is
performed. A sensitivity or parametric study is performed to understand the predominant
factors of compressive strength development in AASC. The newly developed prediction
model is able to promote the use of green construction materials with a high accuracy
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of compressive strength prediction. Therefore, practisers are more confident in applying
AASC in the construction industry that reducing the cement usage.

2. Artificial Neural Network Model Development

ANN models have shown a reliable strength prediction and were applied in this
research to produce a highly accurate compressive strength prediction for AASC. Previous
published data were gathered for data bank development. The selection of a variable and
ANN architecture could also be determined from a previous study to be adapted to the
current study. The MATLAB Deep Learning Toolbox was used to train and analyse the
developed data bank. A sensitivity or parametric study was performed to understand the
predominant factors of the compressive strength development in AASC.

2.1. Data Bank Construction

The primary goal of this study was to construct a reliable and accurate strength
prediction artificial neural network (ANN) model for the compressive strength of AASC
that could potentially be applicable in the construction field. The accuracy and reliability of
an ANN prediction model are mainly based on the quality and quantity of the available data.
Most of the previous ANN model studies were based on the databases constructed from
their experimental results, which were limited to the specific environment and material
composition [46].

In this study, a data bank was first built by conducting a literature review to collect
extensive and detailed information on the mix proportions, physical properties of compos-
ites, and mechanical properties of AASC. In total, 181 sets of AASC design mix produced
with different mix proportions were gathered from different reliable sources consisting of
previously published or available studies on the behaviour of AASC [30,47–61]. As the
data obtained for this study were mainly from various sources, the developed ANN-based
prediction model would be more general. All the collected data were principally stored and
organized in a spread sheet by stating the sources. The relevant data included the AASC
compressive strength and the AASC mix design with all proportions of alkali activators,
precursors (GGBFS), fine and coarse aggregates [62–64], water/binder ratios, slag composi-
tions, finenesses of slag, specific gravities of slag, water contents, molar concentrations of
sodium hydroxide, ratios of sodium hydroxide to sodium silicate, etc.

2.2. Variables Selection

An Appropriate selection of variables for inputs was essential to improve the accuracy
of the compressive strength prediction of AASC, utilising ANN models. When choosing
the input variables, it was important to consider the relationship between the variables and
the target output. The suitable input variables used for the ANN model in this study were
identified based on previous experimentation on ANN models and additional variables
required specifically for AASC. Input variables from previous works on various concretes
using ANN models are summarised in Table 1, with the model accuracy described in terms
of the correlation factor, R2. The selection of input variables also considered the difficulties
in the data collection due to the limitation of findings on AASC using the ANN model, and
the utilization of AASC in the construction field.



Sustainability 2022, 14, 5214 5 of 20

Table 1. Summary of input variables for strength prediction using ANN in previous studies.

Refs Input R2

[65] Cement; BFS; FA; ultrasonic; pulse velocity; rebound number; curing age 0.993

[66] Cement; nanosilica and diameter; superplasticiser; fine and coarse aggregates; w/b ratio 0.868

[46] Binder; w/b ratio; fly ash; fine and coarse aggregate; superplasticiser 0.941

[67] Cement; nanosilica; fine aggregate; copper slag; age of specimen; superplasticiser 0.950

[68] Cement; BFS; FA; water; superplasticiser; fine and coarse aggregates 0.860

[69] Water absorption; fine aggregate; recycled and natural coarse aggregates; w/b ratio;
water/total material ratio 0.999

[70] Cement; FA; fine and coarse aggregates; w/b ratio 0.892

[71] Concrete density; cement; FA; SF; water; fine and coarse aggregates; w/b ratio 0.930

[72] FA; water glass solution; sodium hydroxide solution; coarse aggregate; fine aggregate; water;
concentration of sodium hydroxide; curing time; curing temperature 0.970

[41,43] Concrete age, NaOH concentration, SF, GGBFS, natural zeolite 0.961

Annotations: FA—fly ash; BFS—blast-furnace slag; GGBFS—ground granulated blast-furnace slag; w/b—
water-to-binder.

