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Forecasting thunderstorm is one of the most di�cult tasks in weather prediction, due to their rather small spatial and temporal
extension and the inherent nonlinearity of their dynamics and physics. Accurate forecasting of severe thunderstorms is critical for
a large range of users in the community. In this paper, experiments are conducted with arti�cial neural network model to predict
severe thunderstorms that occurred over Kolkata during May 3, 11, and 15, 2009, using thunderstorm a�ected meteorological
parameters. 
e capabilities of six learning algorithms, namely, Step, Momentum, Conjugate Gradient, Quick Propagation,
Levenberg-Marquardt, and Delta-Bar-Delta, in predicting thunderstorms and the usefulness for the advanced prediction were
studied and their performances were evaluated by a number of statistical measures. 
e results indicate that Levenberg-Marquardt
algorithmwell predicted thunderstorm a�ected surface parameters and 1, 3, and 24 h advanced predictionmodels are able to predict
hourly temperature and relative humidity adequately with sudden fall and rise during thunderstorm hour. 
is demonstrates its
distinct capability and advantages in identifying meteorological time series comprising nonlinear characteristics. 
e developed
model can be useful in decision making for meteorologists and others who work with real-time thunderstorm forecast.

1. Introduction


understorm, resulting from vigorous convective activity,
is one of the most spectacular weather phenomena in the
atmosphere. It is one of the global phenomena that can occur
anywhere in the world at any time. It is also known as
lightning storm or hailstorm.
is storm is a form of weather
characteristic containing strong wind, lightning, heavy rain,
and sometimes snow or hail. Although thunderstorm is
generally very short-lived phenomena, it has great potential
to produce serious damage to human life and property such
as lightning, damaging straight-line wind, large sized hail,
heavy precipitation, and �ooding.Many parts over the Indian
region experience thunderstorms at higher frequency during
premonsoon months (March–May), when the atmosphere is
highly unstable because of high temperatures prevailing at
lower levels. Severe thunderstorms form and move generally
from northwest to southeast over the eastern and northeast-
ern states of India during the premonsoon season. 
ese

severe thunderstorms associated with thunder, squall lines,
lightning, torrential rain, and hail cause extensive loss in
agriculture, damage to property, and also loss of life. 
e
casualties reported due to lightning associated with thunder-
storms in this region are the highest in the world. 
e strong
wind produced by the thunderstorm is a real threat to avia-
tion. 
e highest numbers of aviation hazards are reported
during occurrence of these thunderstorms. 
ese severe
thunderstorms have signi�cant socioeconomic impact in the
eastern and northeastern parts of the country. An accurate
location speci�c and timely prediction are required to avoid
loss of lives and property due to strong winds and heavy
precipitation associated with these severe local storms [1].

Accurate forecasting of thunderstorms and severe thun-
derstorms are critical for a large range of users in the commu-
nity.
e general public can bene�t from timely forecasts and
warnings of impending severe thunderstorms.
understorm
forecasting typically has proved to be one of themost di�cult
tasks, due to their rather small spatial and temporal extension
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and the inherent nonlinearity of their dynamics and physics
[2]. 
e techniques for predicting thunderstorms can be
classi�ed into two groups (a) the empirical approach and (b)
the dynamical approach [3]. First method is a historical treat-
ment of thunderstorm extrapolation techniques (knowledge-
based expert systems including fuzzy logic and arti�cial
neural network (ANN)). 
e second method is prediction
using high resolution numerical weather prediction (NWP)
models. 
e second approach for studying thunderstorms is
already speci�ed by many researchers [4–7]. Most weather
prediction systems use a combination of empirical and
dynamical techniques. However, a little attention has been
paid to the use of ANNs in thunderstorm forecasting. ANN-
based approach can be used to model complex relationships
between inputs and outputs or to �nd patterns in data. ANN
can be viewed as a mathematical model or computational
model that is inspired by the structure or functional aspects
of biological neural networks. Neural networks are designed
to extract existing patterns from noisy data. 
e procedure
involves training a network (training phase) with a large
sample of representative data, a�er which one exposes the
network to data not included in the training set (validation
or prediction phase) with the aim of predicting the new
outcomes [8].
e interest in neural networks comes from the
networks’ ability to mimic human brain as well as its ability
to learn and respond. As a result, neural networks have been
used in a large number of applications and have proven to
be e�ective in performing complex functions in a variety of
�elds [9].

ANN has proven to be powerful and general technique
for machine learning (ML) [10]. Most successful application
of neural networks involved pattern recognition, statistical
mapping, or modeling [11]. According to Bailey and
omp-
son [12], successful application can include signal validation,
process monitoring, diagnostics, signal and information
processing, and control of complex system. James et al. [13]
mentioned that ANNs have the ability to tackle the problem
of complex relationships among variables that cannot be
accomplished by more traditional methods. ANNs are excel-
lent tools for complex manufacturing processes that have
many variable and complex processes. According to Palade
et al. [14], ANNs represent an excellent tool that has been used
to develop a wide range of real world applications, especially
in case when traditional solvingmethods fail.
e advantages
ofANNs such as ideal learning ability fromdata, classi�cation
capabilities, and generalization for situation do not contain
training data set, computationally fastness once trained due
to parallel processing, noise tolerance. 
ere were these
advantages that make ANNs to be successfully applied to var-
ious real world problems, includingmedical diagnosis, image
computing, speech recognition, and weather forecasting [15–
19].

