

Artificial Neural Network Implementation on a single FPGA of a Pipelined On-
Line Backpropagation

Rafael Gadea1 , Joaquín Cerdá2, Franciso Ballester1, Antonio Mocholí1

 1 Department of Electronic Engineering, Universidad Politecnica de Valencia
46022 Valencia, Spain

{rgadea, fballest, amocholi}@eln.upv.es
2 Department of Electronic Engineering, Universidad Politecnica de Valencia

46022 Valencia, Spain
joacerbo@teleco.upv.es

Abstract
The paper describes the implementation of a systolic array
for a multilayer perceptron on a Virtex XCV400 FPGA
with a hardware-friendly learning algorithm. A pipelined
adaptation of the on-line backpropagation algorithm is
shown. Parallelism is better exploited because both
forward and backward phases can be performed
simultaneously. We can implement very large
interconnection layers by using large Xilinx devices with
embedded memories alongside the projection used in the
systolic architecture. These physical and architectural
features – together with the combination of FPGA
reconfiguration properties with a design flow based on
generic VHDL – create an easy, flexible, and fast method
of designing a complete ANN on a single FPGA. The result
offers a high degree of parallelism and fast performance.

1. Introduction

 In recent years it has been shown that neural networks
can provide solutions to many problems in the areas of
pattern recognition, signal processing, time series analysis,
etc. Software simulations are useful for investigating the
capabilities of neural network models and creating new
algorithms; but hardware implementations remain essential
for taking full advantage of the inherent parallelism of
neural networks.
 Traditionally, ANN’s have been implemented directly
on special-purpose digital and analogue hardware. More
recently, ANN’s have been implemented with re-

configurable FPGA’s. Although FPGA’s do not achieve
the power, clock rate, or gate density, of custom chips;
they do provide a speed-up of several orders of magnitude
compared to software simulation [1]. Until now a principal
restriction in this approach has been the limited logic
density of FPGA’s.
 Although some current commercial FPGA’s maintain
very complex array logic blocks, the processing element
(PE) of an artificial neural network is not likely to be
mapped onto a single logic block. Often, a single PE could
be mapped into a entire FPGA device, and if a larger
FPGA is chosen it would be possible to implement some
PEs – perhaps a small layer of neurons – but never a
complete neural network. In this way, we can understand
the implementations in [2] and [3] in which simple
multilayer perceptrons (MLPs) are mapped using arrays of
almost 30 Xilinx XC3000 family devices. These ANN’s
perform the training phase off-chip because considerable
space can be saved.
 A second solution for overcoming the problem of
limited FPGA density is the use of pulse-stream arithmetic.
With this technique the signals are stochastically coded in
pulse sequences and therefore can be summed and
multiplied using simple logic gates. This type of arithmetic
can be observed with fine-grained FPGA’s, for example:
the ATMEL AT6005 [4]; or with coarse-grained FPGAs,
for example: the Xilinx XC4005 [5] and XC4003 [6].
These implementations use an off-chip training phase,
however, a simple ANN’s can be mapped in a single
device. In the same way, [7] presents an FPGA prototyping

implementation of an on-chip backpropagation algorithm
that uses parallel stochastic bit-streams.
 A third solution is to implement separate parts of the
same system by time-multiplexing a single FPGA chip
through run-time reconfiguration. This technique has been
used mainly in standard backpropagation algorithms;
dividing the algorithm in three sequential stages: forward,
backward and update stage. When the stage computations
are completed, the FPGA is reconfigured for the following
stage. We can observe this solution by using the Xilinx
XC3090 [8], or the Altera Flex10K [9]. Evidently, the
efficiency of this method depends on the reconfiguration
time when compared to computational time.

Finally, another typical solution is to use time-division
multiplexing and a single shared multiplier per neuron [12].
This solution enables mapping a MLP for the XOR
problem (3-5-2) on a single Xilinx XC4020 with the
training phase off-chip.

This paper presents an advance in two basic respects
with regard to previously reported neural implementations
on FPGA’s. The first is the use of an aspect of
backpropagation and stems from the fact that forward and
backward passes of different training patterns can be
processed in parallel [13][14]. In [10] we show that this
parallelism, referred to as “forward-backward parallelism”,
performs well in convergence time and generalisation rate.
The better hardware performance of the pipelined on-line
backpropagation is shown in terms of speed of learning. In
[11] we specify this improvement of speed in a hardware
implementation on an Altera FLEX10KE and show the
hardware costs of this pipelined on-line backpropagation
compared to standard backpropagation. The calculus was
made by adding the obtained results with isolated neurons
and synapses. In this paper, our main purpose will be to
implement on a Xilinx XCV400 a completed MLP in
which we can perform both versions of the algorithm with
the same structure. The second point we contribute is to
produce a completed ANN with on-chip training, and good
throughput for the recall phase – on a single FPGA. This is
necessary, for example, in industrial machine vision [2][3],
and for the training phase, with continually online training
(COT) [15].

