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Abstract The application of an artificial neural network
(ANN) in prediction of outcomes using clinical data is
being increasingly used. The aim of this study was to assess
whether an ANN model is a useful tool for predicting
skeletal metastasis in patients with prostate cancer. Con-
secutive patients with prostate cancer who underwent the
technetium-99m methylene diphosphate (Tc-99m MDP)
whole body bone scintigraphies were retrospectively
analyzed between 2001 and 2005. The predictors were the
patient’s age and radioimmunometric serum PSA concen-
tration. The outcome variable was dichotomous, either
skeletal metastasis or non-skeletal metastasis, based on the
results of Tc-99m MDP whole body bone scintigraphy. To
assess the performance for classification model in clinical
study, the discrimination and calibration of an ANN model
was calculated. The enrolled subjects consisted of 111
consecutive male patients aged 72.41±7.69 years with

prostate cancer. Sixty-seven patients (60.4%) had skeletal
metastasis based on the scintigraphic diagnosis. The final
best architecture of neural network model was four-layered
perceptrons. The area under the receiver-operating charac-
teristics curve (0.88±0.07) revealed excellent discriminato-
ry power (p<0.001) with the best simultaneous sensitivity
(87.5%) and specificity (83.3%). The Hosmer–Lemeshow
statistic was 6.74 (p=0.08>0.05), which represented a
good-fit calibration. These results suggest that an ANN,
which is based on limited clinical parameters, appears to be
a promising method in forecasting of the skeletal metastasis
in patients with prostate cancer.
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Introduction

Skeletal metastasis in patients with prostate cancer causes
considerable morbidity including severe bone pain, im-
paired mobility, hypercalcemia, leukopenia, pathological
fracture, spinal cord or nerve root compression, and bone
marrow infiltration [1]. Beside the significantly decreased
quality of life from these complications, almost 50% of
prostate cancer patients with metastatic bone disease die
within 30 months [2]. In patients with prostate cancer,
detection of osseous metastasis is important to selecting the
best treatment and stratifying the prognosis [3]. Although
bone histomorphometry is the gold standard for diagnosing
metastatic bone disease, bone biopsy is a painfully invasive
procedure. Moreover, if the patient is suspected to have
multiple bone metastases, it is impossible to carry out
several bone biopsies. In clinical practice, currently bone
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scintigraphy is the modality for evaluating skeletal metas-
tasis of prostate cancer. Bone scintigraphy not only has a
high sensitivity derived benefit from the intrinsic nature of
injected radiopharmaceutical, but also is a one-step proce-
dure for whole body skeletal survey. However, the
equipment for radionuclide imaging is not universally
available due to concurrent requirement of the expensive
and complex gamma scintillation camera system and a
specialized team such as well-trained nuclear medicine
physicians, radiological technologists, and professional
nurses.

Artificial neural network (ANN) is an excellent presen-
tation of artificial intelligence that is patterned with various
computational algorithms after the structure of the human
nervous system [4]. Every processing element in an ANN,
usually called ‘artificial neuron’, is interlinked several
weighted signals that emulate the human synaptic con-
nections used to memorize, learn, and predict the subse-
quent interactions. An ANN allows identification of
underlying associations among predictors and outcomes
that may not be detected with classical statistical analyses
[5]. Moreover, an ANN can improve its predictive ability
through iterative learning algorithms. By virtue of these
inherent advantages, ANN has been increasingly deployed
as a forecasting method in clinical medicine and urology [6,
7]. In the specialty of urologic oncology, ANN has been
applied successfully to the early diagnosis, screening,
staging, and progression in prostate cancer [8]. However,
no ANN model has ever been designed solely for the
prediction of skeletal metastasis in prostate cancer patients.
As a widely applied implementation of artificial intelligence
in medicine, ANN holds promise as a tool to predict bony
metastasis. Herein, our study is the first investigation to
develop an ANN model to predict skeletal metastasis in
patients with prostate cancer. We have validated its
feasibility in comparison with whole-body bone scintigra-
phy as a reference method.