Bodri and Čermák [15] developed an ANN using 38 years
of rainfall data to predict monthly and yearly precipitation
levels for multiple sites in the Czech Republic. Using spatial
and temporal data of rainfall, Luk et al. [16] developed an
ANN for short-term precipitation prediction focused on
predicting �ash �ood rainfall amounts for 15min ahead for
various areas of western Sydney, Australia.Maqsood et al. [17]

Figure 1: 
e geographical location of Kolkata in West Bengal.

used an ensemble of ANNs to provide 24 h predictions for air
temperature, wind speed, and humidity at the Regina Airport
in Canada. Chaudhuri and Chattopadhyay [18] designed a
feedforward multilayered arti�cial neural network model
to estimate the maximum surface temperature and relative
humidity. Chattopadhyay [19] implemented a feedforward
ANNwith one hidden layer to forecast average summermon-
soon over India and established that it gave a better forecast
than a forecast based onmultiple linear regression and persis-
tence. 
e growing development of computer-aided analysis
has facilitated the application of various ML techniques in
hydrological modeling [20–25]. ANN have been applied suc-
cessfully for time series modeling in many hydrological con-
texts such as river �ow [20], �ood forecasting [21], and water
qualitymodeling [22].
e recent advances in neural network
methodology formodeling nonlinear, dynamical phenomena
along with the impressive successes in a wide range of
applications are motivated to investigate the application of
ANNs for the prediction of hourly temperature and relative
humidity needed for the genesis of severe thunderstorms over
Kolkata.

In this paper, experiments are conducted with ANN
model to predict severe thunderstorms that occurred over
Kolkata (22.52∘N, 88.37∘E) using thunderstorm a�ected
meteorological parameters. 
e geographical location of
the study area is given in Figure 1. 
e performance of
six learning algorithms, namely, Step (STP), Momentum
(MOM), Conjugate Gradient (CG), Quick Propagation
(QKP), Levenberg-Marquardt (LM), and Delta-Bar-Delta
(DBD), is evaluated using predicted hourly surface tem-
perature and relative humidity during these thunderstorm
days. 
e accuracy of the predictions was evaluated by the
correlation coe�cient (CC), the root mean-square error
(RMSE), themean absolute error (MAE), and percent correct
(PC) between the measured and predicted values. 
e devel-
oped ANN model with LM algorithm was applied to derive
thunderstorm forecast from 1 to 24 hour (h) ahead at Kolkata.

e goal of this study was to use ANNs to predict hourly
temperature and relative humidity during thunderstorm days
from 1 to 24 h ahead using prior weather data as inputs. 
is
study is presented in the followingmanner. Section 2 presents
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the ANNmodel con�gurations and a brief description about
learning algorithms used for the present study. 
e case
descriptions of thunderstorm events are given in Section 3.

e results and discussions are described in Section 4 and the
conclusions in Section 5.

2. Data and Methodology

2.1. ANN Experimental Setup. 
e developed ANN model
is based on one of the neural network architecture called
multilayer perceptron network (MLPN) model (also known
as multilayer feedforward network). 
is is the most popular
network architecture in use today.
is is the type of network
which the units each perform a biased weighted sum of
their inputs and pass this activation level through a transfer
function to produce their output, and the units are arranged
in a layered feedforward topology. 
e network thus has a
simple interpretation as a form of input-output model, with
the weights and thresholds (biases), the free parameters of the
model. Such networks can model functions of almost arbi-
trary complexity with the number of layers and the number
of units in each layer, determining the function complexity.
Important issues in MLPN design include speci�cation of
the number of hidden layers and the number of units in
these layers [9]. Once the number of layers and number of
units in each layer have been selected, the network’s weights
and thresholds must be set so as to minimize the prediction
error made by the network. 
is is the role of the training
algorithms.


is study evaluates the utility of MLPN for estimating
hourly surface temperature and relative humidity. Designing
ANN model follows a number of systemic procedures. In
general, there are �ve basics steps: (1) collecting data, (2)
preprocessing data, (3) building the network, (4) training and
(5) test performance of model. 
e basic �ow in designing
ANN model is given in Figure 2. 
e weather data, namely,
hourly mean sea level pressure, relative humidity, and wind
speed of 3 years (April andMay 2007 to 2009) collected from
the India meteorological department (IMD) of Kolkata, were
used as the input data for training and testing ANN model
which will be used for the prediction of hourly temperature.

e weather data, namely, hourly mean sea level pressure,
temperature, and wind speed of 3 years (April and May 2007
to 2009) of Kolkata, were used as the input data for training
and testing ANNmodel which will be used for the prediction
of hourly relative humidity.Major numbers of thunderstorms
are occurred over Kolkata in April and May. 
us the hourly
data sets of these two months are selected for training and
testing.
e other additional input parameters for eachmodel
are month, day and hour of the observation. A�er data
collection, two data preprocessing procedures are conducted
to train the ANNs more e�ciently. 
ese procedures are
the following: (1) solve the problem of missing data and (2)
normalize data. 
e missing data are replaced by the average
of neighboring values. Neural networks generally provide
improved performance with the normalized data. 
e use of
original data as input to neural network may cause a conver-
gence problem [26]. All the weather data sets were therefore
transformed into values between −1 and 1 through dividing

Data collection

Preprocessing data

Building network

Training network

Testing network

Figure 2: Basic �ow for designing ANNmodel.

the di�erence of actual andminimumvalues by the di�erence
of maximum and minimum values. At the end of each
algorithm, outputs were denormalized into the original data
format for achieving the desired result. Separate models with
same con�guration have been built to predict both surface
parameters, namely, temperature and relative humidity.

