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Abstract 
The paper describes the implementation of a systolic array 
for a multilayer perceptron on a Virtex XCV400 FPGA 
with a hardware-friendly learning algorithm. A pipelined 
adaptation of the on-line backpropagation algorithm is 
shown. Parallelism is better exploited because both 
forward and backward phases can be performed 
simultaneously. We can implement very large 
interconnection layers by using large Xilinx devices with 
embedded memories alongside the projection used in the 
systolic architecture. These physical and architectural 
features – together with the combination of FPGA 
reconfiguration properties with a design flow based on 
generic VHDL – create an easy, flexible, and fast method 
of designing a complete ANN on a single FPGA. The result 
offers a high degree of parallelism and fast performance. 
 

1. Introduction 
 
 In recent years it has been shown that neural networks 
can provide solutions to many problems in the areas of 
pattern recognition, signal processing, time series analysis, 
etc. Software simulations are useful for investigating the 
capabilities of neural network models and creating new 
algorithms; but hardware implementations remain essential 
for taking full advantage of the inherent parallelism of 
neural networks. 
 Traditionally, ANN’s have been implemented directly 
on special-purpose digital and analogue hardware. More 
recently, ANN’s  have been implemented with re-

configurable FPGA’s. Although FPGA’s do not achieve 
the power, clock rate, or gate density, of custom chips; 
they do provide a speed-up of several orders of magnitude 
compared to software simulation [1]. Until now a principal 
restriction in this approach has been the limited logic 
density of FPGA’s. 
 Although some current commercial FPGA’s maintain 
very complex array logic blocks, the processing element 
(PE) of an artificial neural network is not likely to be 
mapped onto a single logic block. Often, a single PE could 
be mapped into a entire FPGA device, and if a larger 
FPGA is chosen it would be possible to implement some 
PEs – perhaps a small layer of neurons – but never a 
complete neural network. In this way, we can understand 
the implementations in [2] and [3] in which simple 
multilayer perceptrons (MLPs) are mapped using arrays of 
almost 30 Xilinx XC3000 family devices. These ANN’s 
perform the training phase off-chip because considerable 
space can be saved.  
 A second solution for overcoming the problem of 
limited FPGA density is the use of pulse-stream arithmetic. 
With this technique the signals are stochastically coded in 
pulse sequences and therefore can be summed and 
multiplied using simple logic gates. This type of arithmetic 
can be observed with fine-grained FPGA’s, for example: 
the ATMEL AT6005 [4];  or with coarse-grained FPGAs, 
for example: the Xilinx XC4005 [5] and XC4003 [6]. 
These implementations use an off-chip training phase, 
however, a simple ANN’s can be mapped in a single 
device. In the same way, [7] presents an FPGA prototyping 



implementation of an on-chip backpropagation algorithm 
that uses parallel stochastic bit-streams. 
 A third solution is to implement separate parts of the 
same system by time-multiplexing a single FPGA chip 
through run-time reconfiguration. This technique has been 
used mainly in standard backpropagation algorithms; 
dividing the algorithm in three sequential stages: forward, 
backward  and update stage. When the stage computations 
are completed, the FPGA is reconfigured for the following 
stage. We can observe this solution by using the Xilinx 
XC3090 [8], or the Altera Flex10K [9]. Evidently, the 
efficiency of this method depends on the reconfiguration 
time when compared to computational time. 

Finally, another typical solution is to use time-division 
multiplexing and a single shared multiplier per neuron [12]. 
This solution enables mapping a MLP for the XOR 
problem (3-5-2) on a single Xilinx XC4020 with the 
training phase off-chip.  