Materials and methods

Patients’ enrollment

Between June 2001 and November 2005, consecutive patients
with prostate cancer who underwent the technetium-99m
methylene diphosphate (Tc-99m MDP) whole body bone
scintigraphy were retrospectively analyzed. Their data were
retrieved from respective records in our scintigraphic database
at a regional teaching hospital. Patients whose radioimmuno-
metric prostate-specific antigen (PSA) data could not be
available within one month before and after the Tc-99mMDP
whole body bone scintigraphy were excluded from this study.
The study was conducted according to the guidelines of the

Declaration of Helsinki and the Ethics Committee on Human
Studies at our hospital (Buddhist Dalin Tzu Chi General
Hospital, Chiayi County, Taiwan) approved the study;
informed consent for enrolled patients was not required for
clinical data collection from medical records according to the
protocol of our institutional review board. To preserve patient
confidentiality, direct patient identifiers were not collected.
Data were reported only in aggregate form.

Image acquisition and biochemical data

All enrolled patients with prostate cancer received Tc-99m
MDP whole body bone scintigraphy. Tc-99m MDP was
commercially available and provided by Daiichi Radioiso-
tope Labs, Ltd. (Tokyo, Japan). Following the Procedure
Guideline for Bone Scintigraphy (version 3.0, approved
June 20, 2003) announced by the Society of Nuclear
Medicine, a whole body bone scintigraphy (from the toes to
top of the head) was performed using whole-body moving
camera technique (anterior and posterior) three to four
hours after intravenous injection of 20 to 25 mCi Tc-99m
MDP. All images were acquired using dual-head gamma
camera scintillation system (DST-XL, General Electric
Medical Systems, Buc, France) equipped with large field-
of-view, low-energy, high-resolution collimators with a
20% energy window centered at 140 KeV. The scan speed
was 16 cm/min and the matrix size was 512×2,048 pixels.
One independent physician trained in nuclear medicine
with 15 years experience interpreted all scintigraphic
images blind to serum PSA levels and any available clinical
findings. The reading and interpretation were used without
reanalysis of images. The final results were elucidated as
negative (Fig. 1) or positive (Fig. 2) for skeletal metastasis,
according to the bone absorption of the radiopharmaceuti-
cal. Serum PSA concentrations of all registered patients
were measured by radioimmunometric assay (Immunotech-
PSA total IRMA kit; A Beckman Coulter Company;
Fullerton, CA, USA), considering as normal values be-
tween 0 and 4 ng/ml. All patients were investigated in the
same department by either scintigraphic images or radio-
immunometric assay.

ANN construction

No well-established theoretic protocol exists for the
determination of an ideal ANN configuration including
numbers of hidden layers, numbers of neurons in each
hidden layer, the optimal number of iterations, or activation
functions [9]. At the beginning, the designer creates the
structure and the best practice is typically established upon
trial and error [4, 10]. We used Statistica 7.0 (StatSoft, Inc.,
Tulsa, OK, USA) to generate various formulations of ANN
models. The patient’s age of and serum PSA concentration
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were entered as continuous input variables into ANN
models. The outcome variable was dichotomous, either
skeletal metastasis or non-skeletal metastasis, using the
results of Tc-99m MDP whole body bone scintigraphy as
interpreted by the nuclear medicine physician.

To treat the statistical problem resulting from the limited
number of patients in our study, bootstrap resampling was

done to mitigate the possible bias initiated by depending on
any one particular part into train or test subsets [11]. This
technique samples a data set with replacement, meaning a
single case may be randomly sampled several times into the
bootstrap set. The bootstrap can be enforced any number of
times to raise accuracy. Compared with random sampling,
the use of sampling with replacement can minimize the gen-

Fig. 1 Tc-99m MDP whole
body bone scintigraphy
revealed non-skeletal metastasis
in a patient with prostate cancer
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eralization problems caused by the dataset’s finite size. We
sampled the selection subset first without bootstrapping;
subsequently, the training subset was bootstrapped from the
remaining data. Although using a training subset optimizes a
neural network, a selection subset is separately used to stop
training to lessen overfitting and overtraining. Afterwards, a
third subset known as a test subset is utilized to execute an
unbiased estimation of the network’s probable performance.

Hence, we set the selection subset size as one-third of en-
rolled patients and the remaining cases to be bootstrapped
into the training subset. The test subset is created from any
cases left over after the bootstrap selection of the training
subset.