A three-layer structure (one input layer, one hidden
layer, and one output layer) was selected with hyperbolic
tangent (tanh) transfer function for hidden layer and linear
transfer function for output layer. Figure 3 provides an
overview of the structure of MLPN model for the prediction
of temperature and relative humidity. 
e chosen weather
data were divided into two randomly selected groups, the
training group, corresponding to 67% of the patterns, and
the test group, corresponding to 33% of patterns, so that the
generalization capacity of network could be checked a�er
training phase. Networks were trained for a �xed number
of epochs. 
e error level was set to a relatively small value

(10−4). 
e optimal number of hidden neurons was obtained
experimentally by changing the network design and running
the training process several times until a good performance
was obtained.A randomnumber generatorwas used to assign
the initial values of weights and thresholds with a small bias
as a di�erence between each weight connecting two neurons
together since similar weights for di�erent connections may
lead to a network that will never learn.


e 24 h ANN model outputs of surface temperature
and relative humidity at Kolkata (22.52∘N, 88.37∘E) during
three thunderstorm days of May 2009 (May 3, 11, and
15, 2009) were used to evaluate these models. 
e perfor-
mance of six learning algorithms, STP, MOM, CG, QKP,
LM, and DBD is evaluated using predicted hourly surface
temperature and relative humidity during thunderstorm days
and found LM algorithm for future thunderstorm studies.

e accuracy of the predictions was evaluated by CC, RMSE,
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Figure 3: Architecture of multilayer perceptron network for the prediction of (a) temperature and (b) relative humidity.

MAE, and PC between the measured and predicted values.

e developed ANN model with LM algorithm was applied

to derive thunderstorm forecast from 1 to 24 h ahead at
Kolkata from the data of 3 consecutive years (April and May
2007–2009). Models were created to predict temperature and
relative humidity at hourly intervals with 1, 3, 6, 12, and 24 h
ahead. 
e results are evaluated using MAE, RMSE, CC, and
PC. 
e ANN model simulations are carried out using the
Neurosolutions so�ware developed by Neuro Dimensions
Inc. of Florida [27].

2.2. Learning Algorithms. In neural network, the learning
algorithms play quite important role in the process. An
appropriate topology may still fail to give a better model,
unless trained by a suitable learning algorithm. A good learn-
ing algorithm will shorten the training time while achieving
a better accuracy. 
erefore, training process is an important
characteristic of the ANNs, whereby representative examples
of the knowledge are iteratively presented to the network, so
that it can integrate this knowledge within its structure.
ere
are a number of training algorithms used to train a MLPN,
and a frequently used one is called the backpropagation (BP)
learning algorithm [28]. 
e BP algorithm, which is based
on searching an error surface using gradient descent for
points with minimum error, is relatively easy to implement.
However, the BP algorithm has some problems for many
applications. 
e algorithm is not guaranteed to �nd the
global minimum of the error function since gradient descent
may get stuck in local minima, where it may remain indef-
initely. In addition to this, long training sessions are o�en
required in order to �nd an acceptable weight solution
because of the well-known di�culties inherent in gradient
descent optimization.
erefore, a lot of variations to improve
the convergence of the BP were proposed such as DBD,
QKP [29–31]. Optimization methods such as second-order
methods (CG, Quasi-Newton (QN), LM) have also been
used for ANN learning in recent years. 
e LM algorithm
combines the best features of the Gauss-Newton technique
and the steepest-descent algorithm but avoids many of their
limitations. In particular, it generally does not su�er from the
problem of slow convergence [32].

A number of researchers have carried out comparative
studies ofMLPN learning algorithms. Kişi andUncuoğlu [33]
compared LM, CG, and resilient algorithm for stream�ow
forecasting and determination of lateral stress in cohesionless

soils. 
ey found that LM algorithm was faster and achieved
better performance than the other algorithms in learning.
Esugasini et al. [34] considered the problem of breast cancer
diagnosis and compared the classi�cation accuracy of the
standard steepest descent against the classi�cation accuracy
of the gradient descent with momentum and adaptive learn-
ing, resilient BP, QN, and LM algorithm. 
e simulations
show that the neural network using the LM algorithm
achieved the best classi�cation performance. Raju et al. [35]
demonstrated the application of ANNs in predicting the
weekly spring discharge with three di�erent learning algo-
rithms. 
e learning algorithms considered by the authors
were QKP algorithm, batch BP algorithm, and LM algo-
rithm. 
ey conclude that the QKP algorithm had a better
performance to the application. Übeyli and Güler [36] com-
pared BP, DBD, extended DBD, QKP, and LM algorithms
to compute the quasistatic parameters, the characteristic
impedance, and the e�ective dielectric constant of the asym-
metric coplanar waveguides (ACPWs). 
e results of the
LM algorithm for the quasistatic parameters of the ACPWs
were in very good agreement with the results available in
the literature. Cheng et al. [20] made sensitivity study with
3 training algorithms, namely, the gradient descent, LM, and
ScaledConjugateGradient (SCG) algorithms to forecast daily
and monthly river �ow discharges in Manwan Reservoir.
e
sensitivity analysis of the training algorithms shows that the
SCGalgorithm can enhance the accuracy ofmodel prediction
results e�ectively.
e results of above studies have illustrated
that the relative performance of algorithms depends on the
problem being tackled. Six learning algorithms were applied
in this study, in order to identify the one which trains a given
network more e�ciently. Brief descriptions of these learning
algorithms are as follows.

2.2.1. Step (STP) Algorithm. Gradient descent (GD) learning
rules provide �rst-order gradient information about the
network’s performance surface (e.g., backpropagation and
real-time recurrent learning). 
e most straightforward way
of reaching the bottom (theminima) given which way is up is
tomove in the opposite direction.With this scenario, the only
variable is the step size (i.e., how far should it move before
obtaining another directional estimate). If the steps are too
small, then it will take too long to get there. If the steps are too
large, then it may overshoot the bottom, causing it to rattle
or even diverge. 
e step uses this procedure to adapt the
weights of the activation component that it is stacked on.
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2.2.2. Momentum (MOM) Algorithm. Step components try
to �nd the bottom of a performance surface by taking steps
in the direction estimated by the attached backpropagation
component. Network learning can be very slow if the step size
is small. It can oscillate or diverge if it is chosen too large.
For further complicate matters, a step size that works well
for one location in weight space may be unstable in another.

e momentum provides the gradient descent with some
inertia, so that it tends to move along a direction that is the
average estimate for down. 
e amount of inertia (i.e., how
much of the past to average over) is imposed by the momen-
tum parameter. 
e higher the momentum is, the more it
smoothes the gradient estimate, and the less e�ect a single
change in the gradient has on the weight change. 
e major
bene�t is the added ability to breakout of local minima that
a step component might otherwise get caught in. Note that
oscillations may occur if the momentum is set too high. 
e
momentum parameter is the same for all weights of the
attached component. An access point has been provided for
the step size andmomentum allowing access for adaptive and
scheduled learning rate procedures.

