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Abstract—A measurement-based quasi-static nonlinear field-ef-
fect transistor (FET) model relying on an artificial neural network
(ANN) approach and using real-time active load–pull (RTALP)
measurement data for the model extraction is presented for an
SOS-MOSFET. The efficient phase sweeping of the RTALP dras-
tically reduces the number of large-signal measurements needed
for the model development and verification while maintaining
the same intrinsic voltage coverage as in conventional passive
or active load–pull systems. Memory effects associated with the
parasitic bipolar junction transistor (BJT) in the SOS-MOSFET
are accounted for by using a physical circuit topology together
with the simultaneous ANN extraction of: 1) the intrinsic FET
current–voltage characteristics; 2) the intrinsic charges of the
FET; and 3) the BJT dc characteristics, all from the same mod-
ulated large-signal RF data. The verification of the model using
load-lines, output power, power efficiency, and load–pull, which
is performed using two additional independent RTALP measure-
ments, demonstrates that a reasonably accurate large-signal RF
device model accounting for memory effects can be extracted from
a single 10.5-ms RTALP measurement with a physically based
ANN model.

Index Terms—Artificial neural network (ANN), large-signal
network analyzer (LSNA), memory effects, MOSFET, parasitic
bipolar junction transistor (P-BJT), real-time active load–pull
(RTALP).

I. INTRODUCTION

V ARIOUS semiconductor materials (Si, GaAs, GaN, InP,

etc) and device structures (SOS-MOSFETs, MESFETs,

LDMOSs, HEMTs, etc.) have been introduced and rapidly

deployed in order to meet the high-power and high-efficiency

requirements of modern high-frequency wireless communica-

tion[1], [2]. Under such circumstances, conventional modeling

approaches (e.g., physically based or analytical closed-form

empirical models) cannot keep up with the fast pace of tech-
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nology development [3]. Measurement-based models, which

bypass this technology dependence in the model equations,

first took the form of: 1) measured -parameter data for linear

device operation; later on of 2) table-based device models like

the Root model [4]; and more recently, 3) nonlinear behavioral

models like -parameters [5] for nonlinear device operation.

In all these models, the functional bias or power dependence is

typically implemented using spline functions. These measure-

ment-based modeling approaches facilitate the development of

large-signal models, and thus accelerate the design cycle for

power amplifiers [4]–[7]. However, the main limitation in the

use of spline function is: 1) their poor extrapolation outside of

the range of the data available and 2) their possible oscillation

between data points. The recently introduced artificial neural

network (ANN) method provides very smooth functions and

nonvanishing derivatives of infinite order while guaranteeing

the capability to fit any nonlinear bias/power dependence in

devices [8]–[10].

However, the model development cycle is still restricted due

to the large number of -parameters or nonlinear measurements

needed for the model extraction. Indeed, the measurement time

rapidly increases as a dense grid on the intrinsic voltage planes

is required for an accurate extraction of the model. The ad-

vent and successful deployment of nonlinear vector measure-

ment systems have created an incentive for using large-signal

characterization instead of conventional small-signal character-

ization for device modeling [7]–[10]. The main advantage of

using large-signal measurements for device modeling is that

the model parameters are extracted under realistic device oper-

ating conditions and that the number of needed measurements

can be reduced dramatically. The first trial using large-signal

measurements was conducted for the extraction of the nonlinear

charges of a field-effect transistor (FET) [11]. In [7] and [11],

the gate and drain currents and charges extracted from large-

signal measurements were compared to the ones obtained from

small-signal measurements using an ideal analytical model to

show the validity of the large-signal approach. In addition to

the excellent agreement obtained with the small-signal results,

the needed number of measurements was found to be reduced

from to times while obtaining the same intrinsic voltage

coverage. However, the time-consuming tuner characterization

and Smith chart sweeping required in passive load–pull or the

large number of amplitude and phase sweep measurements in

the active load–pull system still strongly impacts the model de-

velopment cycle. Note that an even larger number of measure-

ments is required for more advanced models [9] that model the

dynamics of traps and thermal effects.
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In this paper, we present a measurement-based quasi-static

nonlinear model for an SOS-MOSFET whose intrinsic non-

linear charges and current sources are extracted and verified

from large-signal measurements performed using the real-time

active load–pull technique (RTALP) [12], [13]. Since RTALP

data typically covers a wide range of device operating points,

the nonlinear charge and current sources of the model can be

extracted from only a single 10.5-ms modulation large-signal

measurement with an LSNA. Further, by directly comparing

the measured and modeled load-lines, the proposed method-

ology will allow for both fast model extraction and verification

procedures.