This paper presents an advance in two basic respects 
with regard to previously reported neural implementations 
on FPGA’s. The first is the use of an aspect of 
backpropagation and stems from the fact that forward and 
backward passes of different training patterns can be 
processed in parallel [13][14]. In [10] we show that this 
parallelism, referred to as “forward-backward parallelism”, 
performs well in convergence time and generalisation rate. 
The better hardware performance of the pipelined on-line 
backpropagation is shown in terms of speed of learning. In 
[11] we specify this improvement of speed in a hardware 
implementation on an Altera FLEX10KE and show the 
hardware costs of this pipelined on-line backpropagation 
compared to standard backpropagation. The calculus was 
made by adding the obtained results with isolated neurons 
and synapses. In this paper, our main purpose will be to 
implement on a Xilinx XCV400 a completed MLP in 
which we can perform both versions of the algorithm with 
the same structure. The second point we contribute is to 
produce a completed ANN with on-chip training, and good 
throughput for the recall phase – on a single FPGA. This is 
necessary, for example, in industrial machine vision [2][3], 
and for the training phase, with continually online training 
(COT) [15]. 

In section 2 pipelined on-line backpropagation is 
presented and proposed. The  methodology of design using 
VHDL is described in Section 3. Section 4 reviews some 
of the physical design issues that arose when mapping the 
ANN onto the Xilinx XCV400, and appraises the 
performance of the network. 

2.  Pipeline and Backpropagation algorithm 
  

2.1  Initial point 
  

The starting point of this study is the backpropagation 
algorithm in its on-line version. We assume we have a 
multilayer perceptron with three layers: two hidden layers 
and the output layer (i.e. 2-5-2-2 of Fig. 1)  
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Figure 1. Multilayer perceptron 

 The phases involved in backpropagation taking one 
pattern m at a time and updating the weights after each 
pattern (on-line version) are as follows: 
 
a) Forward phase. Apply the pattern ai

K to the input layer 
and propagate the signal  forwards through the network 
until the final outputs ai

L have been calculated  for each i 
and l 
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b)  Error calculation step. Computer the δ’s  for the 
output layer L and compute the δ’s for the preceding layers 
by propagating the errors backwards using 
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c)  Weight update step. Update the weights using  
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All the elements in (3) are given at the same time as the 

necessary elements for the error calculation step; therefore 
it is possible to perform these two last steps simultaneously 



(during the same clock cycle) in this on-line version and to 
reduce the number of steps to two: forward step (1) and 
backward step (2) and (3). However in the batch-line 
version, the weight update is performed at the end of an 
epoch (set of training patterns) and this approximation 
would be impossible.     

 

2.2 Pipeline versus non-pipeline 
 
Non- pipeline: Non-pipeline: The algorithm takes one 
training pattern m . Only when the forward step is finished 
in the output layer can the backward step for this pattern 
occur. When this step reaches the input layer, the forward 
step for the following training pattern can start (Figure 2).  
 
 In each step s only the neurons of each layer can 
perform simultaneously, and so this is the only degree of 
parallelism for one pattern. However, this disadvantage 
means we can share the hardware resources for both phases 
because these resources are practically the same (matrix-
vector multiplication). 
 

FORWARD PHASE

ai(m) in step s for
pattern m

aj(m) in step  s+1
for pattern m

al(m) in step s+2 for
pattern m

BACKWARD PHASE

δl(m) in step s+2
for pattern m

δj(m) in step s+3
for pattern m

δi(m) in step s+4
 for pattern m

 

Figure 2. Non-pipeline version 

 
Pipeline:  The algorithm takes one training pattern m and 
starts the forward phase in layer i. The following figure 
shows what happens at this moment (in this step) in all the 
layers of the multilayer perceptron. 