2.2.3. Conjugate Gradient (CG) Algorithm. 
e GD algo-
rithms (like “step” and “momentum”) use only the local
approximation of the slope of the performance surface (error
versus weights) to determine the best direction to move the
weights in order to lower the error. Second-order methods
use or approximate second derivatives (the curvature instead
of just the slope) of the performance surface to determine
the weight update. 
is information is very important for
determining the optimal update direction. Since this method
makes use of the second derivatives of the function to be
optimized, it is typically referred to as the second-order
methods.

2.2.4. Levenberg-Marquardt (LM) Algorithm. 
e LM algo-
rithm is one of the most appropriate higher-order adaptive
algorithms known for minimizing the MSE of a neural
network. It is amember of a class of learning algorithms called
“pseudosecond order methods.” Standard gradient descent
algorithms use only the local approximation of the slope of
the performance surface (error versus weights) to determine
the best direction to move the weights in order to lower the
error. Second-order methods use the Hessian or the matrix
of second derivatives (the curvature instead of just the slope)
of the performance surface to determine the weight update,
while pseudosecondordermethods approximate theHessian.
In particular the LM utilizes the so-called Gauss-Newton
approximation that keeps the Jacobian matrix and discards
second-order derivatives of the error. If the performance sur-
face is quadratic (which is only true in general for linear sys-
tems), then using a second-order method can �nd the exact
minimum in one step. A key advantage of the LM approach
is that it defaults to the gradient search when the local cur-
vature of the performance surface deviates from a parabola,
which may happen o�en in neural computing.

2.2.5. Quick Propagation (QKP) Algorithm. 
e QKP uses
information about curvature of the error surface. 
is

requires the computation of the second-order derivatives of
the error function during training. 
e QKP assumes the
error surface, a function of connection weights, to be locally
quadratic (i.e., a parabola) and attempts to jump in one step
from the current position directly into the minimum of the
parabola. 
e QKP computes the derivatives in the direction
of eachweight. A�er computing the �rst gradient as in regular
backpropagation, a direct step to the error is attempted by
changing the weight.

2.2.6. Delta-Bar-Delta (DBD) Algorithm. 
e DBD is an
adaptive step-size procedure for searching a performance sur-
face. 
e step size and momentum are adapted according to
the previous values of the error at the neurons. If the current
and past weight updates are both of the same sign, it increases
the learning rate linearly.
e reasoning is that if the weight is
being moved in the same direction to decrease the error, then
itwill get there fasterwith a larger step size. If the updates have
di�erent signs, this is an indication that the weight has been
moved too far.When this happens, the learning rate decreases
geometrically to avoid divergence [27].

3. Case Description

For the present study three severe thunderstorm cases,May 3,
11, and 15, 2009, have been taken and the description of each
case is as follows.

Case 1 was a severe thunderstorm, which was reported
on May 03, 2009 over Kolkata (Figure 1) with a maximum
speed of 61.2 kilometer per hour (kmph) lasting for a few
minutes. 
is intense convective event produced 31.4mm
(millimeter) rainfall over Kolkata. In the synoptic charts at
0000UTC (Coordinated Universal Time) a low pressure area
was found at the surface over northChattisgarh and adjoining
Jharkhand, and a trough from this extending southward up
to interior Tamilnadu across Andhra Pradesh is found. At
1.5 km (kilometer) above sea level (a.s.l), cyclonic circulation
is seen over west Uttar Pradesh, and a trough from this
extends southeastwards up to south peninsula across east
Madhya Pradesh and Andhra Pradesh. 
ere was no signif-
icant trough in midtroposphere. No subtropical westerly jet
maxima were seen over the region. A few places recorded
moderate rainfall over Gangetic West Bengal (GWB) and
isolated rainfall over Orissa, Chattisgarh, and Bihar. Bankura
recorded 24.9mm and Sriniketan 38.2mm of rainfall.

Case 2 was a severe thunderstorm, which was reported
onMay 11, 2009, over Kolkata with squally winds of the order
of 87 kmph. Rainfall of 33.3mm was reported over Kolkata.

e synoptic charts show a trough at sea level chart from
east Uttar Pradesh to north Tamilnadu across east Madhya
Pradesh and Andhra Pradesh. Cyclonic circulation in lower
levels is found over Bihar and neighborhood. Trough from
this extends up to extreme south peninsula across Chattis-
garh, Telangana, and Rayalaseema. Another cyclonic circu-
lation existed over Arunachal Pradesh adjoining Assam and
Meghalaya. A trough from Arunachal Pradesh to northwest
Bay of Bengal was found in middle troposphere. Subtropical
westerly jet maxima were found over the region. Light to
moderate rain occurred at few places over Orissa and GWB
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withMidnapore and Alipore reporting 17.8mm and 21.9mm,
respectively.

Case 3 was a severe thunderstorm, which was reported
on May 15, 2009. A squall passed over Kolkata at 1230UTC
on May 15, 2009, with a maximum speed of 68.4 kmph.

is intense convective event produced 16.9mm rainfall over
Kolkata. 
e synoptic charts show a trough at sea level
from east Madhya Pradesh to south coastal Tamilnadu across
Telangana and another trough to northeast Bay of Bengal
across Orissa. Cyclonic circulation is seen in lower levels
over west Uttar Pradesh and a trough from this extends up
to coastal Andhra Pradesh across Vidarbha with embedded
cyclonic circulation over Telangana. Trough in midtropo-
sphere is found from Arunachal Pradesh to north Bay of
Bengal. Subtropical westerly jet maxima were found over the
region. A few places of GWB recorded moderate rainfall and
isolated rainfall over Orissa and Bihar. Bankura recorded
34.0mm and Midnapore 51.6mm of rainfall [37].