In this study, the input variables were divided into two categories defined as pri-
mary and secondary variables. Primary variables were considered as those directly and
significantly affecting the dependent parameter, concrete compressive strength, whereas
secondary variables were defined as the supportive measurements related to the primary
variables that could influence the dependent parameter. According to the existing machine
learning prediction model for concrete compressive strength, the adopted primary input
variables were, generally, the constituent materials, also called raw materials of concrete
or the design mix proportion of concrete, since the mechanical properties of concrete are
highly dependent on these variables. Hence, the common variables, such as the binder
(slag) content, fine and coarse aggregates, activators, and liquid/binder ratio (l/b), that
were utilised in existing models were likewise considered as primary inputs in this study.

As this study aimed to research AASC, previous studies or literature regarding AASC
were taken into considerations when selecting the additional primary and secondary input
variables for AASC instead of conventional concrete. The activator utilised for AASC
in this prediction model was that combining sodium hydroxide and a sodium silicate
solution based on the data collection. For the primary variables, the molarity of the NaOH
solution, the proportion of NaOH to the Na2SiO3 solution, the percentage of Na2O, and the
silica modulus of the activator, Ms, was the main variables that affected the compressive
strength of AASC. However, due to the reason that the collected data came from existing
experimental studies from different researchers, values were customarily described in
different terms, or the concrete may have been prepared with different procedures, so there
were limitations on determining the molarity of the solution. For instance, some activators
were prepared by adding NaOH pellets or flakes straight into the Na2SiO3 solution, while
some were prepared by adding the premixed NaOH solution to the Na2SiO3 solution. A
similar case could be determined concerning the ratio of NaOH to the Na2SiO3 solution.
Hence, to standardise the variables, the NaOH pellets/flakes content (solid) and the water
added into the mix were included as the input variables instead of the molarity and the
ratio of combination. In short, the primary variables considered for the AASC design mix
included the slag content, ratio of fine aggregate to total aggregate (F:T), Na2SiO3 solution,
NaOH solid content, mixing water, Ms, Na2O%, and total water/binder ratio (w/b), where
the total water included the water from sodium silicate and added water.

In terms of the secondary variables, the physical properties, generally, the specific
surface area of slag, were related to the mechanical properties of AASC. Hence, the Blaine
fineness of slag was taken into account. Moreover, data collected from AASC specimens
were from different experimental studies that used different methods to cure the concrete
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until testing to obtain their compressive strength at 28 days. Hence, the curing methods
of concrete specimens had to be considered as secondary variables. From the data, the
employed curing methods were air curing at ambient/room temperature, chamber curing
at approximately 20 ◦C, water curing, membrane curing with a sheet covering, and heat
curing at 60 ◦C. Since the prediction model for AASC compressive strength was the goal,
only one variable, the compressive strength of AASC, f c

′, was considered in the output
layer (also called the dependent variable). Table 2 summarises the inputs and output details
of the proposed model.

Table 2. Inputs and output of AASC prediction model.

Variable Unit Minimum Maximum Variable

GGBFS kg/m3 208 405

Primary input

F:T - 0.30 0.61
Na2SiO3 (l) kg/m3 7.30 206.43
NaOH (s) kg/m3 2.68 38.40
Mixing water kg/m3 53.94 240.53
Ms - 0.19 2.63
Na2O% % 2.7 13.64
w/b - 0.34 0.7

Blaine fineness m2/kg 335 527 Secondary input
Curing type - - -

Compressive strength MPa 6.7 83.2 Output

2.3. ANN Prediction Models

Four models with different combinations of inputs were trained in determining the
one with the highest accuracy. As shown in Table 3, Model C0 was developed to predict the
compressive strength of AASC with primary inputs only, whereas Models CF and CR were
developed with primary inputs and one of the secondary inputs, which were the Blaine
fineness and curing type, respectively. For Model CFR, the inputs were both primary and
secondary variables. The output for all models was the same, which was the compressive
strength of AASC at 28 days.

Table 3. Inputs considered for the proposed prediction models.

Models
Inputs

1 2 3 4 5 6 7 8 9 10

C0
√ √ √ √ √ √ √ √

× ×
CF

√ √ √ √ √ √ √ √ √
×

CR
√ √ √ √ √ √ √ √

×
√

CFR
√ √ √ √ √ √ √ √ √ √

1. GGBFS
2. F:T
3. Na2SiO3 (l)
4. NaOH (s)
5. Mixing water

6. Ms
7. Na2O%
8. w/b
9. Blaine fineness
10. Curing types

Annotations: ×—no, and
√

—yes.