During the processing protocol the intelligent problem
solver instructed a large number of trials, which were used
to settle the best architecture [12–14]. It could permit

Fig. 2 Tc-99m MDP whole
body bone scintigraphy dis-
played multiple bone metastases
in a patient with prostate cancer
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concurrent comparison of different networks (linear net-
work, three- and four-layer multilayered perceptron net-
works, radial basis function network, probabilistic, and
generalized regression neural networks) using a combina-
tion of heuristic and optimal algorithms to choose the
smoothing factor and the number of processing units for
these networks [15]. For all types of networks, we set up
the number of hidden units as one for a minimum and 14
for a maximum. To compare the performance of networks,
the intelligent problem solver balanced error against type
and diversity as criteria for selecting retained networks, in
which case it preserved networks with a range of types and
performance/complexity trade-offs. If the network file is
plentiful and the new model is subordinate to the nominee
for replacement, the network set will be intensified in
utmost size to be suitable to the new networks. In a network
that has not overfitted the data, the training subset error will
generally be a good representation of test subset. After the
network was permitted to run and a forecast was made, the
predicted outcome was correlated with the observed
outcome. If the network predicted the outcome incorrectly,
by a process of back propagation, hidden weights within
the network were readjusted until the predicted outcome
was exact. Finally, the intelligent problem solver employed
the best architecture of the network and the optimal set of
input variables.

Statistical analyses

Statistical analyses were performed using MedCalc for
Windows, version 9.1 (MedCalc Software, Mariakerke,
Belgium) and expressed as mean ± standard error. The
Mann–Whitney test was used to compare the differences of
input variables (patient age of patients, serum PSA concen-
trations) between skeletal and non-skeletal metastatic groups.
The statistically significant level for comparisons between two
groups was defined as a p value less than 0.05. To assess the
quality of a classification model in clinical investigation,
discrimination and calibration should be assessed concur-
rently [16]. Discrimination is a measure of how well a model
recognizes subjects correctly as two different classes;
calibration, on the other hand, evaluates the degree of
correspondence between the estimated probabilities pro-
duced by a model and the actual observation. The area
under the receiver operating characteristic curve (AUC) with
best sensitivity and specificity simultaneously were used as
indicators to appraise the discriminatory power of an ANN
model for prediction of skeletal metastasis in patients with
prostate cancer [17, 18]. An AUC of 1.0 infers perfect
discrimination, whereas an AUC of 0.5 is equivalent to a
random model. An AUC between 0.7 and 0.8 was classified
as “acceptable” and between 0.8 and 1.0 as “excellent”
discrimination [19]. On the other hand, calibration was

assessed using the Hosmer-Lemeshow goodness-of-fit sta-
tistic (H statistic) which divides subjects into deciles based
on predicted probabilities and then computes a chi-square
from observed and expected frequencies [20–22]. A statis-
tically good fitness between a new model and the reference
method is defined as p value more than 0.05.

Results

A total of 111 males (age: mean, 72.41±0.73 years; median,
73 years; range, 51–89 years) with prostate cancer were finally
enrolled and their mean serum PSA concentration was
814.51±327.07 ng/ml (median, 46.20 ng/ml; range, 0.10–
24567.00 ng/ml). Table 1 lists the various characteristics of
patients between skeletal and non-skeletal metastatic groups.
A comparison between two groups showed that patients with
skeletal metastasis were older, a statistically significant
finding. Patients with skeletal metastasis also had statistically
significantly higher serum PSA concentrations than did the
patients without skeletal metastasis.

Figure 3 portrays the schematic diagram of the final best
ANN model, which was created to predict skeletal
metastasis in patients with prostate cancer. The outline
shows the number of artificial neurons in each of the four
layers (one input layer of two neurons, first hidden layer of
nine neurons, second hidden layer of six neurons, one
output layer with one neuron), and it demonstrates that the
network was fully connected in that each artificial neuron in
a given layer was linked to every artificial neuron in the
nearby layer. Two input variables were all adopted as
significant features after training processes. The fact that
the network was entirely interconnected meant that 78
weights had to be modified following the processing of
each record in the training period. The ANN output is a
single continuous variable with a scope of 0 to 1. A
threshold in this interval was used above which all values
were regarded as consistent with the skeletal metastasis in
patients with prostate cancer. By varying this threshold, the
discriminatory power of an ANN model for test subset is

Table 1 Characteristics of patients with skeletal and non-skeletal
metastatic groups

Skeletal
metastasis
(n=67)

Non-skeletal
metastasis
(n=44)

p value

Age (years) 73.90±0.97 70.14±1.03 0.003
PSA (ng/ml) 1334.27±533.87 23.05±9.47 <0.001

Data are expressed as mean ± standard error. The statistical p values
were derived from the Mann–Whitney test.
Age age of the patient, PSA serum prostate specific antigen
concentration
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depicted by the ROC curve (Fig. 4). The ROC analysis for
the ANN model gave an AUC of 0.88±0.07, indicating that
the ANN model had good diagnostic efficiency and
represented a significantly excellent discriminatory power
(p<0.001). The best simultaneous sensitivity and specificity
were 87.5% and 83.3%, respectively, based on the
threshold value of more than 0.64 for discriminating cases
with skeletal metastasis from non-cases. On the other hand,
the H statistic value of ANN model was 6.74 (p=0.08). The
ANN model had a statistically good fit represented by
statistically insignificant H statistics (p>0.50), which is a

sensitive measure of differences between predicted and
observed outcomes. These results suggested that the final
best ANN model had excellent discriminatory power and
good-fit calibration concurrently.

