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Abstract In this work, a bibliographic analysis on artificial neural networks (ANNs) using fractional cal-
culus (FC) theory has been developed to summarize the main features and applications of the ANNs.
ANN is a mathematical modeling tool used in several sciences and engineering fields. FC has been mainly
applied on ANNs with three different objectives, such as systems stabilization, systems synchronization,
and parameters training, using optimization algorithms. FC and some control strategies have been sat-
isfactorily employed to attain the synchronization and stabilization of ANNs. To show this fact, in this
manuscript are summarized, the architecture of the systems, the control strategies, and the fractional
derivatives used in each research work, also, the achieved goals are presented. Regarding the parameters
training using optimization algorithms issue, in this manuscript, the systems types, the fractional deriva-
tives involved, and the optimization algorithm employed to train the ANN parameters are also presented.
In most of the works found in the literature where ANNs and FC are involved, the authors focused on
controlling the systems using synchronization and stabilization. Furthermore, recent applications of ANNs
with FC in several fields such as medicine, cryptographic, image processing, robotic are reviewed in detail
in this manuscript. Works with applications, such as chaos analysis, functions approximation, heat transfer
process, periodicity, and dissipativity, also were included. Almost to the end of the paper, several future
research topics arising on ANNs involved with FC are recommended to the researchers community. From
the bibliographic review, we concluded that the Caputo derivative is the most utilized derivative for solv-
ing problems with ANNs because its initial values take the same form as the differential equations of
integer-order.

1 Introduction

Artificial neural networks (ANNs) have emerged as
a promising alternative to simulate systems due to
their successful applications in several engineering and
science fields, such as signal processing, image pro-
cessing, control systems, associative memory, to name
a few. Besides, fractional calculus (FC) is an exten-
sion and generalization of the integer-order calculus,
which its main characteristic is the memory descrip-
tion. When the ANNs are modeled using fractional dif-
ferential equations (FDE), they are named fractional
artificial neural networks (FANNs). The FDE is used

a e-mail: jose.ga@cenidet.tecnm.mx (corresponding
author)

for describing the dynamical behavior of the ANNs neu-
rons. Hence, in the last decade, many authors employed
FANN for modeling physics and engineering systems
more efficiently and accurately.

In this manuscript, we will use the term “ANN
involved with FC” to refer to the FANN. Compared
with the ordinary ANNs, ANNs involved with FC have
important advantages, such as the description of mem-
ory and hereditary properties of several processes; and
the system performance is enriched due to one more
degree of freedom [1]. Fractional-order systems can
process information efficiently, improving the simula-
tions of the integer-order systems, finding more accu-
rate results. Since many of the real-world problems can
be generally identified and described by the fractional-
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order models [2], it can be expected the same or better
results could be reached using the FANN.

The key aspects of this review are the study and
comprehension of the main derivatives related to FC.
Several definitions of fractional derivatives have been
proposed, for example, Grünwald–Letnikov, Riemann–
Liouville, Caputo, Caputo–Fabrizio, and Atangana–
Baleanu fractional derivatives. The Riemann–Liouville
and Caputo derivatives use the power-law kernel. The
Caputo–Fabrizio derivative uses an exponential ker-
nel, and the Atangana–Baleanu derivative utilizes the
generalized Mittag–Leffler function as the nonsingu-
lar and nonlocal kernel. The equations described by
fractional derivatives are highly complex, and there
exist lots of analytical and numerical methods to solve
them. These techniques have allowed establishing a
comparison point between the exact solution and the
approximation carried out by the ANN involved with
FC. Several numerical or analytical methods that have
been developed to solve FDE are, for instance: the
Adams–Bashfort–Moulton method, homotopy pertur-
bation method, variational iteration method, Adomian
decomposition method, Laplace transform method,
among others [3–10].

The uncertainty of parameters affects the modeling
and controlling of the systems we are dealing with.
Therefore, parameter estimation of ANN involved with
FC is crucial for the theoretical study and practi-
cal applications [11]. In training ANN involved with
FC, the synaptic connection weights between differ-
ent neurons are adjusted. The weights training is car-
ried out using optimization algorithms. An optimiza-
tion algorithm is an efficient searching method to solve
constrained optimization problems [12]. The various
optimization algorithms to train ANN involved with
FC include the algorithms based on back-propagation
(BP), such as gradient descent algorithm (GD) or
Levenberg–Marquardt algorithm (LM) among others,
and algorithms based on heuristic methods, such as
genetic algorithm (GA), simulating annealing algo-
rithm (SA), particle swarm optimization algorithm
(PSO), and so on. At present, synchronization of
chaotic fractional-order differential systems becomes a
challenging and interesting problem due to its poten-
tial applications and the ability to model systems accu-
rately. Amongst all kinds of fractional-order chaos syn-
chronization, the most commonly employed to synchro-
nize ANN involved with FC are projective synchroniza-
tion, global synchronization, finite-time synchroniza-
tion, quasi synchronization, and adaptive synchroniza-
tion. Nowadays, many authors have published works
where sufficient conditions are derived, to achieve these
types of synchronizations on ANN involved with FC
[13,14]. Many control techniques have been used to
show their synchronization, among them: feedback con-
trol, adaptive control, sliding mode control, impulsive
control, and so on [15]. Moreover, the stability anal-
ysis of ANN is one of the most important and active
areas of research. Consequently, some improved stabi-
lization methods for different types of nonlinear sys-
tems are worthy of further investigation [16]. Stability

analysis of several systems has been investigated since
they have been successfully applied in some engineering
fields, such as signal processing, pattern classification,
control, and optimization [14]. In recent years, FC is
introduced for the stability analysis of nonlinear sys-
tems, allowing us to study the most important stability
types, such as exponential stability, finite-time stability,
uniform stability, global stability, etc. Several control
techniques have been widely used to guarantee stability
on ANN involved with FC, among them, sliding mode
control, feedback control, and impulsive control [13,14].

Besides, the ANN involved with FC has been
employed in approximation, estimation, control of chaos.
Moreover, it has been found an ANN involved with
FC with applications in cryptographic, medicine, sus-
tainable energy, images, circuit realization, unmanned
aerial vehicles, and robotics.

In the present work, a state of the art review related
to the ANN involved with FC is carried out. This paper
is organized as follows: Sect. 2 presents a synthesis
about the FC applied to ANN; in Sect. 3, the ana-
lytical and numerical methods employed to solve the
Differential Equations (DE) and FDE that model the
concerned systems are reviewed. Subsequently, Sect. 4
presents a thorough overview of the optimization algo-
rithms employed for the training of ANN involved with
FC; in Sect. 5, the control strategies employed to syn-
chronize and stabilize ANN involved with FC are sum-
marized. Section 6 shows other important applications
of ANN involved with FC. In Sect. 7, some future direc-
tions about ANN involved with FC are given. Finally,
Sect. 8 presents a summary of the most relevant infor-
mation of this research.

2 Mathematical preliminaries

In this section, we present some fractional-order deriva-
tives widely used in the fractional calculus.