2.3.1. ANN Architecture

Figure 2 shows the typical ANN model for AASC. Specialised computer software was
used in building the ANN model. The prediction model of AASC compressive strength,
MC0, MCF, MCR, and MCF were developed using the MATLAB Deep Learning Toolbox.
The Levenberg–Marquardt training algorithm with a back-propagation approach in the
MATLAB Deep Learning Toolbox was implemented for the modelling of the network.
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Levenberg–Marquardt is a feed-forward ANN model that minimises the error for a particu-
lar training pattern by automatically managing the relationships between variables and
adjusting the weight of data at a small amount each time. Training with this algorithm
automatically stops when the generalisation stops.
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The predictive accuracy and generalisation capability of ANN models in predicting
compressive strength are affected by the architecture of the ANN [68]. The architecture of
an ANN model is generally described in terms of the input number–hidden layer neuron
number–output number format. For instance, an ANN architecture of 3-5-1 contains three
inputs, five neurons in one hidden layer, and one output.

In this study, the number of neurons in the input layer was based on the selection
of input variables, which are known as independent variables; meanwhile, the number
of neurons in the output layer was equal to the number of dependent variables, i.e., the
compressive strength. According to Atici [65], there is no general rule in selecting the
number of hidden neurons. The appropriate number of hidden nodes is selected by varying
the number of hidden nodes during the model learning, and the optimal number of hidden
nodes is determined based on the best prediction performance [73].

To identify the range of the number of neurons in the hidden layer, the architecture
of the ANN model from previous studies that attained good prediction accuracy was
nominated and considered for further scrutiny. The accuracy of the model was described in
terms of R2. The number of hidden neurons could also be determined using different pro-
posed heuristics from existing studies when designing the ANN architecture. In this study,
to design a stable ANN model and to ensure the generalisation of the network, the optimal
number of hidden neurons was determined within the range of the number of neurons in
the hidden layer by referring to the previous model that exhibited a high accuracy.

For Models C0, CF, CR, and CFR, a total of 8, 9, 9, and 10 input variables was selected,
respectively. The corresponding number of calculated hidden neurons for each of the
models was within the range of 3–17, 3–19, 3–19, and 4–21 from the heuristics listed in
Table 3. The ANN architectures applied in existing models had a similar number of hidden
neurons, ranging from 4 to 18, with one or two hidden layers. Therefore, this study
considered the testing ranges to be 1–25, which included the recommended values from
both the proposed heuristics and previously applied ANN architecture to determine the
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optimal ANN architecture. In terms of hidden layers in the ANN architecture, previous
studies that adopted one hidden layer in the model generally obtained an acceptable
prediction accuracy [39]. Hence, in this study, all proposed models were trained with a
single hidden layer. To obtain the optimal number of neurons for each model, the model
was trained with the number of hidden neurons from 1 to 25. The root mean square error
(RMS) of the network was plotted against the range of the number of hidden neurons for
the determination of the optimal number of hidden neurons.

2.3.2. Training, Validation, and Testing

To create an ANN model with a good generalisation capability, the collected data were
classified into three datasets, which were operated in the training, validation, and testing
phases. Figure 3 demonstrates the partitions of datasets. For training datasets, the data were
presented to the network during model training and the network was adjusted according
to its error, while for validation datasets, the data were used for the network generalisation
and to halt training when the generalisation stopped improving. In terms of datasets for
testing, they were independent and used to assess the developed neural network as the
data from the sets was not used in building the model. The testing datasets could determine
the ability of the model to generalise its predictions beyond the training and validation
datasets and the network performance when it was presented with unfamiliar datasets. In
this study, 80% of datasets from the databank was used for training, whereas 15% and 5%
was adopted for the model validation and testing, respectively.
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3. Compressive Strength Prediction
3.1. Optimal ANN Architecture

To begin, a databank was developed with 181 datasets of various AASC design
mixes collected from the existing literature. To ensure the accuracy of the ANN model
development, the optimal ANN architecture of Models C0, CF, CR, and CFR had to be
obtained before executing the training phase. To determine the optimal ANN architecture,
all the models were trained with different numbers of hidden neurons within the range of
1–25 hidden neurons in a single hidden layer. For the evaluation, the root mean square error
(RMSE) values of each model for training and validation were plotted as a function of the
number of hidden neurons. Figure 3 shows that the RMSE of training experienced a small
fluctuation with an increasing number of hidden neurons, while the RMSE of validation
kept fluctuating until it reached the lowest point before starting to increase with bigger
fluctuations. Both RMSEs for the training and validation of models grew corresponding
to an increase in the number of hidden neurons. This occurred because, even though the
training error is low, the generalisation error tends to grow due to over-fitting and a high
variance when a neural network contains too many hidden neurons [74]. From a previous
study, a high accuracy was also obtained for one hidden layer with an ANN concrete
compression strength prediction [37].