Figure 5 shows the three-dimensional plot indicating the
relationship between input variables and output score for
prostate cancer patients. In the plot, 1 is the score for the
patients with prostate cancer who has the skeletal metastasis
and 0 is the score for the patients with prostate cancer who
does not have the skeletal metastasis. Patients with prostate
cancer in the region with a score more than 0.64, derived
from the best threshold value of the ROC analysis,
belonged to a group with skeletal metastasis.

Discussion

In patients with prostate cancer, several forecasting methods
were developed to aid clinicians in cancer staging, including
the most widely accepted nomograms [23, 24] and state of the
art ANN models [25–29]. Most of these investigations
focused on the analysis in predicting positive lymph node
involvement. No such predictive models exist to predict the
skeletal metastasis for patients with prostate cancer. In this
study, we not only found that the patients with skeletal
metastasis were older and had higher serum PSA concentra-
tion but also we successfully used ANN-based modeling
techniques in an attempt to individually predict the occur-
rence of skeletal metastasis in these patients.

To implement the application of artificial intelligence in
future daily practice, the initial motivation for our ANN-

Fig. 3 Graphical representation of our multilayer perceptron artificial
neural network model

Fig. 4 The receiver operating characteristic curve for the test set Fig. 5 Three-dimensional plot with input and output contours
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based model is to exploit minimum features derived from
clinical parameters; thus, imaging characteristics were not
used. For support of any clinical decision to be effectively
feasible, the predictors should be routinely available in the
clinician’s workflow and easily attainable at the point of
care [30]. This is pertinent since the utilization of fewer
features would permit acquisition and analysis of less data,
simplifying the clinicians’ work. By virtue of these
commandments, we only selected two variables, age of
the patient and serum PSA concentration, which are usually
chosen as predictors in many ANN-based staging methods
[28, 29]. Age is a basic patient demographic found in the
medical record and easily calculated when the patient visits
the hospital. In one study conducted by Carter and
colleagues, their results showed that increasing age is
positively associated with a higher probability of non-
organ-confined prostate cancer [31]. Although our study
had similar findings, we clearly displayed the statistical
difference of age between skeletal and non-skeletal metas-
tasis in patients with prostate cancer.

Serum PSA concentration is currently the most widely
used tumor marker to diagnose and monitor prostate cancer,
even though serum PSA level is not 100% specific and it
may be affected by several confounding elements, includ-
ing urologic manipulation, tumor volume, tumor differen-
tiation, ejaculation, chronic prostatitis, or benign prostate
hyperplasia. Recently, several biochemical markers, such as
osteoprotegerin and tartrate-resistant acid phosphatase
isoenzyme 5b, show promise in predicting skeletal metas-
tasis in patients with prostate cancer [32]. Another pilot
ANN study with novel inputs of macrophage inhibitory
cytokine 1, human kallikrein 11, migration inhibitor factor,
and prostate volume illustrated significant superiority
compared with percent free PSA and total PSA to enhance
the detection of prostate cancer [33]. While these biochem-
ical markers might appear promise, they are not clinically
available, which may impact the algorithms’ applicability.
Therefore, these biomarkers are not suitable for our ANN
inputs. In our study, we were determined to utilize limited
clinical variables to construct the ANN topology and we
achieved good predictability in terms of either discrimina-
tion or calibration. Some medical applications of ANN
models have been reported to present an excellent fit of the
model to a given set of data. Results that were too imposing
were usually derived from overfitted models, where too
many inputs were entered as compared with their enrolled
subjects [13, 34]. From the perspective of clinical practice,
the challenge is to train an ANN model to recognize
patterns without overfitting and avoiding input complexity
for clinicians. Only simple clinical decision support can
operate well since adding more redundant parameters may
reduce the likelihood of success in implementing a
computerized predictive model [35]. Simplification may

expedite the employment of a decision support tool by
clinicians into their regular clinical work, decreasing the
chances of incompatibility and errors.