Computation ai(m) for pattern m

FORWARD

BACKWARD

Computation aj(m-1) for pattern m-1

Computation al(m-2) for pattern  m-2

Computation ai(m-4) for pattern m-4

Computation aj(m-3) for pattern m-3

Computation ai(m-2) for pattern m-2

 

Figure 3. Pipeline version 

 Figure 3 shows that in each step, every neuron in each 
layer is busy working simultaneously, using two degrees of 
parallelism: synapse-oriented parallelism and forward-
backward parallelism. Of course, in this type of 
implementation, the hardware resources of the forward and 
backward phases cannot be shared in one cycle. In the 
section 3 we will see how, in spite of this problem, the 
high-level tradeoff study of the implementation of the 
synapses in order to find the best solution  in pipeline 
version for the proposed systolic array. 
 Evidently, the pipeline carries an important 
modification of the original backpropagation algorithm 
[16][17]. This is clear because the alteration of weights at a 
given step interferes with computations of the states ai and 
errors δi for patterns taken at different steps in the network. 
For example, we are going to observe what happens with a 
pattern m on its way to the network during the forward 
phase (from input until output). In particular, we will take 
into account the last pattern that has modified the weights 
of each layer . We can see: 
 
1. For the layer I the last pattern to modify the 
weights of this layer is the pattern m-5. 
2. When our pattern m passes the layer J, the last 
pattern to modify the weights of this layer will be the 
pattern m-3. 
3. Finally, when the pattern reaches the layer L the 
last pattern to modify the weights of this layer will be the 
pattern m-1. 

Of course, the other patterns also contribute. The 
patterns which have modified the weights before patterns 
m-5, m-3 and m-1, are patterns m-6, m-4 and m-2 for the 
layers I, J and L respectively. In the pipeline version, the 
pattern m-1 is always the last pattern to modify the weights 
of the all layers. It is curious to note that when we use the 
momentum variation of the backpropagation algorithm 
with the pipeline version, the last six patterns before the 



current pattern contribute to the weight updates, while with 
the non-pipeline version, only the last two patterns 
contribute before the current pattern.   

Therefore, we have a variation of the original on-line 
backpropagation algorithm that consists basically in a 
modification of the contribution of the different patterns of 
a training set in the weight updates, and in the same line as 
the momentum variation. 

 

3.  Design and verification 
 

3.1 Design flow and tools 
 

Figure 4 shows all the information relative to design 
flow and tools. It is important to know that our design 
implements two modes of operation: with forward-
backward parallelism (pipeline mode); or without this 
degree of parallelism. 

We wish to emphasise that this design flow can be 
totally carried out on a PC without limitations and with a 
good performance. In this design flow, we have resorted to 
three different software vendors to obtain the maximum 
power and technology independence. The difficulty for this 
type of option is always the interfaces between the tools, 
but in this case, these interfaces (principally in VHDL) are 
problem-free. 
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Figure 4. Design Flow 

 

3.2 Digital architecture of the ANN 
   

We suppose that we have a MLP (multilayer 
perceptron) with three layers (Figure.1) and the following 
characteristics:  
NE = number of inputs. 
N1O = number of neurons in the first hidden layer. 
N2O = number of neurons in the second hidden layer. 
NS = number of outputs. 

Figure 5 shows the “alternating orthogonal systolic 
array” of an MLP with two hidden layers [18].  This 
architecture of this figure can implement the following 
structure (2-N1O-3-NS) and is useful for the XOR 
problem.  
 We can observe that NE (2) determines the number of 
vertical synapses (SV) in the first layer. N2O (3) 
determines the dimensions of the horizontal layer and the 
last vertical layer; that is to say, the number of horizontal 
synapses (SH) and horizontal neurons (NH) and the 
number of last vertical synapses (Svu). The size of  N1O 
will determine the size of the weight memories of the 
vertical and horizontal synapses, and the size of NS will 
determine the size of the weight memories of the synapses 
in the last vertical layer. 
 In our implementation, these weight memories are 
mapped in the block SelecRAM +. For example, a Xilinx 
XCV400 device has 20 blocks that can implement 256 
weights with 16 bits of resolution. The architecture shown 
in figure 5 only needs 10 of these embedded RAMs; one 
for each synapse.  This supposes that the size of N1O and 
NS has a possible range from 1 to 256, and therefore we 
can implement a (2-256-3-256) network with the same 
hardware resources. 
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Figure 5. Architecture of MLP 

 



 
 

3.3 High level synthesis in synapses 
 
The main problem in the incorporation of forward-

backward parallelism is the design of the synapses (white 
blocks in figure 5). The size of the synapses is increased by 
40% when we want to manage the forward and backward 
phases simultaneously. We can see the necessary hardware 
resources for a synapse in figure 6 when working in one 
cycle. 
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Figure 6. Hardware resources in synapse. 