This paper is organized as follows. In Section II and the

Appendix, the supportive theory for the ANN modeling and

the RTALP measurements are presented. In Section III, the

extrinsic parameters of the device are extracted using dummy

devices and a modified cold FET technique. In Section IV-A,

the ANN modeling is applied to the RTALP large-signal RF

measurements. The performance of the ANN model when the

FET IV and charges are extracted separately and simultane-

ously will then be presented. In Section IV-B, the FET model

is extended to explicitly include the parasitic bipolar junction

transistor (P-BJT) of the SOS-MOSFET so as to better account

for the associated low-frequency memory effects and yield

a model with improved accuracy. Both linear and nonlinear

bipolar junction transistor (BJT) models based on different

model assumptions are extracted and compared. The extrap-

olation capability of the model for different loads and power

levels are also investigated. Finally, this paper concludes with

a summary of the achievements reported in Section V.

II. SUPPORTIVE THEORY

A. ANN for Displacement Current

The ANN will be used in this work for representing the

voltage dependence of the charges and current sources asso-

ciated with the gate and drain of the SOS-MOSFET. ANN

models are trained for the desired output (e.g., drain current)

from various inputs (e.g., gate, drain voltages, and time deriva-

tive of voltages) by minimizing an error of cost function [14],

[15]. A detailed explanation on the general ANN algorithm and

cost function is presented in the Appendix.

Let us consider the intrinsic gate current. In the general case,

the intrinsic gate current includes both conduction and displace-

ment currents

(1)

where is the dc gate current and is the displacement

current defined as

(2)

If the dc gate current has been characterized separately,

the instantaneous displacement current can be obtained using

.

Fig. 1. Real-time active load–pull system testbed.

To integrate the displacement current and obtain the

gate charge , we need to minimize the following cost func-

tion (see the Appendix):

(3)

In (3), and are the first derivatives of the ANN output

(third layer) with respect to the network and ,

inputs (1) and (2), respectively. The ANN Jacobian, which is re-

quired for the resilient back propagation (RPROP) [16] used for

the extraction of the ANN of the charge from the displacement

current, is presented in the Appendix for a three-layer ANN. The

cost function for the general case where the drain charge is ex-

tracted simultaneously with the drain conduction current is also

presented in the Appendix.

B. Time-Domain Reconstruction for Real-Time ALP

The RTALP testbed used to characterize the device is shown

in Fig. 1. The RF voltage and current waveforms at port are

given by

(4)

(5)

where the time-domain incident and reflected

waveforms can be reconstructed from the mea-

sured frequency domain complex waves and

measured by the LSNA using

(6)

(7)



KO et al.: ANN MODEL OF SOS-MOSFETs BASED ON DYNAMIC LARGE-SIGNAL MEASUREMENTS 493

Fig. 2. Circuit schematic of a common-source FET and it parasitic networks

for on-wafer measurement.

The time-varying reflection coefficients at the th harmonic can

then be extracted using

(8)

The fundamental RF output power at the output is also calcu-

lated by

(9)

III. EXTRINSIC PARASITICS EXTRACTION

Fig. 2 shows the device structure including the intrinsic tran-

sistor, parasitics, and parasitic network for on-wafer measure-

ments. To get access to the reference plane of the intrinsic tran-

sistor, all the parasitics shown in Fig. 2 were extracted in two

separate steps, as described below. In the first step, the parasitics

in the outer most layer , , and are extracted

by measuring the -parameters of dummy structures that were

fabricated on the same wafer as the tested devices. Next, in the

second step, using the extracted parasitics obtained in the first

step, the remaining device parasitics , , and

are extracted using a nonlinear least squaremethod starting from

physical estimated values.

The method used for this second extrinsic element extraction

is the cold-FET [17], [18]. First, the device is biased with

V so that there be no dc current in the channel. The gate voltage

is then biased below and above the threshold voltage

and small-signal -parameter measurements are performed for

both conditions. Typically the small-signal equivalent circuit

can be simplified sufficiently to enable one to unambiguously

identify the various elements. In our particular case, we use the

more rigorous circuit model provided by the FET wave-equa-

tion theory [19] for and . Fig. 3 shows the

fitted and measured -parameter results. The extracted data are

summarized in Table I.

Once all the parasitics are extracted, the intrinsic transistor

model can be developed from the de-embedded large-signal

measured data.