4. Results and Discussion

According to the previous studies of [38–40], the general
preconditions for the initiation of thunderstorms are condi-
tional instability, a su�ciently deep humid layer in the lower
and midtroposphere, and an upli�ing mechanism to initiate
convection.
e formation of thunderstorms is an interaction
between these conditions on di�erent scales. 
e surface
parameters play a signi�cant role in the genesis, whereas the
strength of the upper air pull is required to assess the growth
of the thunderstorm [41]. 
e greater the density di�erences
between air masses (temperature and humidity), the greater
the atmospheric instabilities that develop, and the greater the
intensity of these thunderstorms [42]. Recent studies show
a high positive correlation between surface temperature and
lightning activity [43]. Temperature and relative humidity on
the surface are useful tool in forecasting the likelihood occur-
rence of a thunderstorm [44]. A sudden drop in temperature
or sudden increase in relative humidity during the day indi-
cates for the occurrence of thunderstorm [41].
eoccurrence
and intensity of three severe thunderstorms are examined
in the following sections by the analysis of observed andANN
model predicted surface relative humidity and temperature.

4.1. Comparison of Learning Algorithms. 
e ANN model
predicted surface temperature and relative humidity with
di�erent learning algorithms during severe thunderstorm
cases are explored in the following section. Analysis of the
results of these experiments is helpful to understand the
impact of learning algorithms on the prediction of severe
thunderstorm events and assist in the customization ofmodel
for future severe thunderstorm predictions over east and
northeast Indian region.

Figure 4 shows the interomparison of observed and ANN
model predicted diurnal variation of surface temperature
(∘C) with di�erent learning algorithms over Kolkata valid
for May 3, 11, and 15, 2009. From the �gures, it is clearly
visible that the observed data (OBS) show a sudden drop in
temperature in all three thunderstorm days.
e ANNmodel
with di�erent learning algorithms captured the temperature

drop during the thunderstormhour for all the three cases. But
the predicted intensity is di�erent for di�erent algorithms.
For the �rst case (Figure 4(a)), the observed temperature
showed a sudden drop of 15∘C from 36.7∘C to 21.7∘C at
1000UTC. 
e ANN model prediction with LM showed a
drop from 33∘C to 22∘C (11∘C) at 1000UTC, whereas CG pre-
sented a drop from 34∘C to 27∘C (7∘C) at 1000UTC. All other
algorithms show a di�erence less than 4∘C during thunder-
storm hour. 
e DBD has a least performance than other
algorithms. In the second thunderstorm case (Figure 4(b)),
observed temperature fall is from 33.1∘C to 21.7∘C (11∘C) at
1200UTC, whereas LM indicated a drop from 32∘C to 21∘C
(11∘C) at the same thunderstorm hour. CG showed only 6∘C
di�erence between predicted and observed values. 
e other
algorithms presented less intensity in di�erence between pre-
dicted and observed values. For the third case (Figure 4(c)),
observed temperature showed a drop from29∘C to 24∘C (6∘C)
at 1300UTC, whereas LM showed a drop from 32∘C to 27∘C
(5∘C). All other algorithms are also captured the sudden fall
with almost same intensity of observation and LM algorithm
for this thunderstorm case.

Relative humidity at surface level has been taken into
account, as it is an essential factor in intense convection.
Storm days require a su�ciently humid and deep layer in the
lower and middle atmosphere [36]. Figure 5 shows the inter-
comparison of observed and ANN model predicted relative
humidity (%) with di�erent learning algorithms over Kolkata
for severe thunderstorm days. For all the thunderstorm cases,
ANN model with di�erent algorithms have captured the
increase in relative humidity during thunderstorm hour as
in the observation. But the predicted intensity is di�erent for
di�erent learning algorithms. In the �rst case (Figure 5(a)),
the observed relative humidity showed a rise of 48% from
52% to 100% at 1000UTC. 
e ANN model prediction with
LM showed a rise from 53% to 95% (42%) at 1000UTC. All
other algorithms except CG show same change in intensity
(32%) at 1000UTC, whereas CG presented a rise from 55% to
81% (25%) at 1100UTC.
e performance of CG algorithm is
poor than all other algorithms during �rst thunderstormcase.
In the second case (Figure 5(b)), observed relative humidity
rise is from 66% to 100% (34%) at 1200UTC, whereas LM
indicated a rise from 68% to 100% (32%) at the same time.
As in the previous case, the CG shows increase in relative
humidity at 1400UTC with 16% change in intensity. 
e
changes in intensity predicted by other algorithms are also
same and the intensity of sudden increase is 23%. For the
third case (Figure 5(c)), observed relative humidity showed
a rise from 63% to 100% (37%) at 1300UTC, whereas LM
showed a rise from 73% to 95% (22%). 
e other algorithms
showed an intensity rise around 10%. From these analyses
of temperature and relative humidity, we can see that ANN
model with LM algorithm well predicted diurnal variation
during thunderstorm days and captured the sudden drop and
rise with almost same intensity of observation as compared to
other algorithms.


e results of statistical analysis based on MAE, RMSE,
and CC to evaluate forecasted temperature are shown in
Table 1.
e results of Table 1 indicated that LM algorithm has
less MAE and RMSE as compared to all other algorithms for
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Figure 4: Comparison of ANN predicted hourly surface temperature using di�erent learning algorithms with observation on (a) May 3,
2009, (b) May 11, 2009, and (c) May 15, 2009.