In section 2 pipelined on-line backpropagation is
presented and proposed. The methodology of design using
VHDL is described in Section 3. Section 4 reviews some
of the physical design issues that arose when mapping the
ANN onto the Xilinx XCV400, and appraises the
performance of the network.

2. Pipeline and Backpropagation algorithm

2.1 Initial point

The starting point of this study is the backpropagation
algorithm in its on-line version. We assume we have a
multilayer perceptron with three layers: two hidden layers
and the output layer (i.e. 2-5-2-2 of Fig. 1)

I

J

L 1 to 2

1 to 2+1

1 to 5+1

K

layer 3

layer 2

layer 1

Figure 1. Multilayer perceptron

 The phases involved in backpropagation taking one
pattern m at a time and updating the weights after each
pattern (on-line version) are as follows:

a) Forward phase. Apply the pattern ai

K to the input layer
and propagate the signal forwards through the network
until the final outputs ai

L have been calculated for each i
and l

LlNi

awuy

ufa

l

N

j

j
l

ij
ll

i
l

i

l
ii

l

l

≤≤≤≤

==

=

∑
−

=

−

1,1

)(

1

0

1 (1)

b) Error calculation step. Computer the δ’s for the
output layer L and compute the δ’s for the preceding layers
by propagating the errors backwards using

()

LlNi

wuf

ytuf

l

N

j

j
l

iji
ll

i

iii
LL

i

l

≤≤≤≤

=

−=

∑
=

−−

1,1

)('

)('

1

11 δδ

δ

 (2)

c) Weight update step. Update the weights using

LlNi

yw

www

l

l
j

l
i

ml
ij

m

l
ij

ml
ij

ml
ij

m

≤≤≤≤

=∆

∆+=
−

−

1,1

1

1

δη (3)

All the elements in (3) are given at the same time as the

necessary elements for the error calculation step; therefore
it is possible to perform these two last steps simultaneously

(during the same clock cycle) in this on-line version and to
reduce the number of steps to two: forward step (1) and
backward step (2) and (3). However in the batch-line
version, the weight update is performed at the end of an
epoch (set of training patterns) and this approximation
would be impossible.

2.2 Pipeline versus non-pipeline

Non- pipeline: Non-pipeline: The algorithm takes one
training pattern m . Only when the forward step is finished
in the output layer can the backward step for this pattern
occur. When this step reaches the input layer, the forward
step for the following training pattern can start (Figure 2).

 In each step s only the neurons of each layer can
perform simultaneously, and so this is the only degree of
parallelism for one pattern. However, this disadvantage
means we can share the hardware resources for both phases
because these resources are practically the same (matrix-
vector multiplication).

FORWARD PHASE

ai(m) in step s for
pattern m

aj(m) in step s+1
for pattern m

al(m) in step s+2 for
pattern m

BACKWARD PHASE

δl(m) in step s+2
for pattern m

δj(m) in step s+3
for pattern m

δi(m) in step s+4
 for pattern m

Figure 2. Non-pipeline version

Pipeline: The algorithm takes one training pattern m and
starts the forward phase in layer i. The following figure
shows what happens at this moment (in this step) in all the
layers of the multilayer perceptron.

Computation ai(m) for pattern m

FORWARD

BACKWARD

Computation aj(m-1) for pattern m-1

Computation al(m-2) for pattern m-2

Computation ai(m-4) for pattern m-4

Computation aj(m-3) for pattern m-3

Computation ai(m-2) for pattern m-2

Figure 3. Pipeline version

 Figure 3 shows that in each step, every neuron in each
layer is busy working simultaneously, using two degrees of
parallelism: synapse-oriented parallelism and forward-
backward parallelism. Of course, in this type of
implementation, the hardware resources of the forward and
backward phases cannot be shared in one cycle. In the
section 3 we will see how, in spite of this problem, the
high-level tradeoff study of the implementation of the
synapses in order to find the best solution in pipeline
version for the proposed systolic array.
 Evidently, the pipeline carries an important
modification of the original backpropagation algorithm
[16][17]. This is clear because the alteration of weights at a
given step interferes with computations of the states ai and
errors δi for patterns taken at different steps in the network.
For example, we are going to observe what happens with a
pattern m on its way to the network during the forward
phase (from input until output). In particular, we will take
into account the last pattern that has modified the weights
of each layer . We can see:

