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Abstract

In this paper, an artificial neural network model was developed to predict the downhole density of oil-based muds under 

high-temperature, high-pressure conditions. Six performance metrics, namely goodness of fit (R2), mean square error (MSE), 

mean absolute error (MAE), mean absolute percentage error (MAPE), sum of squares error (SSE) and root mean square 

error (RMSE), were used to assess the performance of the developed model. From the results, the model had an overall MSE 

of 0.000477 with an MAE of 0.017 and an R2 of 0.9999, MAPE of 0.127, RMSE of 0.022 and SSE of 0.056. All the model 

predictions were in excellent agreement with the measured results. Consequently, in assessing the generalization capabil-

ity of the developed model for the oil-based mud, a new set of data that was not part of the training process of the model 

comprising 34 data points was used. In this regard, the model was able to predict 99% of the unfamiliar data with an MSE 

of 0.0159, MAE of 0.101, RMSE of 0.126, SSE of 0.54 and a MAPE of 0.7. In comparison with existing models, the ANN 

model developed in this study performed better. The sensitivity analysis performed shows that the initial mud density has 

the greatest impact on the final mud density downhole. This unique modelling technique and the model it evolved represents 

a huge step in the trajectory of achieving full automation of downhole mud density estimation. Furthermore, this method 

eliminates the need for surface measurement equipment, while at the same time, representing more accurately the downhole 

mud density at any given pressure and temperature.

Keywords Artificial neural network · Downhole mud density · Drilling mud · HTHP
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ANN  Artificial neural network

ANN-PSO  Artificial neural network-particle swarm 
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GP  Genetic programming

HTHP  High temperature high pressure

lb/gal  Pounds per gallon

MAE  Maximum absolute error

MAPE  Mean absolute percentage error

MSE  Mean square error

MWD  Measurement while drilling

OBM  Oil-based mud

P  Pressure (psig)

PSO-ANN  Particle swarm optimization artificial neural 

network

R2  Correlation coefficient

RBF  Radial basis function

RMSE  Root mean square error

SBM  Synthetic-based mud

SVM  Support vector machine

SVR  Support vector regression

T  Temperature (°F)

�
OBM

  Oil-based mud density

Introduction

The oil and gas industry is not finding oil in the friendly 

terrains, it found them a century ago, and by implication, 

it is not also drilling and completing wells the way it did 

in the past century (Sidle 2015). It is also safe to add that 

the outlook of the industry would also not be the same in 
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the next decade. The most probable reasons for this tech-

nological and methodical shift by the industry are attrib-

utable to: (1) declining reserves in conventional fields and 

(2) global increase in demand for oil and gas products. The 

new environment where the oil and gas is found is more 

often than not unfriendly, and the technologies used to probe 

the formations in these terrains are still being fine-tuned 

in order to get the best out of it. As a result, the oil and 

gas community is in constant search for ways to tackle the 

new challenges presented by these terrains. This is done by 

migrating away from the old ways of tackling them and then 

gravitating towards revolutionary technology, one that would 

propel the drilling operation in the direction that engenders 

greater improvements in performance, productivity and effi-

ciency. In the drilling industry, there are myriads of chal-

lenges dotting the drilling landscape that the driller almost 

always grapples with while drilling ahead. Maintaining 

an optimal performance of the mud in downhole environ-

ments is one of these challenges. This challenge is especially 

unique in unforgiving environments such as those plagued 

by high temperatures and high pressures (HTHP) as well 

as in deepwaters. In general, HTHP wells are essentially 

wells whose static bottom hole temperature ranges between 

300 °F and 500 °F and an expected shut-in pressure ranges 

between 10,000 psi and 25,000 psi (Conn and Roy 2004). 

Therefore, a good understanding of the downhole environ-

ment and how it affects mud properties gives the driller a 

better grip on wellbore pressure control (Ahmadi et al. 2018; 

Erge et al. 2016; Peng et al. 2016; Kutasov and Eppelbaum 

2015). A basic property of drilling muds which the drilling 

fluid engineer is required to keep within allowable limits is 

the mud density. The drilling mud basically provides the 

hydrostatic pressure as a function of vertical depth to counter 

the pore pressures that exist in each section of the formation 

to be drilled. It provides the much needed assurance that no 

kicks, continuous mud loss into fractures or wellbore insta-

bility events occur throughout the whole spectrum of the 

drilling operation (Aird 2019). Problems with maintenance 

of this indispensable mud property are usually heightened 

by high downhole temperatures and pressures of the forma-

tion being drilled. While high downhole pressure increases 

the drilling fluid density, increased temperature results in 

density reduction (An et al. 2015; Hussein and Amin 2010; 

Babu 1996; McMordie Jr et al. 1982). If mud density is not 

kept at optimum condition, especially in highly porous and 

permeable formations, the consequences would likely range 

from wellbore pressure management issues which would 

ultimately give rise to non-productive time (Aird 2019). 