Table 1: Performance comparison of di�erent learning algorithms in hourly temperature prediction.

Statistical analysis Dates STP MOM CG LM QKP DBD

MAE

May 3, 09 3.36 3.24 2.69 2.08 3.48 3.41

May 11, 09 2.69 2.57 2.27 1.72 2.54 2.62

May 15, 09 2.93 2.66 2.08 1.21 2.69 2.90

Mean 2.99 2.82 2.35 1.67 2.90 2.98

RMSE

May 3, 09 3.54 3.50 2.90 2.35 3.70 3.69

May 11, 09 3.07 3.02 2.44 1.90 2.99 3.19

May 15, 09 3.07 2.76 2.20 1.41 2.78 3.04

Mean 3.23 3.09 2.51 1.89 3.16 3.31

CC

May 3, 09 0.82 0.82 0.90 0.93 0.79 0.80

May 11, 09 0.89 0.89 0.94 0.97 0.89 0.86

May 15, 09 0.74 0.80 0.91 0.96 0.80 0.74

Mean 0.82 0.84 0.92 0.95 0.83 0.80
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Figure 5: Comparison of ANN predicted hourly relative humidity using di�erent learning algorithms with observation on (a) May 3, 2009,
(b) May 11, 2009, and (c) May 15, 2009.

these 3 thunderstorm cases.
e CG algorithm has also given
moderate results. All other algorithms displayed more error
in all thunderstorm cases as compared to LM and CG algo-
rithms. 
e average MAE and RMSE from these 3 cases are
also less for LM algorithm than other 5 algorithms. Another
veri�cation method used for this study is correlation coe�-
cient. From the table we can clearly see that all the algorithms
are positively correlated. 
e LM algorithm has the highest
CC in all three cases as compared to all other algorithms.
e
average CC of LM and CG algorithms is more than 0.9. 
e
CC of other algorithms is less than 0.85. 
e performance
of DBD algorithm is less e�cient than other algorithms. 
e
analysis shows that LM algorithm is best for hourly tempera-
ture prediction over Kolkata during thunderstorm days.


e results of statistical analysis based on MAE, RMSE,
and CC to evaluate forecasted relative humidity are shown in
Table 2. 
e results of Table 2 indicated that LM algorithm
has less error as compared to all other algorithms for these 3
thunderstorm cases as in temperature study. All other algo-
rithms have also givenmoderate results except CG algorithm.


e CG algorithm displayed more error in all cases. But in
temperature prediction (Table 1), CG algorithm is performed
well than other 4 algorithms, namely, STP, MOM, DBD, and
QKP.
e averageMAEandRMSEof LMalgorithmhave least
value than other 5 algorithms. From Table 2, we can clearly
see that all the algorithms are positively correlated. 
e LM
algorithm has the highest CC in all three cases as compared
to all other algorithms. 
e average CC of 3 thunderstorm
cases is more for LM algorithm which is more than 0.9. 
e
CC of other algorithms except CG is 0.8 which is strong
correlation.
e performance of CG algorithm is less e�cient
than other algorithms for the prediction of hourly surface
relative humidity during thunderstorm days. 
e results
show that LM algorithm is best for hourly relative humidity
prediction over Kolkata during thunderstorm days.

Figure 6 gives the performance accuracy of learning
algorithms for hourly temperature and relative humidity pre-
diction. 
e percent correct (PC) of temperature presented
a percentage number of the times when the forecast is accu-
rate to within±2∘C.
e results (Figure 6(a)) clearly indicated
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Figure 6: Performance accuracy of learning algorithms for the prediction of (a) temperature and (b) relative humidity during thunderstorm
days.

Table 2: Performance comparison of di�erent learning algorithms in hourly relative hunidity prediction.

Statistical analysis Dates STP MOM CG LM QKP DBD

MAE

May 3, 09 6.62 6.78 8.21 5.24 7.06 6.65

May 11, 09 6.80 5.77 8.46 5.20 6.19 6.26

May 15, 09 9.23 9.20 9.86 3.02 9.53 8.98

Mean 7.55 7.25 8.84 4.49 7.60 7.30

RMSE

May 3, 09 8.77 9.50 12.64 6.55 9.43 9.42

May 11, 09 7.99 7.06 10.71 6.76 7.25 7.30

May 15, 09 10.33 9.94 10.93 3.71 10.56 9.89

Mean 9.03 8.83 11.43 5.67 9.08 8.87

CC

May 3, 09 0.86 0.86 0.69 0.93 0.84 0.86

May 11, 09 0.84 0.88 0.64 0.95 0.86 0.89

May 15, 09 0.68 0.76 0.67 0.95 0.68 0.69

Mean 0.80 0.83 0.67 0.95 0.80 0.82

that overall accuracy of LM algorithm for three events is
76%. CG gave a moderate accuracy of 61%. Other algorithms
displayed less accuracy.
ePCof relative humidity presented
a percentage number of the times when the forecast is accu-
rate to with ±10% con�dence range. 
e results (Figure 6(b))
indicated that overall accuracy of LM algorithm for three
events is 88%. MOM algorithm also shows a good accuracy
of 81%. 
e other algorithms displayed a moderate accuracy,
which is more than 75%. LM algorithm shows more accuracy
for the prediction of hourly temperature and relative humid-
ity.


e time-series plots and statistical analysis of tempera-
ture and relative humidity revealed that LM algorithm well
predicted the occurrence and intensity of all 3 thunderstorm
cases as in the observation. 
e results suggest that the
ANNmodel with LM algorithm holds promise for prediction
of surface weather parameters with reasonable accuracy in
severe thunderstorm cases.