 We have realised a high-level synthesis with a 
behavioural compiler of synopsys to find different 
solutions with different latencies and frequencies between 
10MHz and 100MHz. The results are shown in figure 7 
and the 20MHz solution (the best  in most cases) is 
highlighted in red. 
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Figure 7. High-level synapse trade-off. 

 We observe that we can reduce the hardware resources 
of a synapse by 20% (30% at the most in the complete 
ANN) if we work with a latency of 4 cycles. Evidently, we 
would work with the whole architecture (the complete 
ANN) with throughputs divided by 4, but the designer can 

quickly decide with this type of tool the best solution for 
the specifications of the application of the neural network.     

3.4 Simulation results 
 
Although the architecture has been verified for different 

databases [10] we only show the simulation results for the 
XOR problem (our example in this paper). These results 
are obtained with the (2-6-3-2) network and with a 
resolution of 8 bits for activations and deltas; and 16 bits 
for weights.     

In figure 6. we show the convergence time Tc, 
expressing the number of epochs from the beginning of 
learning up to the moment when the RMS error training set 
goes below a given threshold Eout=0.05. The used mode is 
the pipeline version.  
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Figure 8. Simulation with XOR problem. Pipeline Mode. 

4 Implementation on the Virtex XCV400 

4.1 Speed and resource usage 
 

The ANN is mapped onto the XCV400BG560-6 
package. Part of map report of Xilinx Foundation 2.1i is 
reproduced in figure 9. This implementation can work at 
up to 10 MHz; but we performed the synthesis, placement 
and routing, without timing constraints. 
   Number of Slices:            3,473 out of  4,800   72% 
      Slice Flip Flops:     786 
      4 input LUTs:       5,925 (41 used as a route-thru) 
      32x1 RAMs:             88 
   Number of bonded IOBs:          44 out of    404   10% 
   Number of Block RAMs:           10 out of     20   50% 
Total equivalent gate count for design:  248,822 

Figure 9. Design summary produced by Xilinx software. 

 



4.2 Results and performance 
The results of the above implementation are 

summarised  in table 1. The ANN has been analysed in 
pipeline mode and in non-pipeline mode. The pipeline 
mode only affects the training and performance parameters 
that measure the number of  connections updated per 
second (CUPS). 
 

10 MHz pipeline non pipeline 

Throughput  
training phase 

0.7 us 3.3 us 

Throughput 
recall phase 

0.7us 0.7 us 

TOTAL 
PERFORMANCE 

81 MCPS 
81 MCUPS  

81 MCPS 
17 MCUPS  

Table 1 
 

The values of throughput for this implementation are 
satisfactory for most real-time operating systems.  

5. Conclusions 
 

This paper evaluates the performance of the pipelined 
on-line backpropagation algorithm implemented in 
FPGA’s. This algorithm removes some of the drawbacks 
that traditional backpropagations suffer when implemented 
on VLSI circuits. It may go on to offer considerable 
improvements, especially with respect to hardware 
efficiency and speed of learning, although the circuitry is 
more complex.  

We believe this paper also contributes new data for the 
classical contention between researchers who work with 
specific hardware implementation for artificial neural 
networks and those working with software approaches and 
general purpose processors. Until now, software solution 
was preferred in order to get quick, flexible designs for 
different topologies, algorithms, connectivity, activation 
and base functions, etc. Now, we can see that to exploit all 
the degrees of parallelism and fault tolerance, we can use 
hardware designs with several fine-grained processors 
without degradation of flexibility, quick design, and 
reusability – thanks to the combination of the 
reconfiguration properties of FPGA’s and a design flow 
based in VHDL on a PC. 
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