IV. MODELING THE INTRINSIC TRANSISTOR

The voltage-controlled gate charge and current sources and

the voltage-controlled drain charge and current sources used for

Fig. 3. Measured (red dots in online version) and fitted (green lines in online

version) -parameters for one conduction dc-bias point.

TABLE I

EXTRACTED PARASITICS FROM DUMMY STRUCTURE

AND USING COLD-FET APPROACH

Fig. 4. Quasi-static large-signal intrinsic model with no memory effects.

the intrinsic transistor are shown in Fig. 4. These charge and

current sources are controlled by the instantaneous voltages

and . Therefore, the total currents in the gate and drain sides

are

(10)

(11)

Typically, the conduction current on the gate side is negli-

gible and ignored due to insulating oxide between the gate and

channel in SOS-MOSFETs. Therefore, only , , and

will be investigated for the intrinsic transistor such that (10) re-

duces to

(12)

It is to be noted that for the low gate voltages ( 0.8 V) to be

considered in the rest of this paper, the dc IV and pulsed IV char-
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Fig. 5. Comparison of measured (lines) and ANN results (circles) for .

Fig. 6. Comparison of measured (lines) and ANN results (circles) for .

acteristics are similar for the same substrate temperature, as self

heating was found to be negligible at low gate voltage drives.

The parasitic bipolar in the SOS-MOSFET was then verified to

be relatively fast (around 100-MHz cutoff response). Therefore,

in the next section, the less noisy dc IV characteristics will first

be used instead of pulsed-IV characteristics for the conduction

current model extraction.

A. Quasi-Static Model Extraction

To acquire the drain conduction current source , dc IVmea-

surements were performed using a Keithley 4200 in the range

of 0–2 V with a 0.1-V step for and 0–3.5 V with a 0.1-V

step for . The three-layer ANN structure is selected for all

state functions and consists of two inputs, 20 nonlinear neurons

in the hidden layer, and one linear neuron at the output.

Figs. 5–7 show a comparison of the intrinsic drain current

, transconductance , and drain conductance , between

the measurement (lines) and ANN model results (circles). As

shown in these figures, the drain current as well as its first

derivatives and with respect to and compare

Fig. 7. Comparison of measured (lines) and ANN results (circles) for .

well with the measured data. This is achieved by using the same

weights for the IV and its first derivatives in the ANN error cost

function for the accurate prediction of harmonics and intermod-

ulation [14].

The next step is to develop the ANN model for the gate and

drain charges. The dynamic load-lines measured by the LSNA

in space are given in Fig. 8(b). As the swept RF

power on the drain side increases, a wider voltage coverage

is obtained in RTALP due to larger amplitudes of the load re-

flection coefficients. One of the advantages of the large-signal

RF characterization approach is that its measurement region

can extend far beyond the conventional dc operating range of

the device such that extreme regions (e.g., breakdown) can be

characterized without any device degradation. This holds be-

cause the frequency of the excited RF signal is typically above

1 GHz and the instantaneous voltage spends a relatively short

time (ns scale) in the high-voltage region. Furthermore, the dy-

namic large-signal data used for the model extraction shown in

Fig. 8 is measured from only a single 10.5 ms (2 IF data sam-

pled at 25 MHz) LSNA modulation measurement thanks to the

real-time tuning of RTALP. In previously reported large-signal

approaches, such as passive load–pull or active load–pull sys-

tems, many different measurements from various load imped-

ances, and RF power, and dc-bias conditions were necessary to

obtain the same coverage. In this paper, the 12-dBm (magenta

in online version) data is used for the model extraction in order

to avoid the potentially unstable region where .

Fig. 9 compares the LSNA and model simulation results for

the drain load-lines obtained at six different complex load im-

pedances. The results shown provide a visual evaluation of the

extraction accuracy. It is seen that the fit of the load-line is not

optimal, motivating the need for further improvements.

Note that in this preliminary approach, the conduction and

displacement current sources were extracted separately. First

the ANN for the measured dc current and intrinsic voltages was

extracted and next the ANN for the drain charge was extracted

from the displacement current ob-

tained from the 12-dBm RTALP large-signal RF measurement.
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Fig. 8. (a) Loci of the swept (solid line) in RTALP for eight different RF

power levels injected on the drain side. Also shown is the device stability

(dashed line). (b) Corresponding dynamic load-lines of versus

for the eight RTALP measurements running from 2 to 18 dBm.