Hence, if drillers are going to effectively take charge of 

what happens downhole and make informed decisions as 

regards the safety of the rig and rig crew, they need accurate, 

measured and timely formation insights along every foot 

drilled. Therefore, proper planning and execution of drilling 

operations, particularly for HPHT wells, require complete 

and accurate knowledge of the behaviour of the drilling fluid 

density as the pressure and temperature change during the 

drilling operation (Ahad et al. 2019). Such information can 

accurately be obtained only through actual measurements 

of the drilling fluid density at desired pressures and tem-

peratures. This, however, requires special equipment cou-

pled with the fact that the procedure takes long man hours. 

Therefore, the best way to determine this property downhole 

is to create a high-fidel model that would take into account 

the effects of downhole temperature and pressure on mud 

density. Numerous models abound in the literature. Some 

of these models provide an estimate of mud density as it 

varies with pressure in conjunction with downhole temper-

ature without considering the initial density of the muds. 

The phenomenal contributions by previous researchers to 

predictive models in this area over the past years require a 

historic perspective. A snapshot of these models at this time 

is presented in Table 1. As tried and true as some of these 

models in Table 1 have proven to be, there is an on-going 

effort to retire them due to the huge errors associated with 

their predictive capabilities. This too is another challenge. 

However, like all challenges, this one also comes with amaz-

ing and numerous opportunities too. One such opportunity 

is the genuine stride made in the development of new tech-

nologies to tackle it. The most current and by far the most 

pervasive technology that has crossover appeal across vari-

ous industries is artificial intelligence. The reasons are not 

far-fetched. AI-based models offer numerous advantages. 

According to Bahiraei et al. (2019), AI-based models have 

the ability to learn from patterns and once learned can carry 

out generalization and estimation at great speed; they are 

fault tolerant in the sense that they are capable to handle 

noisy data and they are capable of finding the relationship 

among nonlinear parameters. A summary of the research 

efforts in using artificial intelligence techniques in modelling 

downhole mud density is presented in Table 2.

Materials and methods

Database sources and range of input and output 
variables

The dataset used for developing the model in this study was 

obtained from the work of McMordie et al. (1982). This 

dataset consists of 117 data points. The dataset consists of 

three input parameters, namely downhole pressure, down-

hole temperature and initial mud density. The output param-

eter considered is the final or downhole mud density. The 

minimum and maximum value of each parameter as well as 

the units of measurement is shown in Table 3.
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Table 4 shows the nature of collected data. It gives a sta-

tistical description of the input and output variables using 

statistical measures such as mean, standard deviation and 

range.

Overview of artificial neural network

Artificial neural network (ANN) is a technique of artifi-

cial intelligence derived from the neural networks found 

in the nervous system of humans. Simply put, ANN is set 

of interconnected simulated neurons which are made up of 

several input signals with synaptic weights. An ANN model 

simply sums the products of inputs and their correspond-

ing connection weights (w) and then it passes it through 

a transfer or activation function to get the output of that 

layer and feed it as an input to the next layer. A bias term is 

added to the summation function in order to raise or lower 

the input which is received by the activation function. The 

activation function does the nonlinear transformation to the 

input making it capable to learn and perform more complex 

tasks. The general relationship between input and output in 

an ANN model can be expressed as shown in Eq. 1 (Fazeli 

et al. 2013).

where x is an input vector; wji denotes the connection weight 

from the ith neuron in the input layer to the jth neuron in 

the hidden layer; bj represents the threshold value or bias 

of jth hidden neuron; wkj stands for the connection weight 

from the jth neuron in the hidden layer to the kth neuron in 

(1)yk = f
o

[

∑

j

wkj ⋅ f
h

(

∑

i

wjixi + bj

)

+ bk

]

Table 1  Compositional and empirical models for predicting downhole mud density

References Correlation developed
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(
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)

�(T , P) is the drilling fluid density at the temperature (T) and pressure (P) of interest. �
oi

and �
wi

 is the oil and 

water density at T and P, respectively, �
o

and �
w
 represent the oil and water density at T and P, respectively, 

f
o
, f

w
, f

s
, f

c
 represents volume fractions of oil, water solids and chemicals, respectively

Sorelle et al. (1982) �
w
= 8.63186 − 3.31977 ∗ 10−3

T + 2.3717 ∗ 10−5
(
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o

)

�
o
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)

�
o

and �
w
 represent the oil and water density at temperature T and pressure P, respectively. Assumption: The 

wellbore temperature distribution is linear

Politte (1985) �
O
(P, T) = C0 + C1 ∗ PT + C2P + C3P

2 + C4T + C5T
2

where C0 = 0.8807, C1 = 1.5235 × 10−9, C2 = 1.2806 × 10−6, C3 = 1.0719 × 10−10, C4 = − 0.00036, 

C5 = − 5.1670 × 10−8; T is temperature in  °F; P is pressure (psi)

Kutasov (1988)
�

m
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∗ e

a(P−P
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2

Po, To represent 1 atm and 15 °F, respectively, D is the surface mud density at standard temperature and pres-

sure. a,b,c are the models empirical constants. T1 and P1 are surface temperature and pressure, respectively, 