From Figure 4, RMSE values in training were lower than in the validation. When the
RMSE of the model validation was low but slightly higher than that of the training, the
model was generalised well in predicting the relationship between the inputs and output.

When the validation error is lower across but slightly higher than the training error, it
implies that the resulting regression is a good fit. A good fitting result indicates that the
model developed is generalised well in predicting the relationship between the inputs and
output. Hence, the selection of optimal network architecture for the optimal number of
hidden neurons must fulfil the criteria of (i) minimum training and validation RMSE and
(ii) minimum difference between training and validation RMSE.

The optimal ANN architectures for Models C0, CF, CR, and CFR for a single hidden
layer setting were determined as those comprising 18, 10, 16, and 14 neurons, respectively.
Table 4 summarises the optimal ANN architecture for each model and provides a compari-
son with previous models. In the current study, considering the only binder of GGBFS, the
included parameters represented the influenced factors in AASC well.

Table 4. Optimal ANN architectural details of ANN models.

Model Current Study
[75]

[76]

C0 CF CR CFR SVR RFR ETR GBR

Number of hidden neurons 18 10 16 14 12 - - - -
RMSE (Training) 0.0110 1.3473 1.8004 1.1436 1.13 6.598 3.929 2.721 2.919

RMSE (Validation) 3.7974 4.1701 5.3566 3.2973 - 8.053 6.143 6.000 4.880
Difference 3.7864 2.8228 3.5562 2.1537 - - - - -

ANN Architecture 8-18-1 9-10-1 9-16-1 10-14-1 26-12-1 - - - -
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3.2. Prediction Accuracy

Having determined the optimal setting, the prediction Models C0, CF, CR, and CFR
with different input variables were trained using the MATLAB Deep Learning Tool with 181
datasets from the databank alongside the optimal ANN architecture as presented in Table 4
to predict the AASC compressive strength. Prediction accuracies for compressive strength
using all the investigated models were evaluated in terms of the correlation coefficient (R),
determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). The correlation coefficient of the network
outputs versus targets for each model in training, validation, testing, and overall phases is
presented in Table 5.
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Table 5. Correlation coefficient computed from all phases of the studied ANN models.

Model
Correlation Coefficient, R

Training Validation Testing Overall Data

C0 0.9953 0.9805 0.9705 0.9908
CF 0.9906 0.9774 0.9767 0.9872
CR 0.9959 0.9608 0.9945 0.9902

CFR 0.9954 0.9606 0.9790 0.9884

It can be seen that all the neural network models exhibited a correlation coefficient
of more than 0.9 and were almost equal to the excellent value of one. This showed that
the models had a high degree of fitness to the target values. Model C0 had the highest
correlation coefficient of 0.9908 for the overall data, which indicated that the correlation
between the targets and network outputs in this model was the strongest among all the
models investigated.

To evaluate the predictability among the developed prediction models, performances
of the models were further evaluated with R2, RMSE, MAE, and MAPE by measuring
the error between the target values and network outputs. The overall RMSE, MAE, and
MAPE for models were determined according to the results of the prediction models from
MATLAB with respective targets, network outputs, the absolute error, and relative error of
181 AASC samples during model training, validation, and testing. The R, R2, RMSE, MAE,
and MAPE values as determined for each model are tabulated in Table 6.

Table 6. Statistical errors for ANN models.

Model R R2 RMSE (MPa) MAE (MPa) MAPE (%)

C0 0.9908 0.9817 2.1189 1.2188 3.79
CF 0.9872 0.9746 2.5000 1.6704 4.40
CR 0.9902 0.9805 2.1911 1.3967 4.00

CFR 0.9884 0.9769 2.3855 1.3690 3.83

The determined coefficient, R2, of the AASC compressive strength for the ANN models
was 0.9817, 0.9746, 0.9805, and 0.9769 for Models C0, CF, CR, and CFR, respectively. Similar
to the correlation coefficient, all the investigated models had an R2 close to 1.0. This implies
that the developed models are effective and precise in predicting the AASC compressive
strength. It is worth noting that the R2 values of the existing ANN prediction model for
the compressive strength of different concrete fell between 0.868 and 0.999. Hence, the R2

of all models developed in this study was considered of high vitality and acceptable. By
comparing R2 between all the models, Model C0 demonstrated the highest R2 of 0.9817,
which indicates that 98.17% of the variability in the network outputs could be explained or
predicted by the inputs or independent variables from the model.