Definition 1 Let α ∈ R+ and n = �α�. The fractional
operator in the Riemann–Liouville sense is given as fol-
lows [17]

RL
0D

α
t {f(t)} =

1
Γ(n − α)

dn

dtn∫ t

a

f(τ)
(t − τ)α−n+1

dτ, n − 1 < α ≤ n, (1)

where a and t are the limits of operation of RL
0 Dα

t {f(t)}
and Γ(·) is the Euler Gamma function.

Definition 2 Let α ∈ R+. The fractional operator of
Grünwald–Letnikov is given by [17]

GLDα
t {f(t)} = lim

h→0

(�α
hf) (x)
hα

, (2)

where,
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(�α
hf) (x) =

∞∑
k=0

(−1)k

(
α

k

)
f (x − kh) , α > 0, (3)

and
(
α
k

)
is the generalized binomial coefficient.

Definition 3 The Liouville–Caputo fractional deriva-
tive, which will be named as Caputo derivative in the
rest of this paper, is defined as the convolution of the
local derivative of a given function with a power-law
kernel. Therefore, the derivative of order (α > 0) is
defined as follows [17]

C
0 D

α
t {f(t)} =

1
Γ(n − α)

×
∫ t

0

f (n)(τ)
(t − τ)α−n+1

dτ, n − 1 < α ≤ n. (4)

Definition 4 Let f ∈ H1(a, b), b > a, α ∈ [0, 1)
then, the Atangana–Baleanu fractional derivative in
Liouville–Caputo sense is given as [18]

ABC
0D

α
t {f(t)} =

AB(α)
n − α

×
∫ t

0

f (n)(τ)Eα

[
−α

(t − τ)α

n − α

]
dτ, n − 1 < α < n,

where AB(α) is a normalization function.

3 Methods to solve fractional differential
equations

There are different analytical and numerical meth-
ods to solve DE and FDE. In this section are intro-
duced the methods used to solve the DE and FDE
on ANN involved with FC. Also, in this section, a
brief discussion is carried out to summarize some of
these methods. In [19], a chaotic memristive Hopfield
FANN was designed using the 4th order Runge–Kutta
numerical method involving the Grünwald–Letnikov
derivative. The dynamical properties of the system
were studied. And an adaptive sliding mode control
was used for the system synchronization. In Ref. [20],
the problems on the stability and synchronization of
quaternion-valued FANN was investigated involving
Caputo derivative, and the Adams–Bashforth–Moulton
predictor–corrector method was used to solve the FDE
and demonstrate the validity of the theoretical results.
On the other hand, in [21], an orthogonal FANN was
employed to solve various types of Lane–Emden equa-
tions that arise in several physical phenomena. The
fractional-order Lane–Emden equation was generalized
by considering its derivative in Caputo sense, the ana-
lytical approximation to the solution of the FDE was
carried out using Adomian decomposition method. In
Ref. [22], an orthogonal Jacobi FANN was employed
to perform the numerical simulations of nonlinear frac-

tional dynamics based on various types of FDE, the
obtained results were compared with other numeri-
cal methods, such as the spectral collocation method,
meshless method, and reproducing kernel method, to
demonstrate the feasibility of the proposed approach.

The stability of impulsive complex-valued BAM
FANN with time-varying delays was studied in Ref.
[23]. In this work, the Laplace transform of the Mittag–
Leffler function was obtained, and the Mittag–Leffler
stability of the Caputo fractional derivative was proved.

For homogeneity reasons, each table presented in
this paper shows the ANN architectures that involve:
time delay, time varying-delays, multiple delays, mixed
delays, and leakage delay, followed by the architecture
of the ANN.

Table 1 shows the overview of methods used to solve
DE and FDE applying ANN involved with FC. The
types of the differential equation, the referenced work,
the method to solve the DE or FDE, the ANNs archi-
tectures, as well as the fractional derivative used, are
shown in Table 1, as follows:

According to the bibliographic analysis developed
in this manuscript, we can affirm that the most used
method to solve FDE and Delayed FDE is the Laplace
transform method, followed by the Adams–Bashforth–
Moulton method, both of them mainly used the Caputo
derivative.

3.1 Brief analysis about numerical methods

The interest in applying and solving fractional dif-
ferential equations (FDEs) has increased in the last
decades. Methods such as Laplace/Sumudu pertur-
bation [62,67,68,98,114,122,123], Adomian decompo-
sition [46,124,125], homotopy perturbation [126] or
decomposition have been used to reach this objective.
However, these methods are faced with the convergency,
the stability, ability to handle strong non-linearities
[127] even the presence of a persistent memory [128].

For this reason, linear multistep methods are a pow-
erful option to solve fractional differential equations.
The Adams–Bashforth method (ABM) is an efficient
numerical scheme that converges toward the exact solu-
tion. One can see several types of research whose numer-
ical results were reached by ABM [3,24,33,34,42,44,
45,82,95,97]. It can lead to non-local, non-singular ker-
nel fractional derivatives [129]. However, ABM requires
several floating-point operations [128], and this has lim-
itations because of the Lagrange polynomial. Dealing
with these limitations, Atangana and Araz [130] devel-
oped a numerical scheme based on Newton polynomial,
which seems to be accurate.

Therefore, the proposal of numerical schemes for solv-
ing FDEs is still an open field for new accurate propos-
als with the ability to handle strong non-linearities with
the least computational effort.
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rü

n
w

a
ld

–
L
et

n
ik

ov
d
er

iv
a
ti

v
e

F
D

E
[3

]
A

d
a
m

s–
B

a
sh

fo
rt

h
–
M

o
u
lt

o
n

m
et

h
o
d

A
N

N
A

ta
n
g
a
n
a
–
B

a
le

a
n
u

in
C

a
p
u
to

se
n
se

d
er

iv
a
ti

v
e

F
D

E
[2

1
]

A
d
o
m

ia
n

d
ec

o
m

p
o
si

ti
o
n

m
et

h
o
d

O
rt

h
o
g
o
n
a
l
F
A

N
N

C
a
p
u
to

d
er

iv
a
ti

v
e

F
D

E
[4

6
]

A
d
o
m

ia
n

d
ec

o
m

p
o
si

ti
o
n

m
et

h
o
d

F
ee

d
-f
o
rw

a
rd

A
N

N
R

ie
m

a
n
n
–
L
io

u
v
il
le

a
n
d

C
a
p
u
to

d
er

iv
a
ti

v
e

F
D

E
[4

6
]

C
h
eb

y
sh

ev
w

av
el

et
m

et
h
o
d

F
ee

d
-f
o
rw

a
rd

A
N

N
R

ie
m

a
n
n
-

L
io

u
v
il
le

a
n
d

C
a
p
u
to

d
er

iv
a
ti

v
e

123



Eur. Phys. J. Spec. Top. (2022) 231:2059–2095 2063

T
a
b
le

1
co

n
ti

n
u
ed

D
iff

er
en

ti
a
l
eq

u
a
ti

o
n

R
ef

er
en

ce
s

M
et

h
o
d

o
f
so

lu
ti

o
n

A
N

N
a
rc

h
it

ec
tu

re
F
ra

ct
io

n
a
l
d
er

iv
a
ti

v
e

F
D

E
[4

7
–
4
9
]