�
m

 is mud density at standard rate, �
mo

 is mud density at HTHP conditions
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where ρ = density, mi = molality of the ith salt, Mi = molecular weight of the ith salt, ρw = density of pure 

water and vi = apparent molal volume of the ith salt. Used for brine density determination only
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 are the fractional vols of water and hydrocarbon phases, respectively, while �
m
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w
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h
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the densities of water mud and the hydrocarbon phases
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The values of �p, �pp, �T , �TT and �PT are essentially unknown and must be determined for different muds
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where ao = − 3.8503 × 10−4, bo = 8.3847 × 10−1, a1 = 1.5695 × 10−8, b1 = 2.4817 × 10−6, a2 = − 4.3373 × 10−13, 

b2 = 6.5076 × 10−12
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Demirdal et al. (2007) �(P, T) =
(
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Peng et al. (2016)
�(T , P) =

�(To ,Po)

(1+�pΔT)(1−�TΔP) where �
P
, �

T
 are the isobaric expansivity and isothermal compressibility, respec-

tively
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the output layer; bk refers to the bias of the kth output neu-

ron and f
h
 and f

o
 are the activation functions for the hidden 

and output neuron, respectively. Since brevity is the soul of 

wit, this work would refrain from presenting comprehensive 

details of the ANN methodology but would rather refer the 

interested reader to the work by Ghaffari et al. (2006) and 

the articles by Jorjani et al. (2008) and Mekanik et al. (2013) 

for more elaborate treatments.

Table 2  Summary of researches on mud density prediction using artificial intelligence

Authors Type of study conducted Method Architecture Input parameters Output parameters

Osman and Aggour (2003) Mud density of water-based 

mud (WBM) and oil-

based mud (OBM)

ANN 4-6-1 Initial mud density at 

surface conditions, tem-

perature, pressure, type 

of drilling fluid

Density

Wang et al. (2012) Predicting mud density at 

HTHP conditions

SVM (RBF) Not applicable Type of drilling fluid, 

initial surface density, 

temperature, pressure

Density

Xu et al. (2014) Predicting mud density at 

HTHP conditions

SVM Not applicable Not stated Density

Adesina et al. (2015) Predicting downhole mud 

density of OBM

ANN 1-10-1 Temperature Density

Tatar et al. (2016) Brine density prediction Not stated Not stated Temperature, pressure and 

concentration

Brine density

Ahmadi (2016) Mud density prediction Fuzzy logic Not applicable Initial mud density, pres-

sure, temperature

Density

Ahmadi (2016) Predicting the rheology of 

WBM, OBM & gas muds

SVM Not applicable Initial mud density, pres-

sure, temperature

Mud density

Zhou et al. (2016) HTHP drilling fluid density 

of WBM & OBM

ANN-PSO 5-5-1 Initial mud density, 

pressure, difference 

temperature difference, 

water volume fraction, oil 

volume fraction

Density

Kamari et al. (2017) Estimating drilling mud 

density

SVM Not applicable Initial density, pressure and 

temperature of OBM, 

WBM, Colloidal Gas 

Aphron (CGA) and syn-

thetic drilling fluids

Density at pressure and 

temperature

Tewari and Dwivedi (2017) Estimating drilling mud 

density

ANN-SVM 4-6-1 Type of fluid and its den-

sity under normal surface 

condition, temperature 

and pressure

Density at pressure and 

temperature

Ahmadi et al. (2018) Prediction of mud density PSO-ANN

GA-FIS

Not stated Initial mud density, pres-

sure, temperature

Density

Rahmati and Tatar (2019) Prediction of mud density RBF ANN Not stated Initial density, pressure and 

temperature of OBM, 

WBM, Colloidal Gas 

Aphron (CGA) and syn-

thetic drilling fluids

Density at pressure and 

temperature

Table 3  Process input and output parameters of mud density and their 

values

Database parameter Minimum Maximum Unit

Downhole pressure (P) 0 14000 Psig

Downhole temperature (T) 70 400 °F

Initial Mud density ( �
i
) 11 18 l b/gal

Final mud density ( �f ) 9.59 18.46 l b/gal

Table 4  Descriptive statistics of the input variables used in modelling 

downhole mud density

Parameter Downhole pressure Downhole 

temperature

Initial 

mud 

density

Mean 4974.36 246.9 14.33

SD 3663.57 111.328 2.879

Range 14,000 330 7
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Implementation of the artificial neural network

In this paper, the neural network toolbox of MATLAB 

2015a mathematical software was used to predict the 

downhole mud density of oil-based muds in HTHP wells. 

The settings chosen for the ANN model are presented in 

Table 5. In the MATLAB software, the dataset was parti-

tioned into three sets: the training set (60%), test set (20%) 

and validation set (20%). While the training data are used 

to adjust the weight of the neurons, the validation data are 

used to ensure the generalization of the network during 

the training stage and the testing data are used to examine 

the network after being finalized. The stopping criteria 

are usually determined by the preset error indices (such as 

mean square error, MSE) or when the number of epochs 

reaches 1000 (default setting). However, for this study, the 

number of epochs was set at 1000.