Fig. 9. Dynamic load-lines at six different load impedances obtained from the

measurement (lines) and the model (circles). The intrinsic IVs (dashed lines) are

extracted from the dc IV measurement. The associated loads (squares)

and (crosses) are shown in Fig. 8(a).

Alternatively, the ANN networks for the IV characteristics

and the drain charges can be simultaneously extracted from the

TABLE II

RMS COMPARISON

same 12-dBm RTALP large-signal RF data without using the dc

IV data. In that case, the model used for the drain current reduces

to

(13)

where is the transient IV charac-

teristics holding for the dc bias . This is achieved by

using an ANN error cost functions combining the conduction

and displacement parts, as shown in the Appendix.

Using this simultaneous ANN extraction of the IV and

charges from the same RF large-signal data, an improved fitting

can be obtained. To quantitatively verify it, Table II compares

the root mean square error (rms) values calculated from 100

different drain load-lines when the IV and charge ANNs are

extracted separately and simultaneously. Note that different

drain load-lines were also used in the evaluation of the rms for

the extraction case. As is shown in Table II, the rms is decreased

by a factor of 2 in the 12-dBm verification case, as well as

exhibits a substantial improvement for both the 10-dBm (Case

1) and 14-dBm (Case 2) prediction cases. The improvement is

due to the fact that the dc IV characteristics used for the simul-

taneously ANN extraction implicitly accounts for the memory

effects associated with the P-BJT present in the SOS-MOSFET.

This improvement further suggests modifications of the model,

which are explored in the next section.

B. Quasi-Static Model Extraction Including Memory Effect

In the previous section, a quasi-static model with no explicit

memory effects was developed and compared between different

extraction approaches. Even though SOS-MOSFET devices

used in this study exhibit less thermal effects than GaN HEMTs

and negligible trapping effects, they feature a different memory

effect mechanism associated with their P-BJTs. This parasitic

bipolar transistor is activated by the hole component of the

drain current generated by impact ionization at high drain

voltages. However, the P-BJT is a large device that does not

respond at GHz frequencies and is thus only activated by the

slower varying baseband component and of

the FET drain current (RF-IV) and the drain voltage ,

respectively. Note that memory effects were thus implicitly ac-

counted for when simultaneously extracting the RF IV and the

FET charge instead of using the dc IV. However, the variation

in time at baseband of the bias during RTALP
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Fig. 10. Quasi-static large-signal intrinsic model with the parasitic BJT.

was not accounted for. To account for this effect and better

include this unwanted P-BJT into the model, the drain current

is modified, as indicated in Fig. 10, leading to the equation

(14)

where is the baseband BJT current and

is the RF IV, which is assumed for simplicity

not to be a function of the dc bias ( ).

Note that since the baseband current of the RF

FET IV is not available from the measurement, the

baseband current of the total intrinsic drain current

measured during RTALP is used instead. Once the model

extraction has been completed, the mapping between

and is available and one can return to the original

formulation if desired.

Two approaches are used to model the P-BJT current. In the

first method, the P-BJT is assumed to be a linear function of

the slowly varying baseband drain current and drain voltage in-

duced by the real-time tuning of RTALP,

(15)

(16)

This linear expansion is well justified by the fact that the bias

point varies little during RTALP, as is demonstrated by its locus

in Fig. 12(a) (black dots around 1.7 V and 22 mA). A single-

layer ANN structure with a linear function is thus implemented

and then added to the error cost function.

In the second approach, the full nonlinear characteristics of

the P-JBT is represented by a separate ANN with (in

the Appendix) and extracted by including the measured SOS-

MOSFET dc IV beside the RF load-line data used for the ANN

extraction. Indeed at dc or at low frequencies ( 100 MHz), the

dc IV of the SOS-MOSFET drain current includes contributions

from both the FET and BJT dc characteristics

(17)

The necessary update of the ANN cost function to include the

BJT contribution is discussed in the Appendix.

The calculation of the ANN Jacobian for the BJT is similar to

that of the dc drain current.