C
o
ll
o
ca

ti
o
n

m
et

h
o
d

F
ee

d
-f
o
rw

a
rd

A
N

N
C

a
p
u
to

d
er

iv
a
ti

v
e

[2
2
]

O
rt

h
o
g
o
n
a
l
J
a
co

b
i
F
A

N
N

F
D

E
[4

6
]

D
iff

er
en

ti
a
l
tr

a
n
sf

o
rm

F
ee

d
-f
o
rw

a
rd

A
N

N
R

ie
m

a
n
n
–
L
io

u
v
il
le

a
n
d

C
a
p
u
to

d
er

iv
a
ti

v
e

F
D

E
[2

6
]

E
u
le

r
m

et
h
o
d

A
N

N
C

a
p
u
to

d
er

iv
a
ti

v
e

F
D

E
[3

]
E

u
le

r
m

et
h
o
d

A
N

N
A

ta
n
g
a
n
a
–
B

a
le

a
n
u

in
C

a
p
u
to

se
n
se

d
er

iv
a
ti

v
e

F
D

E
[5

0
]

F
in

it
e

d
iff

er
en

ce
m

et
h
o
d

D
ee

p
F
A

N
N

C
a
p
u
to

d
er

iv
a
ti

v
e

[2
2
]

J
a
co

b
i
o
rt

h
o
g
o
n
a
l
F
A

N
N

F
D

E
[5

1
]

F
in

it
e

d
iff

er
en

ce
m

et
h
o
d

A
N

N
R

ie
m

a
n
n
–
L
io

u
v
il
le

a
n
d

C
a
p
u
to

d
er

iv
a
ti

v
es

F
D

E
[4

6
]

H
o
m

o
to

p
y

p
er

tu
rb

a
ti

o
n

m
et

h
o
d

F
ee

d
-f
o
rw

a
rd

A
N

N
R

ie
m

a
n
n
–
L
io

u
v
il
le

a
n
d

C
a
p
u
to

d
er

iv
a
ti

v
e

[4
4
]

F
ee

d
-f
o
rw

a
rd

A
N

N
[2

5
]

A
N

N
[5

2
]

D
ee

p
co

n
v
o
lu

ti
o
n
a
l
A

N
N

[2
8
,2

9
,5

3
–
5
8
]

F
A

N
N

[5
9
]

B
A

M
F
A

N
N

[6
0
]

C
o
h
en

–
G

ro
ss

b
er

g
F
A

N
N

[1
,6

1
]

C
o
m

p
le

x
-v

a
lu

ed
F
A

N
N

F
D

E
[6

2
]

L
a
p
la

ce
tr

a
n
sf

o
rm

m
et

h
o
d

F
u
zz

y
F
A

N
N

C
a
p
u
to

d
er

iv
a
ti

v
e

[3
8
]

H
o
p
fi
el

d
F
A

N
N

[1
6
,6

3
]

M
em

ri
st

iv
e

F
A

N
N

[1
5
]

N
o
n
id

en
ti

ca
l
F
A

N
N

[6
4
]

Q
u
a
te

rn
io

n
-v

a
lu

ed
F
A

N
N

[6
5
]

Q
u
a
te

rn
io

n
-v

a
lu

ed
m

em
ri

st
iv

e
F
A

N
N

[4
1
,6

6
]

R
ec

u
rr

en
t

F
A

N
N

F
D

E
[6

7
]

L
a
p
la

ce
tr

a
n
sf

o
rm

m
et

h
o
d

B
a
ck

p
ro

p
a
g
a
ti

o
n

A
N

N
R

ie
m

a
n
n
–
L
io

u
v
il
le

d
er

iv
a
ti

v
e

F
D

E
[6

8
]

L
a
p
la

ce
tr

a
n
sf

o
rm

m
et

h
o
d

A
N

N
G

rü
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4 Optimization algorithms for training
artificial neural networks

This section presents the works found in the review
of the state of the art where optimization algorithms
are employed for the training of ANN involved with
FC. First, the works with a fractional approach are
described. Afterwards, the proposals under integer-
order operators are described.

Optimization algorithms with fractional approach

In literature, there were found six works where the
fractional GD algorithm was implemented, four works
based on fractional BP algorithm, and one research
where a Darwinian particle swarm optimization algo-
rithm of fractional-order was developed, all of them
were used for the training of ANN involved with FC.
Next, these works are discussed.

Gradient descent algorithm (GD)

In Ref. [131], the author implemented a fractional GD
algorithm to derive the fractional back-propagation
through time (FBPTT) algorithm for recurrent ANN,
based on the Riemann–Liouville derivative; this frac-
tional algorithm was able to solve three estimation
problems, namely: nonlinear system identification, clas-
sification of pattern and Mackey–Glass chaotic time
series prediction, outperforming the conventional back-
propagation through time performance.

Other interesting works were proposed in Refs.
[132,133]. They got a fractional GD back-propagation
method based on the Caputo derivative for training
an ANN [132] and deep BP ANN [133]. They derived
the error function monotonicity, the proposed algo-
rithms presented weak convergence, and numerical sim-
ulations demonstrated the competitive performance of
the presented fractional models. Compared with classi-
cal integer-order models, the fractional models showed
significant advantages of memory storage and heredi-
tary characteristics. The authors in Ref. [133] carried
out a comparison between two different methods to
test their performances, the first was an ordinary BP
ANN, and the second one was a fractional-order deep
BP ANN. The results of the training and testing showed
that fractional-order deep BP ANN has a better per-
formance.

Afterward, as the fractional-order gradient could
not converge to the real extreme point. In Ref. [134],
the authors designed a new fractional-order gradient
method based on Caputo derivative for the BP of con-
volutional ANN. In this work, the parameters within
the layers were updated using the fractional gradient
method, but propagations between layers used integer
gradients to keep the chain rule. In fact, the proposed
fractional-order gradient method guaranteed the con-
vergence to a real extreme point, fast convergence, high
accuracy, and ability to escape local optimal point in
ANN when compared with integer-order ANN.

Also, Chen et al. [135] implemented an adaptive
fractional-order BP ANN. This technique uses the pop-
ulation extremal optimization, as well as the fractional-
order GD training algorithms. The method was devel-
oped to solve handwritten digit recognition problems.
Population extremal optimization algorithms were used
to optimize the initial connection weight parameters,
and the fractional GD was used to update these con-
nection weight parameters.

Finally, a FANN was proposed in Ref. [136] for the
identification of three different systems. The FANN was
trained by using the GD algorithm and the Grünwald–
Letnikov derivative. In this work, the three systems
that we identified are two benchmark systems and one
experimental system. The benchmark systems are a
hairdryer, consisting of a mesh of resistor wires heat-
ing the air at the entrance of a pipeline, and a hystere-
sis model consisting of the Bouc–Wen model used to
represent hysteresis effects in mechanical engineering.
Besides, the experimental acoustic duct system is based
on an acoustic waves pipeline. The results demonstrated
that the fractional gradient descent algorithm allowed
accurate estimations with a reduced number of parame-
ters, compared with other works found in the literature
where the gradient descent algorithm of integer-order
was employed.