Performance of the ANN model

The performance of the network architectures in terms of 

training, testing and validation efficacy is discussed in this 

section. With prediction capability being the primary objec-

tive of a trained ANN, it is felt that the performance of a 

particular ANN during testing with test data should be the 

yardstick for selecting the best ANN architecture. The num-

ber of neurons in the hidden layer influences the generaliza-

tion ability of the ANN model. Hence, in order to determine 

the optimal architecture for the networks, a trial-and-error 

approach was used to select the optimum number of neurons 

in the hidden layer. In this direction, a series of topologies 

were examined, in which the number of neurons was varied 

from 1 to 20. The mean square error (MSE) was used as 

the error function. Decision on the optimum topology was 

based on the minimum error of testing. Each topology was 

repeated 25 times to avoid random correlation due to the 

random initialization of the weights. After repeated trials, 

it was found that a network with five hidden neurons in the 

hidden layer produced the best performance for the ANN 

model with a validation MSE value of 8.4 × 10−4. The opti-

mal architecture of the ANN network is shown in Fig. 1.

For this ANN model, the training process was truncated at 

130 epochs for a 3-5-1 network architecture with a validation 

MSE of 8.4 × 10−4. Therefore, the 3-5-1 architecture is con-

sidered the best neural network for the present problem due to 

its superior prediction capability. Figure 2 shows the scatter 

plots of ANN predicted downhole mud density of oil-based 

muds versus the actual mud density experimental results for 

the training, testing and validation sets, respectively. The pre-

dicted model fits so well to the actual values for both training, 

testing and validation sets as can be seen in their correla-

tion coefficients (R) of 0.99998, 0.99995 and 0.99995 for the 

training, testing and validation data, respectively.

The model generated by applying the Levenberg–Mar-

quardt (LM) algorithm is given in Eq. 2.

Table 5  Parameter settings for ANN model

Parameters Values

Training data set 71 (60% of dataset)

Testing data set 23 (20% of dataset)

Validation data set 23 (20% of dataset)

Number of hidden layers 1

Number of neurons in hidden layer 1–20

Activation function (hidden layer) Tansig

Activation function (output layer) Purelin

Number of epochs 1000

Learning rate 0.70

Architecture selection Trial-and-error

Target goal mean square error 10−5

Minimum performance gradient 10−5

Fig. 1  Optimal architecture of 

the back-propagation network

Ini�al mud

 density

Downhole 

pressure

Downhole 

temperature

Input layer with 

three neurons
Hidden layer with 

five neurons

Output layer 

Downhole mud 

density
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Equation 2 represents trained ANN model correlating the 

three input parameters and the final downhole mud density 

in MATLAB. Here, ‘purelin’and‘tansig’ are MATLAB acti-

vation functions which calculate the layer’s output from its 

network input. Purelin gives linear relationship between the 

input and the output, with the algorithm being purelin(n) = n, 

whereas tansig is a hyperbolic tangent sigmoid transfer func-

tion and is mathematically equivalent to ‘tanh’. Tansig is 

faster than tanh in MATLAB simulations, thus it is used 

in neural networks. The tansig relation is defined by Eq. 3.

LW and IW are weights of connections from the input 

layer to the hidden layer and from the hidden layer to the 

input layer, respectively. In order to predict the downhole 

(2)

�f =

5
∑

j=1

{

purelin

[

LWj,1

(

3
∑

i=1

5
∑

j=1

tansig
(

Xi ∗ IWi,j + b1

)

)]

+ b2

}

(3)Tansig =
2

(1 + exp (−2 network)) − 1

mud density using Eq. 2, the values in Table 6 are used. 

However, the value of xi in Eq. 2 is the individual data points 

for each of the input variables where x represents the input 

variables namely downhole pressure, downhole temperature 

and initial mud density; N is the number of neurons (in this 

case is five); j is the number of input variables, which in our 

case are three; b1 is bias of the hidden layer, and b2 is bias 

of the output layer. Table 5 lists the weights the biases of the 

developed empirical correlation (Eq. 2) that can be used to 

predict the downhole mud density.

For example, the downhole mud density are predicted 

using downhole pressure, downhole temperature and ini-

tial mud density, the value of W1 will be taken at j = 1 for 

downhole pressure, at j = 2 for downhole temperature and 

j = 3 for initial mud density. The xj in the previous equa-

tions are as follows; x at j = 1 is the downhole pressure, x 

at j = 2 is the downhole temperature, x at j = 3 is initial 

mud density. For example, the term 
∑j

j=1
w1i,jxj for down-

hole mud density from Table 5 can be calculated as fol-

lows; 
∑j

j=1
w1i,jxj = w1,1x1 + w1,2x2 + w1,3x3 where the val-

Fig. 2  Scatter plots of the devel-

oped ANN model
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ues of w1,1, w1,2 and w1,3 are − 2.33494, 1.6557, 

3.604944, respectively. This will repeated for the 6 rows 

of the matrix, and the corresponding values for each row 

can be used from the tables. The term x represents the 

input variables, i.e. x1 represents downhole pressure, x2 

represents downhole temperature and x3 represents initial 

mud density. Figure 3 shows a comparison between actual 

values and model predicted output values using the devel-

oped neural network model.

From Fig. 3, the model output from ANN shows a good 

match with the experimental data. However, in order to 

quantify numerically how well the model’s prediction 

matches actual values, the following performance metrics 

of R2, MSE, RMSE and SSE are used to assess the model. 

This is summarized in Table 7.