In addition, we also provide a practical visualization of
input/output relationships by utilizing the three-dimensional
plot achieved by using ANN modeling (Fig. 5). This plot can
be applicable for rapidly determining the existence of
skeletal metastasis according to the values of age and serum
PSA concentration. When age or serum PSA concentration
was raised the score became 1, implying that the patient
would have skeletal metastasis. On the other hand, prognos-
tication with extrapolation should be notified and the
inferring territory should be inspected before clinical
application since either overestimation or underestimation
may lead to wrong conclusions with subsequent serious
complications for patients with prostate cancer [36]. Taking
advantage of this visualized graph, the interpreter can easily
identify the predictable range from the data structure before
the task of prediction. If the data of input variables are
outliers, the interpretation should be cautious while using
this three-dimensional plot derived from our ANN model.

The basic theory of the ANN is to imitate the processes
of human decision-making using principles of adjustment
and speculation. For example, an ANN model can learn in a
manner comparable to the way nuclear medicine physicians
learn: they are served with a large number of input
scintigraphic images and output diagnoses, and learning
occurs progressively [37]. Since a nonlinear phenomenon is
a fundamental cornerstone in medicine, ANN has the ability
to discover complex configurations of biomedical processes
between input and output variables in a nonlinear pattern by
learning algorithms and comprising more or less artificial
neurons in hidden layers. For prostate cancer staging,
predictions established upon ANN models are more precise
than empirical rules or models based on univariate
regression alone [38]. Nevertheless, ANN methodology is
not without some controversial issues. The so-called black
box phenomenon of the ANN hinders broad acceptance in
clinical utility. Although ANN can reveal interconnected
weights between individual artificial neuron during the
analyzing processes, this digital fortress of “Da Vinci
Code” is difficult for clinicians to interpret. As previously
investigated, linear and logistic regression models also
encounter the same explanatory shortfall [39]. However, the
decode techniques of ANN’s weights are accomplished by
using sensibility analysis if many input variables are used in
the ANN construction [14, 40, 41]. On the other hand,
some clinical objectors argue that the engineer-based
approach is a major obstacle to ANN being applied as an
instrument for clinical decision support. Certain profession-
al engineers indeed like to develop their own algorithm-
based ANN by using programming language and fine tune
the inside parameters to fit the specific demand for
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solutions; hence, the original black box phenomenon will
be another “deus ex machine”. The only way to avoid this
entrapment in clinical medicine is use commercially or
publicly available software packages. The most influential
value of these software packages is providing the capability
to set various parameters in building the ANN topology.
Thereafter, other investigators can validate the ANN study
through the processes of repeatability and reproducibility.
With the help of the friendly graphic user interface, the
modern Windows-based software can ease the users’ work
for sophisticated computing without lacking the versatility
of various ANN models. Some ANN creation software also
offers the built-in function or advanced developer kit that
allows packaging the trained ANN model into an execut-
able file and making it available on the Internet for anyone
to download [26].

The investigation of ANN to predict skeletal metastasis
is very limited in clinical medicine. Only one study
fostering an interest in its development and the attempted
application of ANN to forecast bone metastasis was found
in the PubMed database. Arana et al. used a feed-forward
ANN with three-layer-perceptron configurations in the
diagnosis of calvarial metastasis in 21 patients with
different neoplasms [42]. Although their study purpose
and design was different than our present study, there were
some similar issues worthy. They used 19 input variables
extracted from clinical data and radiologic features of
computed tomography to get an excellent discriminatory
power (AUC=0.93±0.04) with high sensitivity (97.9%)
and specificity (95.8%). Of note, their ANN model might
encounter the generalization problem and overfitted risk
since they used too many input variables contrast to their
participants in spite of the leave-one-out method they used.
To contrast, our model used only two predictors to obtain
comparable results even though the ANN model topology
differed. In addition, we enrolled more patients and the
ratio of enrolled patients to inputs in our study was also
proper. Nevertheless, to make a confident diagnosis of
metastasis, their results also emphasized the need to least
includes the variable “age”, which was one of two
parameters in our study. On the other hand, their results
were certainly impressive since they employed the radio-
logic features of computed tomography as part of their
predictors. It is well acknowledged that computed tomog-
raphy is the imaging technique of choice to detect cranial
vault lesions because of its superiority in the illustration of
cortical bone with internal characteristics visualization. We
do not agree that the parameters derived from the reference
method could be the part of predictors. Through these
comparisons, we can confirm that our ANN model not only
had appropriate design with adequate predictors but also
had good performance to predict skeletal metastasis in
patients with prostate cancer.