Backpropagation algorithm (BP)

In Ref. [137], the authors developed a Hopfield FANN
in the form of an analog circuit. To carried out this,
they used factorial, as well as steepest descent fractional
approaches.

The authors in Ref. [138] developed a fractional-order
BP ANN for improving the performance of the ordi-
nary first-order BP ANN, which was trained by an
improved fractional-order steepest descent method. The
proposed approach showed to be capable of finding the
global optimal solutions. The BPFANN was compared
with a classic first-order BPANN by means of an exam-
ple function approximation, fractional-order multi-scale
global optimization, and two comparative performances
with real data, involving Grünwald–Letnikov deriva-
tive. The BPFANN was compared with a classic first-
order BPANN. To carry out the methods comparison,
they were used an approximation function, a fractional-
order multi-scale global optimization method, and two
real data sets. The FANN was developed involving
the Grünwald–Letnikov derivative. The BPFANN was
superior to the classic first-order BPANN in terms of
finding the global optimal solution.

Additionally, in Ref. [139], the authors implemented
a fractional observer ANN for high complex fractional-
order nonlinear systems, involving the Caputo deriva-
tive, for estimating the state variables of a fractional-
order nonlinear chaotic system with the unknown
dynamic model. A new fractional error back-propagation
learning algorithm was developed to adapt the weights
of the ANN. This method could eliminate the effect of
uncertainties and unmodeled dynamics of the system,
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showing a fast convergence. The fractional observer was
better than other observers of integer-order in terms of
accuracies for fractional systems, distinguishing exter-
nal disturbances, and modeling uncertainties more effi-
ciently.

Darwinian particle swarm optimization algorithm
(FO-PSO)

In Ref. [24], the authors developed a feed-forward ANN
optimized by applying a fractional-order Darwinian
particle swarm optimization algorithm (FO-DPSO) to
calculate better solutions to the nonlinear second-order
ordinary differential equations representing the corneal
shape model (CSM). The authors used the Grünwald–
Letnikov derivative. Adams’s numerical solver was used
as the reference solution. PSO-DPSO was compared
with the hybridization between the PSO algorithm
and the Active set algorithm (PSO-ASA). The result
showed that ANN-based FO-DPSO was more accurate
in the solutions with fewer residual errors. Performance
matrices like MAD, TIC, and ENSE were used to test
the efficiency of the proposed approach, demonstrating
that the proposed methodology was better in terms of
less number of function evaluations, mean time value,
ENSE, TIC, MAD. FO-DPSO was an excellent tech-
nique for tuning the unknown weights involved in the
solution designed with ANNs.

Optimization algorithms with classical approach

From the bibliographic review, there were found seven
works where the classical GD has been used as an
optimization algorithm for training the ANN involved
with FC. In two research works, the classical BP
algorithm was proposed. Moreover, in six works, the
classical Levenberg–Marquardt algorithm (LM) was
implemented for training the ANNs. On the other
hand, some other classical optimization algorithms have
been employed with this purpose, such as interior
point algorithm (IPA), genetic algorithm hybridized
with pattern search algorithm (GA-PS), sequential
quadratic programming algorithm (SQP), Broyden–
Fletcher–Goldfarb–Shanno algorithm (BFGS), chaotic
differential evolution algorithm (CDE), simulated
annealing algorithm (SA), particle swarm optimiza-
tion algorithm (PSO), (SA) hybrid with particle swarm
optimization algorithm (PSO) obtaining the (PSO-
SA) algorithm, particle swarm optimization algorithm
hybrid with enhanced fruit fly algorithm (PSO-EFF),
particle swarm optimization algorithm hybrid with arti-
ficial bee colony algorithm (PSO-ABC), and stochastic
inertia weight particle swarm optimization (SIWPSO)
algorithm.

All the above-mentioned works are going to be
explained in detail as follows:

Gradient descent algorithm (GD)

Firstly, in Ref. [67], the authors proposed a fractional
PID controller with self-tuning parameters based on
BP ANN. The discretization method and the design
method of the controller were discussed. The authors
used the Riemann–Liouville derivative to develop the
fractional controller. The controller parameters were
tuned by an ANN, which was optimized by the GD
optimization algorithm. The fractional PID controller
was more flexible than the ordinary. The fractional con-
troller allowed the authors to adjust better its dynam-
ical properties than the ordinary PID. Moreover, the
fractional PID controller with a self-tuning parameter
based on a BP ANN kept features of a normal fractional
PID controller. It has better flexibility because an ANN
was introduced to develop the self-tuning controller.

Subsequently, a set of fractional differential equations
of initial value problems constructed from cosine basis
functions with adjustable parameters were solved in
Ref. [140] using an ANN and the Caputo derivative.
Numerical solutions were obtained for a single FDE, as
well as for systems of coupled FDE. The numerical solu-
tions were obtained by training the ANN repeatedly by
means of the GD algorithm. Numerical results were in
good agreement with the exact solutions of the FDE.

Similarly, Jafarian in Ref. [141] employed the Caputo
derivative over a bounded domain to approximate series
solutions of a class of initial value FDE. The ANN was
used to solve a fractional type ordinary DE. The orig-
inal differential equation was transformed into a mini-
mization problem, which was solved using an accurate
ANN model for computing the parameters accurately.
The authors achieved this using the GD procedure for
training a feed-forward ANN. The proposed algorithm
was an efficient tool for finding the unknown series coef-
ficients. The obtained simulation results were compared
with the exact solutions, Chebyshev wavelet method,
and the Homotopy perturbation method, reported in
the literature. Finally, the authors demonstrated that
numerical simulations carried out by the ANN trained
using the GD algorithm were similar to the solutions
reported in the literature.

On the other hand, a Chebyshev functional link ANN
was proposed by Kheyrinataj and Nazemi in Ref. [98]
to model linear and nonlinear delay fractional optimal
control problems involving Atangana–Baleanu deriva-
tive. The trial solutions were approximated by applying
the Chebyshev functional link ANN, which was trained
using the GD algorithm. This work presented the first
application of delay fractional optimal control with
mixed control-state constraints employing a fractional-
order derivative with the nonlocal and nonsingular ker-
nel using the Chebysehv functional link ANN approach.

Besides, Antil in Ref. [50] proposed a deep FANN for
the time-discretization of a fractional in time nonlinear
ordinary DE, employing Caputo derivative. The frac-
tional ordinary DE was minimized by the learning algo-
rithm, solving several issues, such as network instability,
vanishing, exploding gradients, long training times, and
inability to approximate non-smooth functions. Keep-
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ing track of history in this manner improved the vanish-
ing gradient problem and could potentially strengthen
feature propagation. It was numerically illustrated the
improvement in the vanishing gradient issue using of the
proposed deep FANN allowing a better learning ability.
The deep FANN was better capable of passing informa-
tion across the network layers maintaining the relative
gradient magnitude across the layers, compared to the
standard deep ANN and standard Residual ANN. The
deep FANN improved the vanishing gradient issue due
to the memory effect, and it handled much better the
nonsmooth data due to the network’s ability to approx-
imate non-smooth functions.