From Table 7, the assessment is based on the testing 

values only. Based on this, a combination of low MSE, 

SSE and RMSE values coupled with high R2 value (close 

to 1) makes the model a good one.

Relative importance of independent 
variables in the ANN model

Since every model is only an approximate representation 

of a system under study, and coupled with the fact that the 

debate about the opacity of AI-based models keeps linger-

ing, it is always vital to learn about the hidden informa-

tion on the data as extracted from the modelling technique 

used. The aim of sensitivity analysis is to vary the input 

variables of the model and assess the associated changes 

in model output. This method is particularly useful for 

identifying weak points of the model (Lawson and Marion 

Table 6  Weights and biases for 

ANN model in Eq. 2
Input layer weight matrix Input layer bias vector Hidden layer 

weight vector

Output 

layer bias 

vector

Wij

j = 1 j = 2 j = 3 b1 W2 b2

− 2.33494 1.6557 3.604944 − 1.14224 0.013267 − 0.2315

− 0.3625 0.213005 0.005013 0.917833 0.886391

− 0.08568 0.077822 − 0.23131 0.122961 − 3.22244

− 1.51904 0.682808 − 6.73521 − 3.54016 − 0.08908

0.577463 3.183481 0.379244 2.432787 − 0.0119

Fig. 3  Comparison between 

model prediction and experi-

mental data
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Table 7  Summary of ANN model performance

Training Validation Testing

R2 0.99998 0.99994 0.99995

MSE 0.0002849 0.0008419 0.000703

RMSE 0.01687 0.029 0.0265

SSE 0.0333 0.0985 0.0822
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2008). The sensitivity analysis has therefore provided ways 

of explaining the degree of contribution of each of the 

input variables to the network. The contribution of each 

input variable to the prediction of the dependent variable 

is referred to as the relative importance of that variable. 

Many methods abound in the literature for calculating the 

relative importance of input variables. Examples include 

Garson’s algorithm, connection weights algorithm, use 

of partial derivatives, Lek’s profile method, etc. For this 

study, the connection weights algorithm was chosen. The 

choice is predicated on the fact that Olden et al. (2004) 

made a comparison of different techniques for assessing 

input variable contributions in ANNs. Their work showed 

that the method of connection weights was the least biased 

among others. This position was corroborated by Watts 

and Worner (2008). The connection weights algorithm 

proposed by Olden and Jackson (2002) calculates the sum 

of products of final weights of the connections from input 

neurons to hidden neurons with the connections from hid-

den neurons to output neuron for all input neurons. The 

connection weights from input neurons to hidden neurons 

are presented in columns 2–4 of Table 8, while connection 

weights from the hidden to output neurons is presented in 

column 5 of Table 8. The relative importance of a given 

input variable can be defined as shown in Eq. 4.

where  RIx is the relative importance of input variable x. 
∑m

y=1
w

xy
w

yz
 is the sum of product of final weights of the 

connection from input neuron to hidden neurons with the 

connection from hidden neurons to output neuron, y is the 

total number of hidden neurons, and z is the output neurons. 

The sum of the products of the connection weights and rank 

of the input variables are presented in Table 9.

From Fig. 4, we find the relative importance of the vari-

ous input parameters. It is to be noted that a large sensitivity 

to a parameter suggests that the system’s performance can 

drastically change with small variation in the parameter and 

vice versa. Following this analogy, it is clear that the process 

input variable, namely the initial mud density, has the high-

est impact on the downhole mud density followed by the 

(4)RI
x
=

m
∑

y=1

w
xy

w
yz

downhole temperature and then downhole pressure. How-

ever, in Fig. 4, the relative importance associated with down-

hole temperature has negative values. It must be said here 

that in using the connection weights algorithm, the absolute 

values are used in determining the relative importance of the 

input variable. The sign (positive or negative values) helps 

indicate the direction in which each input affects the output. 

The positive sign indicates the likelihood that increasing 

this input variable will increase the output parameter, while 

the negative sign indicates the possibility that increasing 

this input variable will decrease the output variable. In this 

case, Fig. 4 reveals that increases in initial mud density and 

downhole pressure would lead to increased downhole mud 

density. However, the negative sign for the temperature indi-

cates that increasing the downhole temperature would surely 

lead to decreased downhole mud density. These findings are 

in sync and resonate with what is found in the literature.

Comparison of ANN model’s performance 
with existing AI models

There are existing studies published in the recent past that 

focus on the prediction of the density of oil-based muds 

using artificial intelligence. Table 10 lists out some of these 

prior studies, and the results of this study are also compared 

with them.

According to Table 10, we find that the prediction accu-

racy is significantly different in various studies, and the model 

Table 8  Final connection 

weights
Downhole pressure Downhole tem-

perature

Initial mud density Output

Hidden layer 1 − 2.33494 1.6557 3.604944 0.013267

Hidden layer 2 − 0.3625 0.213005 0.005013 0.886391

Hidden layer 3 − 0.08568 0.077822 − 0.23131 − 3.22244

Hidden layer 4 − 1.51904 0.682808 − 6.73521 − 0.08908

Hidden layer 5 0.577463 3.183481 0.379244 − 0.0119

Table 9  Connection weights products, relative importance and rank 

of inputs

Downhole pres-

sure

Downhole 

temperature

Initial mud density

Hidden layer 1 − 0.03098 0.021967 0.047828

Hidden layer 2 − 0.32132 0.188806 0.004443

Hidden layer 3 0.276113 − 0.25078 0.745372

Hidden layer 4 0.135323 − 0.06083 0.600006

Hidden layer 5 − 0.00687 − 0.03788 − 0.00451

Sum 0.052269 − 0.13872 1.393136

Rank 3 2 1
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developed in this work is superior to all the other models. This 

is so because the model is not complex judging by the number 

of neurons in the hidden layer compared to the other models. 