Fig. 11 shows the measured (red circles in online version)

and simulated (black lines) dc IV together with the RF IV (blue

lines in online version) contributing to the RF and baseband

drain conduction currents and the nonlinear P-BJT IV char-

acteristic (purple lines in online version) contributing solely

Fig. 11. Measured (red circles in online version) and reconstructed (black

lines) dc IV together with the RF IV (blue lines in online version) and non-

linear P-BJT IV characteristic (purple lines in online version) contributing,

respectively, to the RF and baseband drain conduction currents.

to the baseband drain conduction current. In the high drain

voltage region, impact ionization brings about a substantial

drain current increase due to the high electric field in the

channel. In this model, breakdown is controlled by the slow

P-BJT that accounts for the fact that breakdown occurs at lower

(2.5–3 V) in the dc IVs (black line) compared to the RF IVs

(blue line in online version) where no breakdown is detected

up to 3.5 V. To account for this feature, the extracted P-BJT is

shown to exhibit an exponentially increase in the current at high

such that the total dc IV from the model exhibits a reason-

ably good agreement with the measured dc IV. However, the

negative P-BJT currents at low voltages gives a measure

of the range of validity of this model. Presumably, the charge

distribution in the SOS-MOSFET is also affected by the impact

ionization under high bias such that the assumption of RF IV

characteristics that are independent of the

bias points might not be applicable to lower values

of . Indeed, as we shall see, the less ambitious perturbative

model that only models the BJT for the small variations in the

dc-bias points during RTALP (instead of the

full IVs) will noticeably outperform the nonlinear BJT model

in terms of accuracy for the bias-considered. Nonetheless, the

partitioning of the SOS-MOSFET in a fast RF-MOSFET and a

slow nonlinear BJT subcomponents brings about some valuable

insights in the complexity of memory effects in SOS-MOS-

FETs.

Table II compares the rms obtained over 100 different drain

load-lines for the linear and nonlinear P-BJT models with the

rms for the two extraction models reported in the previous sec-

tion. The rms exhibits a noticeable improvement for both the

verification and prediction cases for the linearized BJT model.

A mixed results of small improvement and small degradation

is, however, observed in both verification and prediction when

using the nonlinear BJT model. The degradation in prediction

for Case 2 may be due to the fact that the BJT model slightly

exaggerates the impact of the drain baseband currents at higher

power (14 dBm).
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Fig. 12. (a) Dynamic load-lines at six different load impedances obtained

from the measurement (lines) and the model (circles). The intrinsic RF-IVs

(dashed lines) and the linear P-BJT response are extracted simultaneously from

a single RTALP measurement. (b) and (c) Associated gate and drain current

waveforms for these six load-lines. The associated loads (square) and

(crosses) are shown on Fig. 8(a).

Fig. 12(a) compares the LSNA load-line measurement and

model simulation results with the linear P-BJT implementation

drain currents waveforms for the same six different complex

Fig. 13. Extracted: (a) and (b) from a single large-signal modulated

RF measurement.

load impedances used in Fig. 9. When comparing Fig. 9 and

12(a), a noticeable improvement is observed in all of the six

different load-lines as predicted by the improvement in the rms

figure-of-merit. The associated waveforms for the gate and drain

currents are also shown in Fig. 12(b) and (c) for completeness.

The charges and that are simultaneously extracted

from the same measurement are presented in Fig. 13. As men-

tioned earlier, a graceful prediction of the gate and drain charges

outside the data extraction region is observed thanks to the good

ANN extrapolation capability compared to B-spline fitting (not

reported here).

To further test the capability of this model, Figs. 14–16

present a comparison of the modeled and measured results for

the input power , output power , dc dissipated power

, and power-added efficiency (PAE) at 20 different complex

load impedances. Note that the 20 different points were selected

from the same single (12 dBm) RTALP measurement, but these

RTALP measurement data were not used in the ANN training.

As shown in these figures, all the modeled results and most of

the measured results are approximately following a sinusoidal

shape, as the phase of the reflection coefficient is swept

by the real-time tuning along its closed contour.

Finally, a comparison of the model large-signal prediction

with respect to measured output power and PAE on the Smith
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Fig. 14. Measured (red squares in online version) and modeled (blue circles

in online version) input power comparison at 20 different complex load imped-

ances.

Fig. 15. Measured (red squares in online version) and modeled (blue circles in

online version) and comparison at 20 different complex load imped-

ances.

Fig. 16. Measured (red squares in online version) and modeled (blue circles in

online version) PAE comparison at 20 different complex load impedances.

chart is presented in Figs. 17 and 18. The model agrees rea-

sonably well with the measured output power and PAE. Note

that the ANN model was only extracted using the 12-dBm

Fig. 17. Measured (top) and simulated (bottom) output power contours.

, whereas the verification contour plots are gener-

ated using 10, 12, and 14 dBm of the Smith chart [see Fig. 8(a)].

The optimum load impedance points for output powers and

PAEs located at different load points under this modulated RF

measurement are reasonably well predicted. This indicates that

the proposed model reflects well on the device behavior at both

RF and low frequencies.