Finally, the authors in Ref. [49] tested the abil-
ity of a perceptron ANN to approximate functions to
solve fractional infinite-horizon optimal control prob-
lems involving Riemann–Liouville and Caputo deriva-
tives. The authors used the GD algorithm for training
the ANN. There were no other reported works about
solving this problem in the literature. Numerical sim-
ulations demonstrated the feasibility and efficiency of
using the proposed method for solving optimal control
problems.

Backpropagation algorithm (BP)

The BP algorithm was used for training a Master-Slave
FANN based on Caputo derivative in Ref. [27]. The
master network was composed of two Hopfield net-
works, meanwhile and the slave network was a BP net-
work, doing the BP the system error. The Master-Slave
FANN showed to have the highest asymptotic conver-
gence rate and the smallest system error compared with
Master-Slave ANN of integer-order.

Moreover, in Ref. [142] the authors found the numeri-
cal solution of FDE by employing the Chebyshev ANN,
Riemann–Liouville, and Caputo derivatives. BP algo-
rithm was used to train the feed-forward Chebyshev
ANN. The accuracy of the proposed method was shown
by comparing the analytical solutions with the numer-
ical results. The obtained results showed a good agree-
ment with analytical solutions. The comparison results
showed that the Chebyshev ANN is a capable tool for
solving linear and nonlinear problems.

Nouh [143] modeled the fractional polytropic gas
spheres, which have several applications in physics,
astrophysics, engineering, and so on. Thus, the frac-
tional Lane–Emden differential equations of the frac-
tional polytropic gas spheres phenomena were solved
employing ANN-based on back-propagation training
algorithm, reaching the training of the ANN with small
errors predicting the values of fractional Lane–Emden
functions.

Levenberg–Marquardt algorithm (LM)

Firstly, Efe and Member in Ref. [144] developed an ana-
log PID controller using an approach of feed-forward
ANN. The implementation of fractional-order operators
in the PID controller was discussed for establishing a

robust control for applications in unmanned aerial vehi-
cles (UAVs). The ANN was trained to provide the coef-
ficients of a finite impulse response (FIR) of approxima-
tion type. Some trajectories were described properly by
the FIR controller, and the feed-forward ANN, which
was trained by the LM algorithm.

Next, in Ref. [145] the authors developed a new
method to detect unilateral hearing loss (left-sided and
right-sided); the fractional Fourier transform (FRFT)
was employed to detect hearing loss more efficiently
and accurately. The classifier was a feed-forward ANN
trained by the LM algorithm. Some magnetic resonance
images were obtained from studies with real patients.
The combination of fractional Fourier transform, the
principal component analysis, and the neural network
as the classifier, showed accuracies higher than 95%
concerning the experimental data [145].

On the other hand, Zúñiga-Aguilar [3,97] used an
ANN to get the approximated solution of fractional
differential equations of Atangana–Baleanu type in
Caputo sense with delay and without delay, respec-
tively. In both cases, the network’s parameters opti-
mization was carried out using the LM algorithm. The
results of both ANNs were compared with the analyt-
ical solutions and the numerical simulations obtained
through the Adams–Bashforth–Moulton method. Dif-
ferent performance indices were calculated to show the
effectiveness of the ANNs. The ANN’s were able to
achieve approximate solutions with good precision and
fast convergence.

Subsequently, Kadam et al. developed the artifi-
cial ANN approximation of fractional derivative opera-
tors such as Grünwald–Letnikov and Caputo fractional
derivatives. LM algorithm was used for training the
ANN, considering the mean squared error between the
outputs of derivatives and the approximations for val-
idation. Thus, the approximations were computation-
ally fast when compared with the numerical evaluation
of fractional-order derivatives.

In a recent paper [21], the authors showed the design
of a single layer orthogonal ANN for approximating the
solutions of different types of Lane–Emden equations in
the Caputo sense. The fractional-order Legendre func-
tions in Caputo sense were used as the hidden layer
activation function, while the LM algorithm was used
to train the ANN. The obtained results were compared
with some other numerical methods and with the exact
solution, showing that the proposed orthogonal ANN
was accurate and feasible.

Finally, Hadian Rasanan in Ref. [22] implemented
a fractional ANN. The authors used fractional-order
Jacobi functions as the activation function of the hidden
layer. And the identity function was used as the activa-
tion function of the output layer. The goal of this work
was to approximate the solution of FDE and partial
FDE involving Caputo derivative. LM was the train-
ing algorithm employed. Thereby, the proposed ANN
had the ability to reach high accuracy with few neu-
rons. The effectiveness of the proposed ANN was vali-
dated applying linear and nonlinear fractional dynam-
ics. The numerical results were compared with the
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results obtained from other ANN and some numerical
experiments, demonstrating that the proposed model is
accurate, fast, and feasible.

Interior point algorithm (IPA)

Regarding the use of the IPA algorithm for the train-
ing of ANN involved with FC, Asif in Ref. [12] found
the solution of fractional systems governed by the
initial value problems of the Bagley–Torvik equation
employing a FANN trained with the IPA algorithm
via Caputo and Riemann–Liouville derivatives. The
designed method was evaluated on different initial value
problems of the equation. A comparison between the
proposed method and several available criteria, such as
an exact solution; Podlubny numerical techniques; an
analytical solver based on variational iteration method;
and a reported solution of stochastic solvers based on
hybrid approaches, allowed to verify the effectiveness of
the designed method. Concluding, this efficient compu-
tational technique based on FANN, optimized with IPA,
was able to find the solutions of different variants of
Bagley–Torvik equations in a more accurate way than
other stochastic techniques.

Also, in Ref. [146] authors found the approximate
solutions of nonlinear quadratic systems based on Ric-
cati equations of fractional-order by means of FANN
trained with IPA algorithm. The obtained results were
compared with the exact solutions proving the effective-
ness of the proposal. This method matched more closely
with the standard solution obtained from Adams–
Bashforth–Moulton method than the modified homo-
topy perturbation method and enhanced homotopy per-
turbation method. The average time consumed by the
IPA for a run was lower that than other stochastic tech-
niques based on the PSO and GA algorithms.

Genetic algorithm and pattern search (GA-PS)

A new method to train ANN involved with FC was
developed in [147], where a fractional-order system
represented by Bagley–Torvik equation was solved by
means of feed-forward ANN. This new method is based
on evolutionary computational, and it is called the GA
algorithm hybrid with the PS technique. Besides, in this
work, the Riemann–Liouville derivative was used. The
proposed method was successfully applied to different
forms of the equation, and the results were compared
with a standard approximate analytic solution, stochas-
tic numerical solvers, and exact solutions. The GA, PS,
and Ga hybrid with PS (GA-PS) optimizer algorithms
were compared against each other for evaluating the
performances of the training algorithms, obtaining the
best results with the GA-PS algorithm.