RMSE and MAE are the measures of the difference between targets and network
predicted values. Low RMSE and MAE values indicate that the model is better at forecasting.
The ANN prediction Models C0, CF, CR and CFR exhibited RMSE values of 2.1189, 2.5000,
2.1911 and 2.3855 (MPa), respectively, and MAE values of 1.2188, 1.6704, 1.3967, and
1.3690 (MPa), respectively. The range of RMSE and MAE of the existing neural network
model for alkaline-activated fly ash (AAF) concrete compressive strength was between
1.4737 to 4.9684 and between 0.8416 to 4.1113, respectively [72]. Thus, in this study, the
RMSE and MAE values of all the neural network models were, again, considered acceptable
as compared to previous works. Model C0 showed the lowest RMSE and MAE among all
the models, which indicated the best performance from this model.

In terms of MAPE, the overall MAPE values were 3.79%, 4.4%, 4%, and 3.83% for
Models C0, CF, CR, and CFR, respectively. MAPE for all the models in this study was much
lower, less than 5%. Among all the models investigated, Model C0 presented the lowest
MAPE of 3.79% for the overall data, which implies that Model C0 exhibited the greatest
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performance in predicting the compressive strength for AASC where the forecast was only
off by 3.79%.

Therefore, it shows from the statistical investigation that all the models provided a
good quality of simulations because of well-fitting data and prediction abilities. Model C0
displayed the highest superiority compared to Models CF, CR, and CFR, since its R and R2

were higher, while RMSE, MAE, and MAPE were lower than other investigated models. To
proceed, an existing ANN-based prediction model for high-performance concrete (HPC)
compressive strength from [68] was selected as the comparable model to evaluate the ANN
model accuracy. Statistical results, namely, R2, RMSE, and MAE, of the existing model were
0.86, 5.51 (MPa), and 4.03 (MPa). In this study, the R2, RMSE, and MAE of Model C0 for the
AASC compressive strength had values of 0.98, 2.12 (MPa), and 1.22 (MPa), respectively.
Hence, the value of R2 was greater while both error functions (RMSE, and MAE) were lower
than the compared existing model. From this comparison, it could be justified that the
present ANN-based Model C0 for AASC exhibited acceptable performance in predicting
the compressive strength.

In terms of the input variables adopted in the ANN models, the findings from the
statistical outcomes and comparison showed that Model C0 was better in the prediction of
the AASC compressive strength among all the models. Thus, it could be justified that Model
C0, which adopted primary variables only (namely, the GGBF-slag content, fine aggregate
to total aggregate ratio (F:T), Na2SiO3 solution content, NaOH content in solid, mixing
water content, silica modulus of activator (Ms), percentage of sodium oxide (Na2O %), and
water–binder ratio (w/b)), was sufficient to predict the compressive strength of AASC with
a high accuracy. For Models CF, CR, and CFR, with additional secondary input variables,
the models seemed greatly adaptive with more detailed variables considered. However,
this, consequently, increased the complexity of the model, which was not necessary and
less favoured.

Next, the current optimised model was compared with two previously published
models with a similar set of input variables to evaluate their performance. Due to the
limitation in the ANN prediction model for AASC, the proposed ANN model for alkali-
activated fly ash (AAF) concrete, which is similar to AASC, from [72] was adopted as the
first model. The input variables utilised for the existing model were the fly ash content,
fine and coarse aggregate content, Na2SiO3 solution content, NaOH solution content, water
content, NaOH concentration, curing time, and temperature. By comparing the inputs for
AASC (slag) and AAFC (fly ash), the inputs utilised were found to be similar, except for the
main binder material due to different concrete types and NaOH concentrations, as it was
expressed differently by the NaOH solid content and mixing water. For the curing time, as
the present model was used to predict the characteristic compressive strength (28 days) of
concrete, the curing time was excluded.