Considering the results using the accuracy indicators, the ANN 

model developed in this study is found to be more appropriate 

for prediction of downhole mud density owing to its low MAE, 

MAPE and high R2 compared to the other models.

Comparison of the generalization capacity 
of the developed model with existing 
models

The usefulness of any model irrespective of the model-

ling technique used is based on how well it can gener-

alize. By generalization, a model should be able to pre-

dict in a consistent manner when new data are supplied 

to it (Kronberger 2010). Using a new, independent set of 

data is considered the “gold standard” for evaluating the 

generalization ability of models (Alexander et al. 2015). 

Hence, the most convincing way of testing a model is to 

use it to predict data which has no connection with the 

Fig. 4  Relative importance of 

input variables in the ANN 

model

0.052269084

-0.138718131

1.393136097

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Pressure Temperature Ini�al mud density

R
e

la
�

v
e

 i
m

p
o

rt
a

n
ce

Input variables

Table 10  Comparison of developed model with existing AI models

References Method Architecture R2 MSE RMSE SSE MAPE MAE

Osman and Aggour 

(2003)

ANN 4-6-1 0.9998 Not stated 0.0056 Not stated 0.367 Not stated

Wang et al. (2012) SVM (RBF) Not applicable 0.9994 Not stated 0.117 Not stated 0.872 Not stated

Xu et al. (2014) SVM Not applicable Not stated Not stated Not stated Not stated Not stated Not stated

Adesina et al. (2015) ANN 1-10-1 0.99852 (Diesel OBM) 

0.99414 (Jatropha 

OBM) 0.99675 

(Canola OBM)

Not stated Not stated Not stated Not stated Not stated

Tatar et al. (2016) Not stated Not stated 0.999999 Not stated Not stated Not stated Not stated Not stated

Ahmadi (2016) Fuzzy logic Not applicable 0.7237 69.0907 Not stated Not stated Not stated Not stated

Ahmadi (2016) SVM Not applicable 0.9999 Not stated Not stated Not stated Not stated Not stated

Zhou et al. (2016) ANN-PSO 5-5-1 0.9% (Max. rel. error) Not stated Not stated Not stated Not stated 0.018 g/cm3

Kamari et al. (2017) SVM Not applicable 0.999 Not stated Not stated Not stated Not stated Not stated

Tewari and Dwivedi 

(2017)

ANN-SVM 4-6-1 0.9999 Not stated 0.00277 Not stated 0.2254 Not stated

Ahmadi et al. (2018) PSO-ANN

GA-FIS

Not applicable 0.9964

0.9397

0.00014

0.091

Not stated Not stated Not stated Not stated

This study ANN 3-5-1 0.9999 0.00048 0.022 0.056 0.127 0.017
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data used to estimate model parameters. Thus, there is 

every good reason for not using the same data as we used 

in the model development—otherwise it would make one 

erroneously think that the model gives better predictions 

than it is really capable of (Lawson and Marion 2008). In 

this way, we reduce to the barest minimum the possibility 

of obtaining a “deceitful” good match between the model 

predictions and the measured data. The oil-based mud den-

sity experimental results obtained from the work of Peters 

et al. (1990) was used as unseen/unfamiliar data to test the 

oil-based mud density model. This data set consisting of 

34 data points was introduced to the ANN model to predict 

the downhole mud density. Table 11 lists out some of the 

existing models used for the prediction of the downhole 

mud density of drilling muds and their performance met-

ric when subjected to this dataset. Five statistical-based 

performance metrics (R2, MSE, MAE, MAPE and RMSE) 

were employed to assess the generalization capacity of the 

developed model as well as existing models.

Considering the results in Table 11 in the light of the 

accuracy indicators mentioned above, it is crystal clear that 

the compositional model by Hoberock et al. (1982) predicted 

the unfamiliar data best since it presents the lowest values 

of MSE, MAE, MAPE and RMSE with a high value of R2; 

however, the model evolved by ANN exhibits signs closest 

to the Hoberock et al.’s model. This is seen in the values of 

the accuracy indicators. It is also worthy to note here that the 

model by Kutasov (1988) also trails the ANN model in terms 

of performance. In addition to this, and as made clearer in 

Fig. 5, the models by Politte (1985) and Sorelle et al. (1982) 

seem to have similar predictive capabilities since both over-

lap. The result presented in Fig. 5 indicates that the ANN 

model has impressively learned the nonlinear relationship 

between the input variables and the downhole mud density.

