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Abstract

Accurate knowledge of critical transformation temperatures in steels such as the austenitising 

temperature, T, isothermal bainite and martensite start temperatures, BS and MS, is of unquestionable 

significance from an industrial and research point of view. Therefore a significant amount of work has been 

devoted not only in understanding the physical mechanism lying beneath those transformations, but also 

obtaining quantitatively accurate models.

Nowadays, with modern computing systems, more rigorous and complex data analysis methods can 

be applied whenever required. Thus, Artificial Neural Network (ANN) analysis becomes a very attractive 

alternative, for being easily distributed, self-sufficient and for its ability of accompanying its predictions by 

an indication of their reliability.

Keywords
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1 Introduction

Historically, correlation of experimental data against chosen variables using linear regression analysis 

has been used when dealing with complex problems. Nowadays, in the computing era, a more powerful 

method of empirical analysis involves the use of ANN.

Justification for an accurate knowledge of austenitisation temperature, T, arises when new steels and 

processing routes are designed, or when solid-state phase transformations are being studied, to know at which 

temperature the microstructure becomes completely austenitic, with no precipitates at all that may interfere 

with further transformations or processes such as recrystallization, is of great importance.

In a similar scheme, isothermal martensite and bainite start temperatures, MS and BS, are defined as 

the highest temperature at which austenite starts to transform to martensite and bainite respectively. Due to 

the excellent combination of properties achieved by these microstructures and their wide range of 

applications, there is an understandable and considerable industrial interest in being able to predict, reliably,

both temperatures.

The exact values of these three temperatures strongly depend on the chemical composition of the 

steel, and considerable work has been devoted to developing quantitative models for their compositional 
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dependency. This has long been done by means of linear or polynomial regressions, that may be classified as 

non-adaptative methods because the shape of the functions are pre-determined by the authors rather than 

adapted to the data. Furthermore, such methods have very limited ranges of applicability because of their 

inability to deal with complex interactions. In contrast, ANN methods, as discussed later, are adaptative 

functions, and are able to analyze a great number of non-linear relationships of considerable complexity.

Experimental data are presented to the network in the form of input and output parameters, and the 

optimum non-linear relationship is found by minimizing a penalized likelihood. In fact, the network tries out 

many kinds of relationships in its search for an optimum fit. Similar to regression analysis, the input data xi

are multiplied by weights, but the sum of all these products forms the argument of a flexible mathematical 

function, often a hyperbolic tangent. The output y is therefore a non-linear function of xi. The exact shape of 

the hyperbolic tangent can be varied by altering the weights. Further degrees of non-linearity can be 

introduced by combining several of these hyperbolic tangents, so that the ANN method is capable of

capturing almost arbitrarily non-linear relationships.

On the other hand, with the development of calculation frameworks such as CALPHAD, which allow

prediction of thermodynamic properties of complex systems from data collected on simpler ones, more 

physically relevant approaches relying on the satisfaction of some thermodynamic criteria have, also, gained 

importance [1,2]. This approach allows a much wider range of applicability than linear regression. 

Furthermore, the physical basis suggests that it should extrapolate relatively safely unless the mechanisms 

taken into account change significantly with composition, or the empirical thermodynamic data behave badly 

in extrapolation. Still these approaches suffer of some important limitations, i.e in those models some of the 

thermodynamic criteria used for the calculation of MS and BS are model-dependent in the sense that are 

implicitly linked with the database that has been used during the derivation of the function to express its 

compositional dependency. This becomes a problem if different databases are used in deriving the criterion 

and in making predictions (or more exactly, if the different databases describe similar systems differently). 

With the increasing number of thermodynamics databases available (SGTE, SSOL, NPL plus, TCFE, Kmart)

this problem cannot be neglected. In addition, the accuracy of the model may be limited by that of the 

underlying thermodynamic database, therefore the empirical component is not eliminated but displaced to 
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lower levels of the model. Finally, making predictions requires access to expensive thermodynamic 

calculation software and databases. 

New empirical methods such as ANN analysis, offer attractive advantages, being not only easily 

distributed and self-sufficient but also being able to cover arbitrarily large ranges of data. As any other 

method, their domain of applicability is somewhat determined by the data available at the time the model is 

defined. However, a feature unique to the method employed in the present work is the ability of the model to 

accompany its predictions by an indication of their reliability.