1. For the layer I the last pattern to modify the
weights of this layer is the pattern m-5.
2. When our pattern m passes the layer J, the last
pattern to modify the weights of this layer will be the
pattern m-3.
3. Finally, when the pattern reaches the layer L the
last pattern to modify the weights of this layer will be the
pattern m-1.

Of course, the other patterns also contribute. The
patterns which have modified the weights before patterns
m-5, m-3 and m-1, are patterns m-6, m-4 and m-2 for the
layers I, J and L respectively. In the pipeline version, the
pattern m-1 is always the last pattern to modify the weights
of the all layers. It is curious to note that when we use the
momentum variation of the backpropagation algorithm
with the pipeline version, the last six patterns before the

current pattern contribute to the weight updates, while with
the non-pipeline version, only the last two patterns
contribute before the current pattern.

Therefore, we have a variation of the original on-line
backpropagation algorithm that consists basically in a
modification of the contribution of the different patterns of
a training set in the weight updates, and in the same line as
the momentum variation.

3. Design and verification

3.1 Design flow and tools

Figure 4 shows all the information relative to design
flow and tools. It is important to know that our design
implements two modes of operation: with forward-
backward parallelism (pipeline mode); or without this
degree of parallelism.

We wish to emphasise that this design flow can be
totally carried out on a PC without limitations and with a
good performance. In this design flow, we have resorted to
three different software vendors to obtain the maximum
power and technology independence. The difficulty for this
type of option is always the interfaces between the tools,
but in this case, these interfaces (principally in VHDL) are
problem-free.

 RTL Synthesis

Simulation

Gate-level

Placement
and Routing

on FPGA

Simulation

Post-layout

VHDL Description

Errors

Errors

Errors

A
rchitectural

L
evel

L
ogic L

evel
physic L

evel

Behavioural and
RTL

Simulation

VHDL
SIMULATORS:
1. VSYSTEM –

Model-
Technology
for PC
versions 4.6
and 4.7

2. VSS-
SYNOPSYS
version 3.4

XILINX
Foundation
2.1i

FPGA
EXPRESS-
SYNOPSYS
Version 3.3

Figure 4. Design Flow

3.2 Digital architecture of the ANN

We suppose that we have a MLP (multilayer
perceptron) with three layers (Figure.1) and the following
characteristics:
NE = number of inputs.
N1O = number of neurons in the first hidden layer.
N2O = number of neurons in the second hidden layer.
NS = number of outputs.

Figure 5 shows the “alternating orthogonal systolic
array” of an MLP with two hidden layers [18]. This
architecture of this figure can implement the following
structure (2-N1O-3-NS) and is useful for the XOR
problem.
 We can observe that NE (2) determines the number of
vertical synapses (SV) in the first layer. N2O (3)
determines the dimensions of the horizontal layer and the
last vertical layer; that is to say, the number of horizontal
synapses (SH) and horizontal neurons (NH) and the
number of last vertical synapses (Svu). The size of N1O
will determine the size of the weight memories of the
vertical and horizontal synapses, and the size of NS will
determine the size of the weight memories of the synapses
in the last vertical layer.
 In our implementation, these weight memories are
mapped in the block SelecRAM +. For example, a Xilinx
XCV400 device has 20 blocks that can implement 256
weights with 16 bits of resolution. The architecture shown
in figure 5 only needs 10 of these embedded RAMs; one
for each synapse. This supposes that the size of N1O and
NS has a possible range from 1 to 256, and therefore we
can implement a (2-256-3-256) network with the same
hardware resources.