Comparison of developed ANN model 
with an existing equation of state for liquid 
density prediction

There exists an equation of state for estimating liquid density 

as a function of temperature and pressure. Furbish (1997) 

puts forward the equation of state for liquid density as shown 

in Eq. 5:

where �
o
 is the initial density of the liquid, � and � are the 

local isobaric coefficient of thermal expansion and the local 

isothermal compressibility, respectively. T, To, P and Po 

are the final and standard temperatures and pressures of the 

liquid, respectively. It must be stated here that the use of 

this equation of state may not require a high computational 

overhead but may likely not yield accurate predictions since 

the local isobaric coefficient of thermal expansion and the 

local isothermal compressibility are not constants but rather 

a function of temperature and pressure. In this work, the val-

ues of the isobaric coefficient (α) and isothermal compress-

ibility (β) would be taken from the work of Zamora et al. 

(2000) wherein they used 0.0002546/°F and 2.823 µ/°F for 

α and β, respectively for oil-based mud. In order to assess 

the predictive capability of the Equation of state for liquid 

density by Furbish (1997), it was subjected to the dataset in 

the work of Peters et al. (1990). The performance metrics 

for this model is shown on the sixth row of Table 11. In 

(5)� = �
o

[

1 − �
(

T − T
o

)

+ �
(

p − p
o

)]

Table 11  Generalization capacity assessment of various models used for predicting downhole density of oil-based muds

NB The values of LW, IW, b1, b2 for the ANN model in this table are obtainable from Table 6 of this work, while the values of xi are obtained 

from the downhole pressure, temperature and initial mud density values from the work of Peters et al. (1990)

References Correlation developed R2 MSE MAE RMSE MAPE (%)

Sorelle et al. (1982) �
o
= 7.24032 − 2.84383 ∗ 10−3

T + 2.7566 ∗ 10−5
(

P − P
o

)

0.0185 57.4 6.95 7.58 47.8

Hoberock et al. (1982) �(T , P) =
�ofo+�wfw+�sfs+�c fc

1+fo

(

�o

�oi
−1

)

+fw

(

�w

�wi
−1

)

0.9999 0.0015 0.0339 0.0387 0.25

Politte (1985) �
O
(P, T) = C0 + C1 ∗ PT + C2P + C3P

2 + C4T + C5T
2 0.0183 57.15 6.93 7.56 47.7

Kutasov (1988)
�

m
= �

mo
∗ e

a(P−P
o)−b(T−T

o)+c(T−T
o)

2 0.9772 0.562 0.65 0.7496 4.973

EOS in Furbish (1997) � = �
o

[

1 − �
(

T − T
o

)

+ �
(

p − p
o

)]

0.9993 0.027 0.1392 0.164 0.96

Kårstad and Aadnøy(1998) � = �0e� (P,T) 0.9703 1.14 0.91 1.067 7.08

Zamora et al. (2000) SG
o
=

(

a
o
T + b

o

)

+

(

a
1
T + b

1

)

P +

(

a
2
T + b

2

)

P
2 0.0186 60.48 7.17 7.77 49.5

Demirdal et al. (2007) �(P, T) =
(

−5.357 ∗ e−06
T

2 − 1.267e−03
T + 8.717

)

exp
[(

9.452 ∗ e−11
T

2 − 1.53e−8
T + 4.192e−6

)

∗ P
]

0.0014 31.08 4.66 5.575 30.4

This study (ANN)
�f =

5
∑

j=1

�

purelin

�

LWj,1

�

3
∑

i=1

5
∑

j=1

tansig
�

Xi ∗ IWi,j + b1

�

��

+ b2

�

0.9997 0.0159 0.1 0.126 0.7
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comparison with the ANN model’s performance, it is found 

that the EOS’s performance is somewhat comparable with 

the ANN model, though the ANN model is slightly better-

off. The performance metrics for the ANN model and the 

EOS, respectively, are: R2 (0.9997, 0.9993); MSE (0.0159, 

0.027); MAE (0.1, 0.139) and MAPE (0.7, 0.96).

Disparities between the developed ANN 
model and published ANN models

The following are the disparities between the ANN model 

developed in this study and the existing models.

1. The possibility to replicate and reproduce the results 

from published research is one of the major challenges 

in model development using artificial intelligence. This 

makes it rarely possible to re-implement AI models 

based on the information in the published research, let 

alone rerun the models because the details of the model 

and the simulation codes are either not presented in an 

understandable format or have not been made available. 

Beyond this, AI techniques such as ANN used in this 

work are more often than not tagged black box models. 

This work’s novelty lies in the fact that it has been able 

to illuminate the box such that the weights and biases 

that can be used for replicating the models have been 

presented. A close look at the ANN models by Osman 

and Aggour (2003), Adesina et al. (2015) and Rahmati 

and Tartar (2019) indicates that the vital details of the 

model which can make it replicable are not presented, 

hence limiting their application.

2. The use of sensitivity analysis in this work has been able 

to make the AI model developed in this work explain-

able unlike the other ANN models in the literature

3. There are huge concerns regarding the ability of an AI 

model to generalize to situations that were not repre-

sented in the data set used to train the model. To the 

best of my knowledge, the models in the literature were 

not tested for their generalization ability by using a new 

dataset, hence, it is difficult to ascertain how generaliz-

able these models are in practice.