It is the aim of this work to present a more accurate alternative to the classical empirical calculations

of T, MS and BS temperatures. In relation with the later the new models have a wider range of application, 

and, in some cases, alloying elements never before used in models have been introduced.

2 Artificial neural network modeling

2.1 Method

ANN in the present context, essentially refers to non-linear multiple regression tools using adaptative 

functions. Since the method has been described elsewhere [3-5] what follows is an emphasis of the essential 

and more distinctive features.

The typical structure of a neural network is presented in Fig. 1, showing that in fact it is a simple 

combination of transfer functions (hyperbolic tangents in our case) and weights.

FIGURE 1

A complete mathematical description of a network it might be as: the function for a network with j

hidden units (second-layer in Fig. 1), connecting the inputs xi to the output y is given by
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j

j
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where W are weights and   the constant as defined in the context of linear regression.

Training the network implies identifying an optimal set of weights, given some data for which the 

output is known. This is similar in principle to identifying the slope and intercept of the best fit line in a 

linear regression. The fundamental difference between this type of regression and methods introduced earlier 

is that ANN correspond to adaptative functions. In traditional methods, the author fixes the form of the 

equation (for example, a second degree polynomial), and identifies the parameters that lead to optimal fitting 

of the observed data. Even in the few cases where the authors assess more than one function (for example, to 

determine whether a second or third degree polynomial is most appropriate), the extent to which the function 

is adapted to the data is very limited.

With ANN however, the complexity of the function is mainly controlled by the weights themselves, 

so that the optimisation includes a determination of the most suitable shape for the function. A potential 

difficulty with the use of flexible non-linear regression methods is the possibility of overfitting data. In the 

situation e.g. of having two possible fitted functions, say a smooth curve and a non-linear polynomial 

function, Fig. 2, it is not possible, without any guiding physical principles relating X to Y, to assess which of 

these functions is the more reliable in extrapolation. One method widely applied to limit overfitting, is to 

perform the optimisation on only one part of the data, then use the second part to determine which level of 

complexity best fits the data. In Fig. 2, the solid circles represent the training data, and the crosses the test 

data. During training of the model the best solution appears as that which goes through all the filled circles. 

When using the second part of the dataset (crosses), it becomes obvious, however, that this solution is 

strongly overfitted, the real trend is better captured by a simpler model. In Fig. 2, the training and test error 

trends are schematically represented as a function of the model complexity, when the later increases, not 

surprisingly, the training error tends to decrease continuously. In order to select which model generalizes best 

to unseen data, the minimum in the test error is one of the parameter used. There are other parameters which 

control the complexity, which are adjusted automatically to try to achieve the right complexity of the model 

[6,7].
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FIGURE 2

2.2 Bayesian framework

In regression analysis it is a common practice to best fit a function to the data, i.e., to use the most 

probable values of the weights for a given model. Thus, by comparing the predictions against experimental 

values it is possible to obtain an overall error but, with no indication of the uncertainty as a function of 

position in the input space. There is a treatment of ANN in a Bayesian framework [6-8], which allows the 

calculation of error bars representing the uncertainty in the fitting parameters. Rather than identifying 

optimum parameter, an optimum probability distribution of parameter values is fitted to the data. This 

recognizes the existence of many functions which can be fitted or extrapolated into uncertain regions of the 

input space, without compromising the fit in adjacent regions which are rich in accurate data. The errors bars 

accompanying predictions become large when data are sparse or locally noisy. The Bayesian framework is 

also used to avoid overfitting and relevance determination [6,7]

3 Databases

As it was mentioned earlier, the aim of this work is to create models that describe the three 

temperatures, T, MS and BS (both under isothermal conditions), as a function of the steel chemical 

composition. For this purpose an extensive bibliographic survey allowed the collection of a great number of 

cases where steel composition and transformation temperature/s were detailed. It is necessary to highlight the 

fact that in all the collected cases there was no interference of previous transformations or precipitation of 

any kind, meaning that austenite, from which bainite and martensite isothermally transform, has exactly the 

same chemical composition of that reported for the bulk material. Some of the alloy may contain minute 

quantities of elements such as, P and S which have not been included in the model.