Sequential quadratic programming algorithm (SQP)

In Ref. [44], the authors applied a feed-forward ANN
and SQP algorithm for the training of weights to obtain
the solution of nonlinear quadratic Riccati FDE involv-

ing the Riemann–Liouville and the Caputo derivatives.
The obtained results with the proposed methodology
coincided with the exact solution based on the Adams–
Bashforth–Moulton technique. Even, the results were
more accurate than the obtained with both the mod-
ified homotopy perturbation and the enhanced Homo-
topy perturbation methods showing the effectiveness of
the proposed scheme.

Broyden–Fletcher–Goldfarb–Shanno algorithm
(BFGS)

An adaptive fractional-order PID controller using ANN
was designed based on auto-tuning neurons, involving
Caputo derivative in [51]. The Nelder–Mead simplex
search method and BFGS algorithm were used for the
parameters tuning. The proposed controller was more
robust in comparison with conventional controllers [51].

Also, the BFGS quasi-Newton algorithm was
employed for training a perceptron ANN involving
Caputo derivative in Ref. [26] and [148] to solve FDE
and approximate the solution of a fractional optimal
control problem, respectively. In [26], the authors vali-
dated their method by solving different types of multi-
term FEEs. In Ref. [148], the authors validated their
proposal by comparing their results with other investi-
gations found in the literature.

Chaotic differential evolution algorithm (CDE)

In Ref. [149], the authors implemented a wind turbine
pitch control for regulating the speed of the rotor and
power production. The authors proposed a fractional-
order PID combined with a radial basis function ANN
to improve the performance and alleviating the mechan-
ical loads. The ANN was trained with the CDE algo-
rithm. The fractional-order PID presented better per-
formance and robustness when comparing with other
controllers. Moreover, the FOPID controller alleviated
mechanical loads in a better way, compared with other
control techniques, such as the PID, PI, radial basis
function PI, and fractional-order PI controller.

Simulated annealing algorithm (SA)

The chaotic behavior of fractional-order Chua’s system
was studied by means of fractional Laplace transform,
the activation function for the ANN was the Mexican
hat wavelet. The ANN was trained using SA and the
analytical solution for the system could be approxi-
mated. The accurate approximated solutions, the phase
plots of the Lyapunov exponent spectrum, and bifur-
cation maps of the dynamical evolution of fractional
Chua’s system were achieved. Mexican Hat Wavelet-
based ANN with SA and fifth-fourth Runge–Kutta
method, were proposed to attain the solutions of frac-
tional Chua’s model. Using Caputo derivative, cubic
nonlinear was solved efficiently and the Chua’s circuit
variables were optimized for different fractional values,
in [25].
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Subsequently, in Ref. [150] the authors found the
numerical solution of delayed FDE based on the appli-
cation of neural minimization using Chebyshev simu-
lated annealing ANN and Legendre simulated anneal-
ing ANN. Chebyshev and Legendre polynomials were
used with SA to reduce mean square error and get
more accurate numerical approximations. This work
was based on the functional link ANN with optimiza-
tion through thermal minimization. Caputo’s definition
was employed for calculating the fractional derivative
in the subsequent procedure, and the learning method-
ology used in this work was the SA algorithm. The
obtained results were validated using various experi-
ments, numerically. And graphically with error analy-
sis to demonstrate the accuracy and efficiency of the
proposed approach.

Particle swarm optimization (PSO)

In Ref. [34], the authors presented a fractional-order
dynamic ANN trained by the PSO algorithm for iden-
tifying the Damavand tokamak plasma behavior using
the Caputo derivative. The system stability was demon-
strated based on the Lyapunov-like analysis. The per-
formance of the proposed approach was compared
with experimental data and the integer-order ANN
approach. The comparison results showed that the
fractional-order dynamic ANN was higher accurate
than the dynamic ANN of integer-order.

Zhang and Yang in Ref. [151], studied the optimal
quasi-synchronization problem for delayed memristive
FANN involving Caputo derivative. Fractional-order
inequalities and aperiodically intermittent controllers
were proposed to guarantee the quasi-synchronization
of the system. Mittag–Leffler function allowed to get
the stability result of the fractional-order delayed sys-
tem. Synchronization of the delayed memrisitve delayed
FANN was ensured thanks to matrix inequalities. The
control parameters were optimized, and the smaller
control energy was obtained applying the PSO algo-
rithm. Simulation examples showed the correctness of
the proposed method.

Aslipour and Yazdizadehin in Ref. [34] optimized
a dynamic FANN involving Caputo derivative. The
authors used the PSO algorithm to identify the behav-
ior of a wind turbine in operation. The results obtained
from dynamic FANN were compared with the results
obtained from dynamic ANN of integer-order, high-
lighting that the fractional method was more accurate.

Particle swarm optimization-simulated annealing
algorithm (PSO-SA)

In Ref. [46], the authors developed a feed-forward ANN
used for approximating the solution of nonlinear Riccati
FDE using Riemann–Liouville and Caputo derivatives.
The network training was carried out using the particle
swarm optimization algorithm (PSO) hybridized with
the simulated annealing algorithm (SA). The results
were compared with the standard approximate analyti-

cal method, the stochastic numerical solvers, and exact
solutions. The weights training was proved with other
stochastic algorithms, such as SA, GA, GA hybridized
with SA (GA-SA), PSO, and PSO hybridized with SA
(PSO-SA). The best optimization results were obtained
by PSO-SA algorithm.

In Ref. [42], the PSO-SA algorithm was employed
for the training of a feed-forward ANN. In this case,
the ANN approximated the mathematical model of
FDE using Riemann–Liouville and Grünwald–Letnikov
derivatives. Comparison between the obtained results
and the available exact solutions, analytic solutions,
and standard numerical techniques (including both
deterministic and stochastic approaches) was carried
out, showing that This approach was properly employed
to solve different problems associated with linear and
nonlinear ordinary FDE. The training of weights was
implemented using PSO, GA, GA-SA, and SA algo-
rithms, but the best results were obtained using the
PSO-SA algorithm.

Particle swarm optimization and enhanced fruit fly
(PSO-EFF)

In Ref. [68], authors developed a nonlinear neural
fractional-order proportional integral derivative con-
troller based on ANN and involving the Grunwald–
Letnikov derivative, applied to the motion control of
a nonholonomic differential drive of a mobile robot.
The hybridization of a modified adaptive PSO and the
EFF optimization algorithms were used for tuning the
parameters of the fractional-order PID controller based
on ANN. The fractional-order PID controller decreased
the control signals that drive differential drive mobile
robot motors by approximately 45% compared with the
PID based on ANN of integer-order, and thus reduced
the energy consumption in circular trajectories. Numer-
ical simulations demonstrated that the performance of
the designed fractional controller was excellent com-
pared with nonlinear controllers of integer-order on the
trajectory tracking of the differential drive mobile robot
with different trajectories as study cases.