Fig. 5  Performance of various 

models to unfamiliar data
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Design of a drilling process incorporating 
the developed ANN model for estimating 
downhole mud density

A synthetic drilling process has been designed and it con-

tains no confidential information. This is done to mimic 

the complexity of an actual drilling process in the field. 

The approach followed in this design is based on repli-

cating the life of a wellbore drilling process by includ-

ing the necessary steps occurring during mud circulation. 

The downhole data acquisition method, its analysis and 

transmission to the ANN model for computation of the 

downhole mud density are major parts of the design. This 

design is exemplified in Fig. 6. An explanation of this 

figure is given below.

The conventional parts of the design such as the power 

generation activities, the hoisting activities, the rotary 

activities and the well control system are well known and 

would not be discussed extensively. However, only the 

mud circulating system where the ANN model is required 

would be discussed in detail. In this area, the major com-

ponents of the design are the sensors for trapping the 

downhole pressure and temperature as well as the trans-

mission of the readings to the ANN model.

(1) The downhole sensors The sensors for the downhole 

temperature and pressure measurement would essen-

tially be attached to the logging while drilling tools. 

The sensors should be of the differential pressure 

type and should be placed in the logging while drill-

ing (LWD) tool. The basic sensing element should be 

designed to detect a difference in wellbore pressure and 

temperature as the depth of the well increases. In this 

way, the differential pressure transducer interrogates 

the readings and transmits it to the ANN model soft-

ware installed in a computer. This enables the model to 

instantaneously process the readings and calculate the 

downhole density of the mud and transmit it to the sur-

face panel at the drillers console. This process would 

save rig time and reduced the time spent on manually 

testing for the surface density of the mud in the mud 

tank which may not always represent the density of 

the mud downhole. It must be said, however, that the 

data from the sensors requires some cleansing, filtering 

or analysis; hence, bio-inspired algorithms would be 

developed for this purpose.

(2) The functionality of the developed ANN model in the 

design A software would be developed based on the 

ANN model and installed in a computer where the fil-

tered data from the sensor would be passed. The con-

stant in the model which is the initial density of the mud 

would be manually measured prior to the start of drilling 

and fed into the model. The downhole temperature and 

pressure at any given time and depth would be transmit-

ted to the model and the downhole density calculated. 

Fig. 6  Drilling process design 

with the ANN model incorpo-

rated
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Since the sensor data would be streamed and transmit-

ted per unit time, the increase or decrease of the down-

hole mud density would be referenced to the initial mud 

density. The trend (either increase or decrease) would 

be shown graphically with respect to time and depth. If 

the density falls too low or gets too high, then an alarm 

would be triggered indicating a low or high mud density. 

This would be shown on the surface panel at the drillers 

console. This way, the downhole drilling fluid density 

that has taken into account the downhole temperature 

and pressure regimes in the wellbore would be moni-

tored. When the need arises, measures to adjust the mud 

density would be done on the basis of this knowledge in 

order to assure safety and wellbore stability.

Practical implication of findings

Despite the fact that the Hoberock et al.’s model performs 

creditably well, one of the major drawbacks of the Hober-

ock et al.’s compositional model is that it requires long man 

hours to determine the volume fraction of oil, water, solids, 

chemicals, etc., required to perform the density computa-

tion. The procedure for carrying out a complete composi-

tional analysis of mud is done using the mud retort test. 

Users complain the procedure is rigorous, lengthy and time 

consuming; with the test often taking more than an hour to 

complete (Salunda, online). However, with the ANN model, 

the man hours spent carrying out the compositional analy-

sis can hopefully be reduced and reallocated to other high 

value-added tasks. Hence, the ANN model developed in this 

work is a valuable substitute for the Hoberock et al.’s model, 

especially when downhole mud density values are required 

in real time for critical decisions to be taken.

Conclusion

In this work, an artificial neural network model has been 

developed for the prediction of the downhole density of oil-

based muds in wellbores. The objective of this work was to 

use a nature-inspired algorithm (ANN) to develop a robust 

and accurate model for the downhole density of oil-based 

muds that would be replicable and generalizable across new 

input datasets. The developed model in this work is robust 

and reliable due to its simplicity and accuracy for the appli-

cation of interest. Beyond this, the model can be replicated 

unlike other AI models in the literature because the thresh-

old weights and biases required for developing the model 

are provided. The prediction capability of the ANN model 

has been compared with the existing AI models as well as 

with other models for predicting OBM density. Based on the 

obtained results, the outputs of the developed ANN model 

are in good agreement with corresponding experimental 

data. In comparison with existing AI models, the developed 

ANN model gives more accurate estimations. Furthermore, 

the intelligent ANN model paves the way for rapid predic-

tions of the downhole density of oil-based muds in HTHP 

wells unlike the time-consuming procedure associated with 

the Hoberock et al.’s model.

Recommendation

While the industry churns out exabytes of drilling data every 

nanosecond, and we wait patiently with enthusiasm for oil 

prices to rise and costs to fall, it is imperative that we use 

that space of time to leverage on the cost saving and value 

adding technology of AI to develop high-fidel models for 

predicting other mud related challenges that affect mud den-

sity such as barite sagging in oil-based muds.
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