There are several limitations to our investigation that
deserve comments. First, the number of enrolled patient
number was small, but by taking advantage of bootstrap
resampling with internal validation we overcame this
difficulty. It is impractical to use new training, selection,
and test cases selected from the sampled population since
we usually have unsatisfactory data to conduct numerous
training processes with independently separate training,
selection, and test subsets in clinical study. To increase
accuracy, the bootstrapping method which samples a
dataset with substitution can be implemented any number
of times. This method is not constrained by any particular
classification rules. As long as the sample size remains
small, that is a significant feature of costly clinical research
with limited resources of substance or time; thus, a precise
error estimation method that can be easily performed for
small samples is probably beneficial. This bootstrapping
method may be useful and it is appropriate for analyzing
sample sizes as small as 16, where distributional hypothesis
are vague, previous information is sparsely dispersed, and
further data may be difficult to obtain [43]. Second, only
one single nuclear medicine physician interpreted bone
scintigraphic images. Although the interpreter is a senior
physician with considerable experience, his subjectivity
cannot be ruled in image interpretation. Furthermore, the
imaging interpretation should use a quantitative scale or
scoring system makes the scintigraphic diagnosis [44].
Accordingly, more engaged interpreters with quantitatively
reading protocol will be more objective for the firmly
scientific evidence. More recently the utilization of positron
emission tomography/computed tomography (PET/CT),
new combined modalities for imaging diagnostics, is
rapidly growing. For detection of osseous metastasis in
patients with high-risk prostate cancer, F-18 fluoride PET/
CT is a highly sensitive and specific method whose
performance is better than Tc-99m MDP bone scintigraphy
[45]. Therefore, using PET/CT instead of bone scintigraphy
will be considered as the next reference method for
detecting skeletal metastasis.

Third, the serum PSA level was not drawn on the same day
as administration of bone scintigraphy. To account for the
connatural defects in a retrospective study, a shortcoming is
that the criteria-matched subjects from our scintigraphic
database would be too few to accurately predict whether we
created data-collecting formulation that is too strict. More-
over, data from two procedures within one-month interval is
reasonable since we believe the change in serum PSA levels
within one month is considerable. In a rigid research design, it
is certainly better to perform two procedures using a one-day
protocol, even though this study is proof-of-concept investi-
gation. Another design defect is that we did not stratify the
enrolled patients into certain groups such as newly diagnosed,
status post urologic operation, or follow up for treatment
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response. Because the present protocol is a retrospective
study, some effect might result when using serum PSA
concentration as a predictor. Conversely, the unlimited
participants’ status might expand the usable range of the
ANN model to tolerate more predictive scenarios. In a
prospective study, blood sampling and bone scintigraphy
should be done on the same day as well as correctly
classifying the patient’s status.

Lastly, our study was executed at one single center and the
predictive model was not performed prospectively in other
institutions. Promising performance of a predictive model for
one group of patients does not guarantee its utility for other
groups. To verify our findings, further longitudinal studies
with a larger pool of randomly selected patients in different
hospitals to decrease interinstitutional variation should be
considered. Clearly, our current scheme was a proof of
concept rather than an external validation of the technique.
Despite these limitations, the preliminary findings are exciting
and furnish the impetus for future validation studies in
controlled experiments [46]. Future use of this technique
may be expanded to develop the web-based software other
than a stand-alone application, using an ANN model
integrating it into a single-kernel engine for clinicians to
perform real-time prediction.

To our knowledge, the comparative consequence of limited
clinical variables has not been previously constructed by
means of an ANN model in patients with prostate cancer who
have skeletal metastasis. Our results show that an ANNmodel
can accurately predict skeletal metastasis in patients with
prostate cancer and that it might serve as a useful method to
follow the response to all therapeutic interventions. We also
clearly demonstrated the techniques for construction of an
ANNmodel and that this kind of approach to ANN could help
clinicians easily initiate the building procedures. We must
emphasize that our ANN model is not intended to substitute
for an experienced professional or any imaging modality such
as bone scintigraphy, CT, magnetic resonance imaging, or
PET; on the contrary, the ANN model can work as a sup-
plementary tool to support clinical decisions or as an initial
screening method, particularly where the diagnostic instru-
ments are unavailable. Afterwards, the clinicians may use the
information derived from the ANN prediction to decide
whether further diagnosis and monitoring are necessary.
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