a1
j

Σ
l
δ
lwl1

η δ
1

δ
1

a3
k

a6
i a5

i a 4
i a 3

i a2
i a 1

i

Σ
j
δ
jwj1..Σ

j
δ
jw j5

η δ5..η δ1 δ1..δ5

Σ
i
δ
iwi3

a2
k

Σiδiwi2

a1
k

Σ
i
δ
iwi1

a2
j

a 3
j

η δ
2

δ
2

η δ
3

δ
3

Σ
l
δ
lwl2

Σ
l
δ
lwl3

a1
l

a2
l

δ
1

δ
2η δ

2
η δ

1

u1

u2

u3

FIFO

FIFO

FIFO

F
I
F
O

t2
l

t1
l

FIFO

FIFO

FIFO

SV1

SV2

SV3

SH1

SH1

SH1

Svu0

Svu1

Svu2

Svu3NH1

NH1

NH1

NV

Nvu

Figure 5. Architecture of MLP

3.3 High level synthesis in synapses

The main problem in the incorporation of forward-

backward parallelism is the design of the synapses (white
blocks in figure 5). The size of the synapses is increased by
40% when we want to manage the forward and backward
phases simultaneously. We can see the necessary hardware
resources for a synapse in figure 6 when working in one
cycle.

W

ACC2

WEIGHTS

DELTA

w_b w_f

AIN

ACCOUT

ACCIN NUDELTA AINREG

w_NEXT

MEM_G1

FORWARD UPDATE BACKWARD

ACC2 ACCOUT

Figure 6. Hardware resources in synapse.

 We have realised a high-level synthesis with a
behavioural compiler of synopsys to find different
solutions with different latencies and frequencies between
10MHz and 100MHz. The results are shown in figure 7
and the 20MHz solution (the best in most cases) is
highlighted in red.

1181

968

1029

928

995 991 967
1019

900
950

1000
1050
1100
1150
1200
1250
1300

1 2 3 4 5 6 7 8

nº of CYCLES

n
º

o
f

L
O

G
IC

 C
E

L
L

S

Figure 7. High-level synapse trade-off.

 We observe that we can reduce the hardware resources
of a synapse by 20% (30% at the most in the complete
ANN) if we work with a latency of 4 cycles. Evidently, we
would work with the whole architecture (the complete
ANN) with throughputs divided by 4, but the designer can

quickly decide with this type of tool the best solution for
the specifications of the application of the neural network.

3.4 Simulation results

Although the architecture has been verified for different

databases [10] we only show the simulation results for the
XOR problem (our example in this paper). These results
are obtained with the (2-6-3-2) network and with a
resolution of 8 bits for activations and deltas; and 16 bits
for weights.

In figure 6. we show the convergence time Tc,
expressing the number of epochs from the beginning of
learning up to the moment when the RMS error training set
goes below a given threshold Eout=0.05. The used mode is
the pipeline version.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

69
1

73
7

78
3

82
9

NUMBER OF EPOCHS

R
M

S
 E

R
R

O
R

Figure 8. Simulation with XOR problem. Pipeline Mode.

4 Implementation on the Virtex XCV400

4.1 Speed and resource usage

The ANN is mapped onto the XCV400BG560-6
package. Part of map report of Xilinx Foundation 2.1i is
reproduced in figure 9. This implementation can work at
up to 10 MHz; but we performed the synthesis, placement
and routing, without timing constraints.
 Number of Slices: 3,473 out of 4,800 72%
 Slice Flip Flops: 786
 4 input LUTs: 5,925 (41 used as a route-thru)
 32x1 RAMs: 88
 Number of bonded IOBs: 44 out of 404 10%
 Number of Block RAMs: 10 out of 20 50%
Total equivalent gate count for design: 248,822

Figure 9. Design summary produced by Xilinx software.

4.2 Results and performance
The results of the above implementation are

summarised in table 1. The ANN has been analysed in
pipeline mode and in non-pipeline mode. The pipeline
mode only affects the training and performance parameters
that measure the number of connections updated per
second (CUPS).

10 MHz pipeline non pipeline

Throughput
training phase

0.7 us 3.3 us

Throughput
recall phase

0.7us 0.7 us

TOTAL
PERFORMANCE

81 MCPS
81 MCUPS

81 MCPS
17 MCUPS

Table 1

The values of throughput for this implementation are
satisfactory for most real-time operating systems.

5. Conclusions

This paper evaluates the performance of the pipelined
on-line backpropagation algorithm implemented in
FPGA’s. This algorithm removes some of the drawbacks
that traditional backpropagations suffer when implemented
on VLSI circuits. It may go on to offer considerable
improvements, especially with respect to hardware
efficiency and speed of learning, although the circuitry is
more complex.