For the second model, the existing stepwise regression model of AASC from [77]
was considered. The input variables adopted for the stepwise regression model were the
sodium oxide dosage (Na2O %), silica dosage, activator silica modulus (Ms), water–binder
ratio (w/b), activator–binder ratio, and curing method. Through the comparison between
the present ANN AASC models and the existing stepwise regression AASC model, the
variables used in both models were the same, except that the activator–binder ratio in
the present study was described in terms of its content. The R2 of the existing stepwise
regression model was determined to be 0.97, which is considered a good performing
model; the R2 of the present neural network model was 0.98, which had a higher accuracy
compared to the stepwise regression model.

From the above discussion, it can be observed that the prediction model developed
using the current ANN approach could predict the compressive strength of alkaline-
activated slag concrete effectively with a high accuracy by using suitable input variables
and ANN architecture. However, there were limitations in this study, i.e., constrained by
the types of alkaline activator used and databank built.
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Regarding the types of alkaline activator, the most common activator, which is the
combination of sodium silicate with sodium hydroxide, was adopted in this study. Other
alkaline activators, such as sodium silicate only, potassium silicate only, sodium silicate
with potassium hydroxide, etc., may pose a different effect on the AASC compressive
strength compared to the activator adopted in this study. In terms of the databank built
in this study, there was a range for each utilised variable. Thus, if a newly tested value
of compressive strength was outside the range of datasets, the predicted value (network
output) may not have displayed a high accuracy for the AASC compressive strength. In
future works, when there are more data regarding AASC, a databank with more datasets
and a higher range for variables should be created.

Although there were some limitations, the result of this study demonstrates the signif-
icant potential of the nondestructive method for predicting the performance of alkaline-
activated slag concrete. The prediction model could be a useful tool for building a standard
that could be utilised when designing the mix proportion of AASC, which is not a presently
available option. The quality and probable weakness of the AASC concrete could be
determined early without the need for experimental works as well.

4. Parametric Study

As the proposed ANN-based model demonstrated the ability to predict the compres-
sive strength of AASC that agrees well with the experimental data, a parametric study was
conducted on Model C0, i.e., with the greatest accuracy, to investigate the effects of the
selected input variables on the compressive strength.

As all variables were interrelated and due to the complexity of the prediction model
developed using ANN, a parametric study of the variables was unable to be conducted
by changing just one of the input variables while keeping the others constant. Hence, the
connection weight approach that used the synaptic weight of variables in the ANN model
was utilised to conduct the parametric analysis. To carry out the examination, values of
synaptic weight for the input–hidden and hidden–output obtained from the MATLAB
Deep Learning Tool are summarised in Table 7. Each weight represents the intensity of
signal transfer between two neurons. A positive weight indicates that the input variable
had a positive effect on the output variable, where an increase in the input would increase
the output; a negative weight indicates that the input variable had a negative effect on the
output variable, where an increase in the input would decrease the output.

Following the described methodology, the sensitivity analysis with the connection
weight approach (Equation (5)) was conducted and the products are summarised in Table 8,
while the relative importance and ranking of each input variable are tabulated in Table 9.
Moreover, the contribution of each parameter is illustrated in Figure 5. The connection
weight approach uses raw synaptic weights to determine the variables’ contribution, where
the positive or negative sign of weights is considered during the calculation. Thus, the
relative importance determined using this approach shows a positive or negative sign that
explains the relationship between the input and output.

Relative Importance, RIjk =
Nh

∑
j=1

wjiwkj (5)
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Table 7. Input–hidden and hidden–output weights derived from the ANN model, C0.