Particle swarm optimization and artificial bee colony
(PSO-ABC)

In the current year, Mohammadzadeh and Kayacan in
[152] developed an adaptive fractional-order fuzzy con-
trol method in the sense of Caputo’s definition to con-
trol the frequency in an AC microgrid (MG). A sequen-
tial general type-2 fuzzy system based on the radial
basis ANN was presented for online modeling of the fre-
quency response of the MG. The parameters were opti-
mized using of a hybridized approach between PSO and
ABC algorithms. The learning algorithm was examined
using white noise as the control input. It was demon-
strated that the proposed identification scheme results
were in good performance even in a noisy environment.
The results had robust performance in the presence of
variation of solar radiation, wind speed, load distur-
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bance, and time-varying dynamics of the other units
of MG. The proposed control approach was compared
with the conventional PI controller, classic fuzzy, and
PSO-fuzzy PI controllers. The results showed that the
proposed scheme has better performance.

Stochastic inertia weight particle swarm
optimization (SIWPSO)

Optimization of synchronization for delayed memris-
tive FANN was investigated in Ref. [153], involving
Caputo derivative. It was designed an appropriate con-
troller where the drive system was able to synchro-
nize with the response system. Synchronization condi-
tions were obtained thanks to the linear matrix inequal-
ity, along with fractional-order Lyapunov methods. The
FANN was trained using of the SIWPSO algorithm,
the target function was the minimal sum of control
energy expressed by the integral square error-index,
where the Riemann–Liouville derivative was used to
get the approximated value of the target function. It
was obtained a better controller with low control energy
and integral square error (ISE) index. The optimal con-
trol parameters of the proposed model were obtained
by computing the SIWPSO algorithm, which was an
improved intelligent algorithm. A simulation was pro-
vided to demonstrate the feasibility of the proposed
results.

5 Synchronization and stabilization of ANN
involved with FC

The FC applied to ANNs allows simulating systems
more accurately than by the classical approach, due to
the FC properties as the nonlocality and the memory
description of FC. From the bibliographic review, we
can affirm that the main applications of FC applied to
ANN are system stabilization, systems synchronization,
and the training of these systems through optimization
algorithms.

This section is organized as follows: first, the control
strategies carried out to guarantee the synchronization
and stabilization of ANN involved with FC are summa-
rized. Second, other examples of stabilization reached
using FC on ANN are overviewed.

5.1 Control strategies employed to synchronize and
stabilize ANN involved with FC

Several authors have used control strategies to syn-
chronize and stabilize different architectures of ANN
involved with FC. A brief overview of them will be
described as follows:

On the one hand, in [11,13,55,154–161] authors
employed adaptive control to reach: projective, mixed
projective synchronization, and synchronization using
the Caputo derivative.

On the other hand, sliding mode control was employed
in [15,58,162–166] to reach: projective, global pro-
jective, mixed projective synchronization, and syn-
chronization using the Caputo and Riemann–Liouville
derivatives.

Also, feedback control was found in several works
on ANN involving FC. This control strategy was
applied in Ref. [20,43,53,56,59,61,90–92,96,116–119,
154,167–183], and aiding to achieve: hybrid projec-
tive, finite-time projective, projective, quasi-projective,
quasi-uniform synchronization, stability, finite-time sta-
bility, synchronization, and global stability using
Caputo and Riemann–Liouville derivatives.

Other control strategies, such as adaptive control,
impulsive control, or washout filter control were
employed in [101,184–187] to attain: projective, adap-
tive, global, chaotic synchronization, and global sta-
bility, using the Caputo derivative and Grünwald–
Letnikov derivatives.

The most used fractional derivative to guarantee the
synchronization of these types of systems is the Caputo
derivative, followed by the Riemann–Liouville and the
Grünwald–Letnikov derivatives, respectively. We found
that the Grünwald–Letnikov derivative was only used
in one work [187].

The information given in the above sections is sum-
marized in Tables 2 and 3. The tables show the rela-
tionship among the control strategy, ANN architecture,
the fractional derivative, and the goal achieved (appli-
cation), as follows:

5.2 ANN involved with FC to reach stability

Several authors in literature stabilized ANN involved
with FC, thanks to the FDE employed in these sys-
tems. In this sense, different types of fractional deriva-
tives have been used to reach systems stabilization. Fol-
lowing, we will present some related works to systems
stabilization using ANN involved with FC.

Caputo derivative was employed to reach the expo-
nential stability, in Refs. [32,171,232], the uniform sta-
bility in [76,79,233–242], the finite-time stability in
Refs. [75,85,103,175,243–248], the stability and bifur-
cation in Refs. [36,37,41,73,74,77,80,108,249–251], and
the quasi-uniform stability, fractional input stability,
global stability, and global periodicity in Refs. [252–
254], respectively.

Similarly, the Caputo and Riemann–Liouville deriva-
tives were employed to reach: the global stability in
Refs. [16,28,38,59,62,86,95,117,174,180,185,255–259],
the stability in Refs. [35,41,54,57,66,84,87,113,155,
260–268].

Also, the Riemann–Liouville derivative was used to
reach synchronization stability in Refs. [252–254,269,
270].

Concluding, the Caputo derivative is the most used
fractional derivative for investigating the stability of
the ANN involved with FC, followed by the Riemann–
Liouville derivative. Nowadays, Caputo and Riemann–
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Table 2 Control strategies employed to synchronize and stabilize ANN involved with FC

Control
strategy

References ANN architecture Fractional derivative Application

Adaptive
control

[188] ANN Synchronization

[156] Chebyshev ANN Synchronization
[161] Fuzzy ANN Synchronization
[13,160] FANN Global projective

synchronization
[11,154] FANN Global synchronization
[55,155] FANN Synchronization
[189] Chaotic FANN Approximation and

stability
[82] Fuzzy cellular FANN Caputo derivative Global stability and

synchronization
[159] Memristive FANN Projective

synchronization
[190] Memristive FANN with

leakage delay
Synchronization

[191] Radial basis function
FANN

Synchronization

[158] Delayed FANN Mixed projective
synchronization

[192] Delayed BAM FANN Stability and
synchronization

[157] Delayed fuzzy FANN Projective
synchronization

[109] Delayed
complex-valued
FANN

Quasi-projective and
complete
synchronization

[193] Delayed competitive
FANN

Projective
Synchronization

Adaptive
sliding mode
control

[194] Hopfield FANN Caputo derivative Stability

[195] Delayed fuzzy FANN Projective
synchronization

[52] Deep convolutional
ANN

Robotic manipulators

[196] Deep recurrent ANN Synchronization
[165] Radial basis function

ANN
Stability

[197] Radial basis function
ANN

HIV infection model

[198,199] Recurrent ANN Approximation
[198] Recurrent ANN Stability

Sliding Mode
Control

[58] FANN Caputo derivative Synchronization

[200] Chaotic FANN Syncrhonization
[201] Memristive MAM

FANN
Fixed-time
synchronization

[15] Nonidentical FANN Projective
synchronization

[166] Delayed Hopfield
FANN

Adaptive
synchronization

[162] Delayed nonidentical
FANN

Projective
synchronization

[164] Hopfield FANN Finite-time stability
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Table 2 continued