We believe this paper also contributes new data for the
classical contention between researchers who work with
specific hardware implementation for artificial neural
networks and those working with software approaches and
general purpose processors. Until now, software solution
was preferred in order to get quick, flexible designs for
different topologies, algorithms, connectivity, activation
and base functions, etc. Now, we can see that to exploit all
the degrees of parallelism and fault tolerance, we can use
hardware designs with several fine-grained processors
without degradation of flexibility, quick design, and
reusability – thanks to the combination of the
reconfiguration properties of FPGA’s and a design flow
based in VHDL on a PC.

[1] S. Hauck, “The Roles of FPGAs in Reprogrammable
Systems” Proceedings of the IEEE, 86(4), April 1998, pp. 615-
638.
[2] C.E. Cox, W.E. Blanz, “GANGLION- A Fast Field-
Programmable Gate Array Implementation of a Connectionist
Classifier” Journal of Solid State Circuits, Vol.27, no. 3, March
1992, pp. 288-299.
[3] V. Jean, B. Patrice, R. Didier, S. Mark, T. Hervé, B.
Philippe. “Programmable Active Memories: Reconfigurable

Systems Come of Age”, IEEE Transactions on VLSI Systems,
Vol 4, No 1, March 1996, pp. 56-69.
[4] P. Lysaght, J. Stockwood, J. Law and D. Girma, “Artificial
Neural Network Implementation on a Fine Grained FPGA”.
[5] V. Salapura, M. Gschwind, and O. Maischberger, “ A Fast
FPGA Implementation of a General Purpose Neuron”, Porc. of
the Fourth International Workshop on Field Programmable
Logic and Aplications, September 1994.
[6] S.L Bade and B.L. Hutchings, “FPGA-Based Stochastic
Neural Networks Implementation”, IEEE Workshop on FPGAs
for Custom Computing Machines, April 1994, pp. 189-198.
[7] K. Kollmann, K. Riemschneider, and H.C. Zeider, “On-
Chip Backpropagation Training Using Parallel Stochastic Bit
Streams” Proceedings of the IEEE International Conference on
Microelectronics for Neural Networks and Fuzzy Systems
MicroNeuro’96, 1996, pp. 149-156.
[8] J.G. Elredge and B.L. Hutchings, “ RRANN: A Hardware
Implementation of the Backpropagation Algorithm Using
Reconfigurable FPGAs”, Proc. IEEE Int. Conf. on Neural
Networks”, June 1994.
[9] J-L. Beuchat, J-O. Haenni and E. Sanchez, “Hardware
Reconfigurable Neural Networks”.
[10] R. Gadea, A. Mocholí, “Systolic Implementation of a
Pipelined On-Line Backpropagation”, Proc.of the
NeuroMIcro’99, April 1999, pp. 387-394.
 [11] R. Gadea, A. Mocholí, “Forward-backward Parallelism in
On-Line Backpropagation”, International Work- Conference on
Artificial and Natural Neural Networks, June 1999, pp. 157-165.
[12] N. Izeboudjen, A. Farah, S. Titri, H. Boumeridja, “Digital
Implementation of Artificial Neural Networks: From VHDL
Description to FPGA Implementation”, Proceedings
International Work-Conference on Artificial and Natural Neural
Networks, IWANN’99”, vol.2, June 1999, pp. 139-148.
[13] C.R. Rosemberg, and G. Belloch, “An Implementation of
Network Learning on the Connection Machine”, Connectionist
Models an their Implications, D. Waltz and J Feldman, eds.,
Ablex, Norwood, NJ. 1988
[14] A. Petrowski, G. Dreyfus, and C. Girault, “Performance
Analysis of a Pipelined Backpropagation Parallel Algorithm”,
IEEE Transaction on Neural Networks, Vol.4 , no. 6, November
1993, pp. 970-981.
[15] B. Burton, R.G. Harley, G. Diana, and J.R. Rodgerson,
“Reducing the Computational Demands of Continually Online-
Trained Artificial Neural Networks for System Identification and
Control of Fast Processes” IEEE transaction on Industry
Applications,Vol 34. no.3, May/June 1998, pp. 589-596.
[16] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning
internal representations by error backpropagation, Parallel
Distributed processing, Vol. 1, MIT Press. Cambridge, MA,
1986, pp. 318-362.
[17] S.E. Falhman, “Faster learning variations on
backpropagation: An empirical study”, Proc. 1988 Connectionist
Models Summer School, 1988 , pp. 38-50.
[18] P. Murtagh, A.C. Tsoi, and N. Bergmann, “ Bit-serial array
implementation af a multilayer perceptron “, IEEE Proceedings-
E, Vol. 140, no. 5, September 1993, pp. 277-288.