Input-Hidden Hidden-Output

Hidden
Neuron

Input Output

GGBFS F:T SS SH Ms Na2O ADDH2O W/B f ′c

1 −1.8511 0.8766 −1.1410 0.9137 2.4600 −1.4760 −0.7266 −3.0664 −0.9097
2 −0.6448 0.1432 0.1632 −1.6898 0.9515 1.6783 3.2782 −2.7635 2.7061
3 −1.6146 −0.3582 −1.5804 −0.6272 −1.2745 −0.9812 −0.7421 1.7612 0.6151
4 0.1446 3.5935 0.7653 −0.4566 −0.8979 1.3062 −2.2284 −0.7822 0.0452
5 −0.6419 −0.1221 −1.4158 0.5753 −0.4139 −1.4396 −0.7465 2.1107 −1.0167
6 0.3351 −1.4531 1.2932 −0.2918 −0.1720 −1.0784 1.7973 1.5449 −0.7799
7 3.0384 1.6446 −0.7609 0.2600 0.1781 2.2642 −0.1741 −0.4512 1.4077
8 −1.3240 −1.3103 −0.4978 1.2780 2.3879 −0.1421 0.7494 1.1429 0.8236
9 −1.8050 1.9500 −0.1177 −0.6343 −0.7684 0.7537 −0.4860 1.0722 −1.3099
10 2.4762 2.9996 0.0742 3.8201 −3.2209 −0.8220 −2.0616 0.1564 −0.2059
11 −2.0605 0.1869 2.0354 −1.2366 0.7149 −4.0055 −1.1618 −3.8775 0.2064
12 −0.3204 1.1023 1.1954 −0.7342 −0.2140 1.5820 2.8409 −2.0052 −2.6165
13 −2.3109 0.0179 −0.4885 1.6056 −1.0383 −1.1508 −1.6386 1.5427 1.5972
14 −0.2757 −0.2649 −1.5025 0.0528 2.2245 −0.1155 −0.3543 −0.9056 −2.5610
15 1.5999 −4.4989 0.0482 0.2136 3.0928 1.6858 1.7565 2.8385 −0.6751
16 1.1569 1.2737 −0.6091 1.0980 0.2416 0.4434 −0.8414 −1.0749 −0.5621
17 1.2311 0.0584 −1.5809 −0.1763 0.1173 0.8585 −0.1815 −1.0590 −1.3477
18 0.0024 1.3140 1.7374 0.5000 −0.0125 0.4533 −0.8213 −0.0788 0.7815

Table 8. Connection weight products and relative importance.

Hidden
Neuron

Connection Weight Product—Input

GGBFS F:T SS SH Ms Na2O ADDH2O w/b

1 1.6839 −0.7974 1.0379 −0.8312 −2.2378 1.3426 0.6609 2.7894
2 −1.7449 0.3876 0.4415 −4.5729 2.5750 4.5417 8.8712 −7.4785
3 −0.9931 −0.2203 −0.9721 −0.3858 −0.7840 −0.6036 −0.4565 1.0833
4 0.0065 0.1626 0.0346 −0.0207 −0.0406 0.0591 −0.1008 −0.0354
5 0.6526 0.1242 1.4394 −0.5849 0.4208 1.4636 0.7589 −2.1460
6 −0.2613 1.1333 −1.0086 0.2275 0.1342 0.8410 −1.4018 −1.2048
7 4.2771 2.3151 −1.0712 0.3659 0.2507 3.1873 −0.2451 −0.6352
8 −1.0904 −1.0791 −0.4100 1.0526 1.9666 −0.1170 0.6172 0.9413
9 2.3644 −2.5543 0.1542 0.8309 1.0065 −0.9872 0.6367 −1.4045

10 −0.5099 −0.6176 −0.0153 −0.7866 0.6632 0.1693 0.4245 −0.0322
11 −0.4253 0.0386 0.4202 −0.2552 0.1476 −0.8268 −0.2398 −0.8004
12 0.8383 −2.8842 −3.1277 1.9210 0.5599 −4.1394 −7.4332 5.2465
13 −3.6910 0.0285 −0.7802 2.5645 −1.6584 −1.8381 −2.6172 2.4640
14 0.7060 0.6783 3.8480 −0.1353 −5.6970 0.2957 0.9075 2.3192
15 −1.0800 3.0371 −0.0325 −0.1442 −2.0878 −1.1380 −1.1858 −1.9162
16 −0.6503 −0.7160 0.3424 −0.6172 −0.1358 −0.2492 0.4729 0.6042
17 −1.6591 −0.0787 2.1306 0.2376 −0.1582 −1.1570 0.2446 1.4273
18 0.0019 1.0269 1.3578 0.3907 −0.0098 0.3542 −0.6419 −0.0616

Sum −1.5748 −0.0157 3.7889 −0.7432 −5.0848 1.1982 −0.7276 1.1605

Total of all variables = 14.2936

Relative
Importance (%) −11.0 −0.11 26.5 −5.2 −35.6 8.4 −5.1 8.1
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Table 9. Relative importance and ranking of each input variable.

Input
Connection Weight Approach

Relative Importance (%) Ranking

GGBFS −11.0 3
F:T −0.11 8
SS 26.5 2
SH −5.2 6
Ms −35.6 1

NA2O 8.4 4
ADDH2O −5.1 7

w/b 8.1 5
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From the computed results, it could be observed that the relative importance of the
silica modulus of the alkaline activator (Ms) was the highest (35.6% negatively) among the
input variables. This indicated that Ms had the greatest impact on the compressive strength
of AASC, followed then by the sodium silicate solution content (26.5% positively), slag
content (11% negatively), etc.