For the T temperature
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A total of 700 cases were collected mainly from “Atlas of Isothermal Transformations” [9-12]. Table 

I shows the list of six input variables used for the T analysis.

TABLE I

In comparison with the best known Andrew´s model [13], the ANN model developed significantly 

has increased the applicability range and, as it will be shown, it is able to predict a change of tendency when 

the eutectoid concentration is reached.

For the isothermal BS temperature

A literature survey [14-19] allowed the collection of 247 individual cases where detailed chemical 

composition and isothermal bainite start temperature were reported. Table II shows the list of 11 input 

variables used for the BS temperature analysis. 

TABLE II

In relation to other models [14, 20, 21] the range of compositions has been increased between 1-2 

wt.% for C, Si, Mn and V, and more than 5 wt.% in the case of Cr, Mo and W. Probably for the first time Al 

is included in a study of these characteristics.

For the isothermal MS temperature

For the isothermal MS temperature, data were obtained from a variety of sources [10,14-16,22-38]. 

This resulted in a database containing about 1200 entries and covering a wider variety of compositions, Table

III, when compared with existing models [14,37,39-41]. A detailed critical assessment against some 

published models for the MS temperature can be found in ref [42,43]

TABLE III

The procedure of database training has been described numerous times in the literature, e.g. [4]. In the 

present study, a commercial package [44] was used which implements the algorithm written by Mackay [7].
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4 Results and discussion

Evolution of T temperature in Fe-C, Fe-Cr, Fe-Mo and Fe-Mn binary systems, according to the ANN

model, are presented in Fig. 3. 

In pure iron, carbon solubility in austenite () is much greater than in ferrite (), thus in the carbon 

range usually encountered in steels, from 0.05 to 1.5 wt.%, the phase field associated with is larger 

compared with that of that is to say C is a -stabilizer. Therefore transformation of  occurs via an 

eutectoid reaction, the eutectoid temperature and composition are 723ºC and about 0.8 wt.% C respectively, 

see for example [45]. As it was anticipated, the ANN model created for the prediction of the T is able to 

predict a change in the tendency when the eutectoid point is reached, at about 750ºC and 0.8 wt.% C, 

showing a good agreement with the experimental behavior just described.

On the other hand, there are elements, such as Cr and Mo, which fall in the category of the so called

-stabilizers. These elements restrict the formation of  iron causing the  area of the diagram to contract to a 

small area referred to as the gamma loop, see ref [46] and [47] for the Cr and Mo cases respectively. This 

means that Cr and Mo are encouraging the formation of  iron, and one result is that the  phase field 

becomes continuous. Alloys in which this has taken place are, therefore, not amenable to the normal heat 

treatments involving cooling through the  phase transformation. As it can be observed in Fig.3 the model 

can not predict an exact  loop, but clearly shows the appropriate tendency. This is explained keeping in mind 

that none of the steels used to build the experimental data base have an austenitisation temperature higher 

than 1290ºC, while the experimental data [46,47] reports that the loop for Fe-Cr and Fe-Mo diagrams closes 

at 1400ºC. This deficiency of data results, as it was described, in big errors bars and inaccurate predictions

making impossible the prediction of a close loop but just the proper tendency. On the other hand, the model 

is able to predict ,with a good degree of accuracy the Cr and Mo concentration, from where the loop starts to 

close, about 12 and 3.3 wt.% respectively [46,47].

Mn has been selected as another example of a -stabilizer, [48], if added in sufficiently high 

concentrations, completely eliminates the  phase and replaces it, down to room temperature, with the 

phase. This is accurately described by the model, see predictions in Fig. 3.
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FIGURE 3

Predicted isothermal BS and MS transformation temperatures when varying C, Mn, Cr, Ni, Mo and Si 

concentrations for a base steel composition Fe- 0.3 C- 1 Mn- 0.3 Si- 0.6 Cr- 0.25 Mo- 0.1 V all in wt.%, for 

automotive components, are presented in Fig. 4. The ANN model predicts that BS temperature is strongly 

influenced by all the studied elements but Si, as has been also observed by other authors, see e.g. ref. [14,20, 