4.2. Comparison of Di�erent Advanced Predictions. 
e
developed ANN model was applied to derive thunderstorm
forecast from 1 to 24 h ahead at Kolkata from the data of 3
consecutive years (2007–2009). 
e ANN models were cre-
ated to predict surface temperature and relative humidity at
hourly intervals with 1 h, 3 h, 6 h, 12 h, and 24 h ahead during
severe thunderstorm cases, and the results are evaluated

in the following section. Analysis of the results of these
experiments is helpful to understand the e�ciency of ANN
model to predict severe thunderstorm events in advance and
can apply operationally over east andnortheast Indian region.


e comparison between observed and predicted surface
temperature for 1 to 24 h advanced forecasting on May 3, 11,
and 15, 2009, is shown in Figure 7. As seen in the �gure,
1 h advanced forecast could forecast quite accurately. It was
captured the sudden fall in temperature during thunderstorm
hours for all 3 thunderstorm days. 
e 3 h forecast was in the
next position and very close to the observation for the �rst
case. Some deviations are there in the second and third case.

e 6 and 12 h forecast failed to capture the entire pattern. For
the �rst case (Figure 7(a)), the observed temperature showed
a sudden drop of 15∘C from 36.7∘C to 21.7∘C at 1000UTC.

e 1 h ahead forecast model showed a drop from 33∘C to
22∘C (11∘C) at 1000UTC, whereas 3 h presented a drop from
32∘C to 25∘C (7∘C) at 1000UTC. In the second thunderstorm
case (Figure 7(b)), observed temperature fall is from 33.1∘C
to 21.7∘C (11∘C) at 1200UTC, whereas 1 h ahead forecast
model indicated a drop from 31∘C to 21∘C (10∘C) at the same
thunderstorm hour. 
e other models failed to capture a
sudden fall during thunderstorm hour. For the third case
(Figure 7(c)), observed temperature showed a drop from
29∘C to 24∘C (6∘C) at 1300UTC, whereas 1 h advanced
prediction model showed a drop from 32∘C to 27∘C (5∘C).
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Figure 7: Comparison of ANN predicted hourly temperature using di�erent advanced prediction models with observation on (a) May 3,
2009, (b) May 11, 2009, and (c) May 15, 2009.


e temperature forecast at 24 h ahead model also gave good
results as compared to 6 and 12 h ahead forecasts. 
e hourly
temperature variation of 24 h ahead model shows a small fall
with an intensity of 6∘C at 1600 and 1300UTC for the �rst two
thunderstorm cases and 3∘C at 1400UTC for the third thun-
derstorm case. 
is model captured sudden fall with 6-hour
time lag for the �rst cases and 1 hour for second and third
cases.


e statistical analyses of the ANN model performance
for the advanced prediction of surface temperature during
thunderstormdays are given inTable 3. BothMAEandRMSE
are less for 1 and 3 h advanced prediction and also have a
high positive correlation. 
e errors are high and have low
correlation (+ve or −ve correlation) for 6 and 12 h advanced
predictions. 
e 24 h ahead forecast models are better per-
formed than 6 and 12 h ahead prediction and the average
correlation is 0.70. 
e results were highly satisfactory for
temperature forecast with 1 to 3 h ahead. 
e 6 and 12 h
ahead forecast accuracy were very poor as compared to 1, 3,
and 24 h. 
e percent correct of these 5 models is given in
Figure 9(a). 
e �gure clearly indicates that overall accuracy
of 1 h ahead forecast for three events is 70%. 
e 3 and 24 h
ahead forecastmodels are also close to this with 65% and 54%.

e other two models (6 and 12 h) displayed less accuracy.


e comparison between observed and predicted relative
humidity for 1 to 24 h ahead forecasting on May 3, 11, and
15, 2009, is shown in Figure 8. 
e results show 1 h ahead
forecast captured sudden increase in relative humidity at
thunderstormhours during all three thunderstorm cases.
e
3 h advanced prediction model was able to predict the rise in
relative humidity during thunderstorm hour in the �rst two
cases. 
e 24 h forecast was also close to the observation for
the second thunderstorm case, even though one hour time
lag exists. 
e 6 and 12 h forecast failed to capture the entire
pattern for all 3 cases as in temperature prediction. In the �rst
case (Figure 8(a)), the observed relative humidity showed a
rise of 48% from 52% to 100% at 1000UTC.
e 1 h advanced
ANN model prediction shows a rise from 60% to 97%
(37%) at 1000UTC. 
e 3 h ahead model showed a rise with
an intensity of 20% at 1000UTC. 
e other models failed
to capture sudden rise as in 1 and 3 h ahead forecast. In the
second case (Figure 8(b)), observed relative humidity rise is
from 66% to 100% (34%) at 1200UTC, whereas 1 h ahead
model indicated a rise from 70% to 88% (18%) at the same
time. 
e intensity of increase is less (12%) for 3 h ahead
model and the other models failed to capture the sudden rise
during thunderstorm hour. 
e 24 h ahead model showed a
sudden rise from 61% to 92% (31%) with one-hour time lag
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Table 3: Performance comparison of di�erent advanced predictions for hourly temperature during thunderstorm days.

Statistical analysis Date 1 h 3 h 6 h 12 h 24 h

MAE

May 3, 09 1.34 1.88 4.04 6.06 4.61

May 11, 09 2.10 2.44 4.62 8.47 3.21

May 15, 09 2.07 2.32 3.84 6.54 2.11

Mean 1.84 2.22 4.17 7.02 3.31

RMSE

May 3, 09 2.36 2.13 4.94 6.81 6.35

May 11, 09 2.42 3.06 5.17 8.97 4.71

May 15, 09 2.29 2.95 4.82 7.19 2.93

Mean 2.35 2.71 4.98 7.66 4.66

CC

May 3, 09 0.97 0.93 0.63 −0.19 0.53

May 11, 09 0.95 0.82 0.48 −0.80 0.70

May 15, 09 0.94 0.76 0.38 −0.77 0.91

Mean 0.95 0.84 0.50 −0.59 0.71

Table 4: Performance comparison of di�erent advanced predictions for hourly relative humidity during thunderstorm days.