In terms of the activator silica modulus (Ms), it played an important role in predicting
the compressive strength, as it had the most influence on the overall preference. However,
the sensitivity analysis showed that the AASC strength was negatively affected by the Ms,
characterising that an increase in Ms correlated to the reduction in the AASC compressive
strength. While, for the sodium silicate content (SS), the results also exhibited that it
was one of the significant variables for strength, it was not as significant as Ms. In a
converse manner to the influence by Ms, SS had a positive effect on the strength, since
the compressive strength increased with SS. The slag content (GGBFS) and the water–
binder ratio (W/B) were interrelated, and the relative importance of both variables could be
explained from the sign (positive or negative) of the results. As GGBFS affected the strength
negatively, a decrease in GGBFS increased the strength. With the decrease in GGBFS, the
W/B would increase, assuming that the water remained constant, and, eventually, the
strength would increase with the W/B. The ratio of fine aggregate to total aggregate (F:T)
showed the least importance in affecting the AASC compressive strength. In Figure 5, the
relative importance of F:T was relatively small and unnoticeable. This indicated that if there
were any changes in F:T, there would only be a small effect on the compressive strength
of AASC.

Due to the apparent complexity of the ANN, the ability to ascertain or understand the
detailed mechanisms underlying the weights of the neural network was limited. However,
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recent advancements, such as the sensitivity analysis, have illustrated that this is indeed
not the case. By utilising the synaptic weights with the connection weight approach, the
contribution of predictor variables in neural networks can be identified and the relationship
between the variables can be explained as well, in a manner analogous to the statistical
analysis of variance (ANOVA) [39].

5. Conclusions

This study presented the compressive strength prediction of AASC by an artificial
neural network (ANN) model. The ANN model considered the complex and nonlinear
relation between the compressive strength and the concrete components, such as the raw
materials in preparing the concrete specimen.

For the development of the ANN AASC compressive strength prediction model,
181 datasets with various mix proportions of AASC were collected from the existing
literature and experimental works to construct the databank. Four models, namely, C0, CF,
CR, and CFR, were selected with key predetermined input variables that were classified into
primary and secondary variables. The optimal ANN architecture for each model in terms
of the number of hidden neurons was first determined by training the models with neuron
numbers ranging from 1 to 25, with reference to the literature to ensure a better prediction
accuracy. In comparison to the previous ANN-based model proposed for concrete, the
present ANN model in this study showed a comparable and acceptable prediction accuracy
with respect to the compressive strength of AASC. The optimal model variant for the
prediction of the strength of AASC was that from Model C0, the optimal architectural
configuration of which was 8-18-1 (input number–hidden layer neuron number–output
number), with a good balancing performance of high R2, while low in both RMSE and
MAE when evaluated upon the datasets. Furthermore, in terms of the input variables,
the appropriate variables determined, from Model C0, in this study were similar to the
previously proposed stepwise regression model for AASC.

A sensitivity analysis with the connection weight approach was conducted for the
parametric analysis to determine the relative importance of each input variable on the
AASC compressive strength. The silica modulus of the activator, Ms, and sodium silicate
content, SS, with 35.60% and 26.50% of relative importance, played an important role in
influencing the AASC compressive strength. The relationship of both variables with the
AASC compressive strength was in contrast, where the strength increased with Ms but
decreased with the increase in SS.

In brief, the ANN-based model performed well in predicting and fitting the compres-
sive strength of AASC as proven by the obtained statistical results. The present model was
further justified as demonstrating a good efficiency in predicting the compressive strength
through evaluating the present model with the existing models. Hence, with this study, the
ANN-based model can be utilised as a reliable tool for assessing the characteristic strength
of alkaline-activated slag concrete at the early stage without conducting any laborious
and time-consuming physical strength tests, such that the economic aspect of any relevant
project as well as the development of new materials, slag concrete, in the construction
industry, can be well ensured.

As this research focused on AASC, it is empirically applicable to GGBFS AASC. A
further consideration of various supplementary cementitious materials should be included
for a wider range and comprehensive prediction of AASC compressive strength. Other
mechanical properties could also be included in this ANN prediction model for reliable
application in the construction industry.
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