21]. The big errors bars for Cr concentrations above 5-6 wt.%, are a consequence of a lack of enough 

experimental data in that range of concentrations, therefore warning about the reliability of the prediction. In 

relation to Si, it seems that up to about 0.7 wt.% the trend is to slightly increase the BS, above this 

temperature the model predicts a subtle change in the tendency, although error bars become larger this 

uncertainty in Si effect is also observed through some of the BS models found in the literature; for example;

Steven and Haynes [14] did not include any effect, Kunitake and Okada [49] proposed a BS temperature

rising when increasing Si concentration, just in opposition with the effect proposed by Kirkaldy and 

Venugopalan [39]. Although not revised in this set of results, the model predicts that Co, Al and V, in

increasing quantities, increase the BS temperature, see [50].

In a similar scheme, MS transformation temperature is influenced by the presence of increasing 

quantities of C, Mn, Cr, Ni and Mo, again the model reflects well known steel metallurgical facts

[13,14,35,37,40]. In relation to Si the model predicts nearly no change in the MS, equivalent to the BS

temperature the effect of silicon on the martensite start temperature is uncertain. In some cases Si has been 

found to decrease the MS temperature [37,40] but some other authors [14,35] reported no influence on it.

FIGURE 4

The performances of the models created were assessed on the sets of data unseen during training. Fig. 

5 shows the performance of the three models in this dataset, showing that agreement with experimental data 

is very good, exhibiting R2 values (square of the Pearson product moment correlation coefficient) close to 1 

for the BS and MS models, and about 0.9 for the T. 

FIGURE 5
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Finally it is necessary to touch upon the unique feature of the frame work used for the ANN models, 

to accompany its predictions with an indication of the uncertainty as a function of position in the input space, 

big errors bars where there is a lack of enough experimental data, as it has been already shown through this 

last section.

5 Conclusions

A very large data base has been used to create three ANN models capable of predicting T, BS and MS

temperatures. This technique plus a Bayesian framework have been chosen for its flexibility and ability of 

accompanying its predictions with an estimation of the uncertainty. 

The analysis is empirical, but after appropriate training, it is found to reliably reproduce known 

metallurgical experience. The method is useful because the optimized network summarizes knowledge in a 

quantitative manner and can be retrained as new data became available. Those models are different to those 

empirical and semi-empirical models created by fitting equations to experimental data.
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Tables

Table I. Input variables of database for T temperature model. Concentrations are in wt.%.

C Mn Si Ni Cr Mo

Min. 0.00 0.00 0.00 0.00 0.00 0.00

Max. 2.09 20.00 3.40 40.00 18.39 5.09

Table II. Input variables of database for BS temperature model. Concentrations are in wt.%.
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C Si Mn Ni Cr Mo Cu Al V W Co

Min. 0.11 0 0 0 0 0 0 0 0 0 0

Max. 1.5 1.67 3.76 5.04 11.5 8 0.26 0.99 2.1 18.59 5

Table III. Input variables of database for MS temperature model. Concentrations are in wt.%.

C Si Mn Ni Cr Mo Cu Al V W Co Cu Nb Ti B N

Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max. 2.2 3.8 10.2 31.54 17.9 8.0 3.04 3.01 4.55 18.5 30.0 3.0 1.9 2.5 0.06 2.6

Figures legends

Figure 1. The typical structure of a neural network as used for non-linear multiple regressions. The first layer is made up by the 

inputs (1,.., xi), the second by so-called `hidden units' and the last one is the output.
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Figure 2. Schematic illustrations of the overfitting problem in ANN and, variation in the test and training errors as a function of 

the model complexity.

Figure 3. Evolution of T in Fe-X diagrams, where X stands for C, Cr, Mo and Mn. Solid lines represent the model predictions; 

meanwhile dashed lines represent the error bounds

Figure 4. BS andMS predictions for a steel of base composition Fe- 0.3 C- 1 Mn- 0.3 Si- 0.6 Cr- 0.25 Mo- 0.1 V in wt.%.

Figure 5. Performance of the three models on a test dataset of unseen data during training.
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