Statistical analysis Date 1 h 3 h 6 h 12 h 24 h

MAE

May 3, 09 9.08 15.72 19.26 21.39 20.06

May 11, 09 5.96 7.43 13.26 20.04 11.65

May 15, 09 8.03 11.02 14.54 17.40 7.31

Mean 7.69 11.39 15.69 19.61 13.00

RMSE

May 3, 09 10.63 18.73 25.01 24.59 27.65

May 11, 09 7.73 10.58 15.47 21.63 14.05

May 15, 09 9.98 12.55 16.94 19.67 8.71

Mean 9.45 13.95 19.14 21.96 16.80

CC

May 3, 09 0.92 0.77 0.40 −0.39 0.45

May 11, 09 0.85 0.70 0.19 −0.65 0.61

May 15, 09 0.76 0.61 0.08 −0.40 0.72

Mean 0.84 0.69 0.22 −0.48 0.59

for this thunderstorm event. For the third case (Figure 8(c)),
observed relative humidity showed a rise from 63% to 100%
(37%) at 1300UTC, whereas 1 h ahead model showed a rise
from 70% to 92% (22%).
e 3 and 24 h aheadmodels showed
an intensity of rise around 3% and 12%, respectively. From
these analyses of temperature and relative humidity, we can
see that 1 h advanced predictionmodel well predicted diurnal
variation during thunderstorm days and captured the sudden
drop and rise with almost same intensity of observation as
compared to other models.


e statistical analyses of the ANN model performance
for the advanced prediction of hourly relative humidity
during thunderstorm days are given in Table 4. Both MAE
and RMSE are less for 1, 3, and 24 h advanced prediction.
e
highest correlation coe�cient is for 1 h advanced prediction
model (0.80).
e 3 and 24 hmodel have also a positive corre-
lation. 
e errors are high and have low correlation for 6 and
12 h advanced prediction models as in the temperature fore-
cast case. 
e results were satisfactory for relative humidity
forecast with 1, 3, and 24 h ahead as in temperature forecast.

e percent correct (PC) of these 5 models is given in
Figure 9(b). 
e �gure clearly indicates that overall accuracy
of 1 h ahead forecast for three events is 74%. 
e 3 and 24 h

ahead forecastmodels are also close to this with 61% and 54%.

e 6 and 12 h ahead model forecast accuracy were very poor
as compared to other three advanced prediction models.


e models developed in this section show how surface
temperature and relative humidity can be predicted for 1 to
24 h ahead with an ANNmodel. Although the results varied,
the 1 and 3 h ahead ANN models were able to predict hourly
temperature and relative humidity adequately with sudden
fall and rise. Even 24 h advanced prediction model can able
to predict features of thunderstormwith reasonable accuracy.
Although the model performance of 6 and 12 h forecasting
was low and the forecasting was not as accurate as expected,
the developed model can still useful in decision making for
meteorologists and others who work with real-time thunder-
storm forecast.

5. Conclusions


e severe thunderstorms have signi�cant socio-economic
impact over eastern and northeastern parts of India. 
e
improvement in prediction of these important weather
phenomena is highly handicapped due to lack of mesoscale
observations and insu�cient understanding. 
e recent
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Figure 8: Comparison of ANN predicted hourly relative humidity using di�erent advanced prediction models with observation on (a) May
3, 2009, (b) May 11, 2009, and (c) May 15, 2009.
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Figure 9: Performance accuracy of di�erent advanced prediction models for the prediction of (a) temperature and (b) relative humidity
during thunderstorm days.

advances in neural network methodology for modeling non-
linear, dynamical phenomena along with the impressive suc-
cesses in a wide range of applications are motivated to inves-
tigate the application of ANNs for the prediction of thun-
derstorms. ANN has capability to extract the relationship
between the inputs and outputs of a process, without the
physics being explicitly provided [45]. 
is study evaluates

the utility of ANN for estimating hourly surface temperature
and relative humidity.

In this paper, sensitivity experiments have been con-
ducted with ANN model to test the impact of learning
algorithms on severe thunderstorm prediction that occurred
over Kolkata on May 3, 11, and 15, 2009, and selected LM
algorithm for further studies. 
e developed ANN model
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with LM algorithm was applied to derive thunderstorm
forecasts from 1 to 24 h ahead at Kolkata. 
e objective of
this study was to use ANNs to predict temperature and
relative humidity during thunderstorm days from 1 to 24 h
ahead using prior weather data as inputs. A statistical analysis
based on MAE, RMSE, CC, and PC is also performed for
comparison among predicted and observed data with di�er-
ent learning algorithms and advanced predictions.


e model setups were identical except for the use of dif-
ferent learning algorithms for the sensitivity experiments of
learning algorithms. Hence the di�erences in the prediction
results attributed to the sensitivity of learning algorithms.
LM algorithm appears to be the best learning algorithm for
mapping the di�erent chaotic relationships. A�er analyzing
the results, we can conclude that the ANN model with LM
algorithm has well predicted the hourly temperature and rel-
ative humidity in terms of sudden fall of temperature and rise
of humidity during thunderstormhours.
edevelopedANN
model with LM algorithm was used to predict surface tem-
perature and relative humidity at hourly intervals with 1, 3, 6,
12, and 24 h ahead during same severe thunderstorm cases.
Analysis of the results reveals that the 1, 3, and 24 h ANN
models were able to predict hourly temperature and relative
humidity adequately with sudden fall and rise. 
e e�ciency
of ANNmodels is reduced as the forecast lead time increased
from 6 to 12 h. It can be inferred that ANN could yield more
accurate results, if good data selection strategies, training
paradigms, and network input and output representations are
determined properly. In future, we would like to use more
networks like an elman recurrent neural network (ERNN)
and radial basis function network (RBFN) to examine their
applicability in thunderstorm forecasting.
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