V. CONCLUSION

A measurement-based quasi-static nonlinear model relying

on ANN modeling has been presented for an SOS-MOSFET

exhibiting strong parasitic bipolar transistor memory effects. A

rapid and convenient IV and charge extraction based on a single

(10.5 ms) large-signal modulated RF measurement has been

demonstrated. The extraction makes use of the unique charac-

teristics of real-time active load–pull, which maps a wide range

of gate and drain voltages in a single-modulation LSNA mea-

surement. A new ANN error cost function was also introduced

and implemented for the simultaneous ANN model extraction

of the conduction current, charge sources, and parasitic bipolar

transistor current from the RTALP large-signal RF measure-

ments. Improved results were achieved when simultaneous ex-

tracting the FET IV and charge from the same large-signal RF
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Fig. 18. Measured (top) and simulated (bottom) PAE contours.

data without using the dc IV characteristics. Reasonable par-

asitics bipolar transistor characteristics were also extracted at

high bias, which explained the lower breakdown at dc com-

pared to RF. The ANN model was also implemented in ADS

and verified to yield the same results as in the MATLAB simu-

lations.

To validate the proposed methodology, the load-line at dif-

ferent complex load impedances were compared and rms as

low as 2.77% in extraction and 3.65% in prediction were ob-

tained verifying the reasonable accuracy achieved by the pro-

posed model topology and extraction methodology.

Furthermore, the similar sinusoidal trend obtained in the com-

parison of the variation of the PAE, dc power, and output RF

power with the RTALP phase sweeping for the measured and

modeled results demonstrated the ability of the proposed model

to incorporate the low-frequency dispersions exhibited by the

device into the RF large-signal model.

The model presented in this paper focused on presenting

an RF large-signal model for SOS MOSFETs accounting for

the quasi-static response of its relatively fast parasitics bipolar

transistor. Further work is still needed to characterize the dy-

namics of the parasitics bipolar transistor at very high modula-

tion frequencies. For this purpose, RTALP measurements with

different sweeping/offset frequencies could be used as a probe

of the P-BJT frequency response. Pulsed-RTALP [20], which is

immune from low-frequency memory effects, could then pro-

vide a reference measurement for studying such dynamic ef-

fects.

APPENDIX

GENERALDESCRIPTION FORMODIFIED ERROR COST FUNCTION

ANNs are known to be a useful tool for various simulation

fields such as electromagnetic (EM), signal integrity, transistor

electrical parameter, and more [15]. If an analytical model,

which is typically computationally expensive, is not available,

the ANN approach especially provides an alternative solution

with less computational price.

The ANN structure used in this paper consists of three dif-

ferent layers: the input, hidden, and output layers, which are in-

terconnected by the two different weights and , as shown

in Fig. 19. The two different weights, therefore, need to be up-

dated during the iterative extraction (back propagation) by com-

paring the past and present value of the output (drain current or

P-BJT current). This is done with the help of the Jacobians of the

cost function, which are defined as the derivative of the ANN

cost function with respect to the weights vectors and ,

respectively.

The most general cost function used in this work is of the

form

with

and

where is used to indicate the time sampling at time .

is the error cost functions for the sum of drain conduc-

tion, displacement, and P-BJT currents. Also, is the LSNA

measured drain current, and , , and

are the desired ANN outputs from the conduction current, FET

charge, and P-BJT conduction current, respectively.

A general technique for the derivation of the Jacobians

needed for the extraction of arbitrary neural networks from

a function and its derivatives was first reported in [15]. This

was done with the introduction of adjoint neural networks. As

shown in Fig. 19, the original neural network algorithm can

be augmented to calculate the derivatives. In the rest of this

Appendix, the expressions derived for the Jacobians for the

above error function and the neural network used are given to

facilitate the reproduction of this work.

A. Backpropagation Algorithm for the Conduction Current

The output layer conduction current Jacobian, which is the

derivative of the error cost function with respect to ,
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Fig. 19. ANN diagram.

is given by

where .

The hidden layer conduction current Jacobian, which is the

derivative of the error cost function with respect to ,

is given by

where . The P-BJT current

has the same Jacobian derivation as the drain conduction cur-

rent.

B. Backpropagation Algorithm for Displacement Current

For the displacement current, the first derivatives and

of the output with respect to inputs: 1) and 2)

is used in the error cost function.

The output layer displacement current Jacobian, which is the

derivative of with respect to , is given by

where

The hidden layer displacement current Jacobian, which is the

derivative of with respect to , is given by

where
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