Control
strategy

References ANN architecture Fractional derivative Application

Sliding Mode
Control

[163] Nonidentical FANN Riemann–Liouville
Derivative

Global projective
synchronization

Sliding Mode
Control

[19] Memristive Hopfield
FANN

Grünwald–Letnikov
derivative

Synchronization

Pinning
Control

[202] Delayed BAM FANN Caputo Derivative Quasi-pinning
synchronization and
stability

[107] Delayed
Cohen–Grossberg
FANN

Stability and pinning
synchronization

Feedback
pinning
control

[40] Memristive FANN Caputo derivative Quasi-synchronization

[56,171] FANN Stability and
synchronization

[203] FANN Robust finite-time cost
control

[29] FANN Hybrid projective
synchronization

[181] FANN Global synchronization
[204] Delayed FANN Global synchronization
[173] Delayed FANN Synchronization
[90] Delayed FANN Hybrid projective

synchronization
[154] Delayed FANN Synchronization
[205] Delayed FANN Projective

synchronization
[59] BAM FANN Stability
[206] BAM FANN Global Stability
[168] Delayed BAM FANN Synchronization
[78] Delayed BAM FANN Global synchronization
[207] Delayed BAM FANN Finite-time stability
[78] Delayed BAM FANN Global synchronization
[53] Chaotic FANN Synchronization
[172] Memristive FANN Synchronization
[118,208] Delayed memristive

FANN
Synchronization

[177] Delayed memristive
FANN

Finite-time projective
synchronization

[209] Delayed memristive
FANN

Projective
synchronization

[117,174] Delayed memristive
FANN

Stability and
synchronization

[210] Delayed memristive
FANN

Global stability

[211] Delayed memristive
FANN

Synchronization

Feedback
Control

[116] Delayed memristive
FANN

Caputo derivative Finite-time
synchronization

[92] Delayed memristive
FANN

Quasi-uniform
synchronization

[91] Delayed memristive
FANN

Quasi-synchronization
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Table 2 continued

Control
strategy

References ANN architecture Fractional derivative Application

[180] Delayed memristive
FANN

Global synchronization

[212] Delayed memristive
FANN

Asymptotic stability

[119] Delayed memristive
BAM FANN

Finite-time
synchronization

[182] Memristive recurrent
FANN

Finite-time
synchronization

[93] Delayed memrisitve
quaternion-valued
FANN

Synchronization and
stability

[175] Cohen–Grossberg
memristive FANN

Finite-time stability
and synchronization

[213] Quaternion-valued
FANN

Finite-time
synchronization

[214] Quaternion-valued
BAM FANN

Synchronization

[215] Quaternion-valued
Memristive FANN

Global stability

[20] Quaternion-valued
FANN

Global synchronization
and global stability

[216] Delayed
quaternion-valued
FANN

Global synchronization

[176] Fuzzy cellular
memristive FANN

Finite-time stability
and synchronization

[217] Fuzzy FANN Asymptotic stability
[218] Coupled discontinuous

FANN
Finite-time
synchronization

[219] Delayed
non-autonomous
FANN

Synchronization

[114] Delayed competitive
FANN

Global asymptotic
stability

[115] Delayed coupled FANN
with

Robust asymptotic
synchronization

[179] Radial basis function
ANN

Projective
synchronization

[61] Complex-valued
recurrent FANN

Quasi-projective
synchronization

[109] Delayed
complex-valued
FANN

Quasi-projective and
complete
synchronization

[167,183] Delayed
complex-valued
FANN

Synchronization

[170] FANN Synchronization
[220] Delayed FANN Stability and

synchronization
[221] Delayed FANN Synchronization
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Table 2 continued

Control
strategy

References ANN architecture Fractional derivative Application

Feedback
Control

[96] Delayed FANN Riemann–Liouville
derivative

Synchronization

[43] Nonidentical FANN Global synchronization
[178] Memristive FANN Projective

synchronization
[222] Complex-valued

memristive FANN
Global asymptotic
synchronization

[223] Delayed memristive
BAM FANN

Global projective
synchronization

Liouville derivatives are the only two derivatives used
to reach stability in these systems.

Table 4 summarize research works related to ANN
involved with FC to reach stability.

From the four tables shown in this manuscript: it’s
important to mention that temporal models with recur-
rent FANN have been developed in works: [41,45,79,
102,182,198,199,263,266].

6 Other interesting applications of ANN
involved with FC

From the bibliographic analysis, there were found works
where ANN was involved with FC to reach goals, such
as approximation of functions, description of chaos,
estimation, global dissipativity, periodicity, and mod-
eling heat transfer process. Other researches have been
applied to the different areas of science and engineer-
ing, such as medicine, image encryption, robotic, among
others. The most important works related to these
applications will be described in detail in this section,
as follows.

ANN involved with FC: applications in
approximation of functions

In several research works, there were approximated
functions with the aid of ANN involved with FC. Some
of these works will be explained in detail below:

The fractional quantitative approximation of real-
valued functions involving Caputo derivative was car-
ried out on feed-forward ANN in Ref. [286]. These
approximations were derived by establishing Jackson
type inequalities, converging the fractional approxima-
tion results better than the integer-order scheme.

The fractional differential polynomial ANN was the
proposed method to approximate a multi-parametric
function with polynomials, involving the Caputo deriva-
tive. The generalization depended on the Riemann–
Liouville differential operator, and the experimental
results demonstrated that the approximation to the
exact value with the fractional differential polynomial
ANN was quicker than the integer-order method [287].

Liu and Fei in Ref. [165], approximated the nonlinear
Dual Radial Basis functions ANN and the upper bound
of estimated disturbances, improving the system sta-
bility and robustness, involving Caputo derivative. The
ANNs weights were updated online to approximate the
dual Radial Basis functions ANN structures, applied to
a control system.

In Ref. [189], an adaptive control based on ANN
was used to approximate unknown nonlinear functions
using the fractional Lyapunov stability criterion and
the backstepping technique, to control an uncertain
fractional-order Chua–Hartley chaotic systems. The
ANN was employed to approximate unknown system
uncertainties and external disturbances. The numerical
simulation was given to demonstrate the effectiveness
of the proposed approach.

On the other hand, Lu and Wang in Ref. [288] devel-
oped the adaptive ANN tracking control using back-
stepping technology for the fractional-order chaotic per-
manent magnet synchronous motor with the immea-
surable state, parameter uncertainties, and external
load disturbance, involving Caputo derivative. The pro-
posed approach employed a Chebyshev ANN and a
state observer to approximate the unknown functions
and estimate the unmeasurable state. In this work, the
simulation results were presented to demonstrate the
correctness of the proposed methodology.

In Ref. [289], authors developed an adaptive ANN
control based on command filtered backstepping method
for fractional-order permanent magnet synchronous
motor with parameter uncertainties and unknown time
delays, involving Caputo derivative. The unknown
parameters, as well as the load disturbance, were
approximated by using ANN. The time delays uncer-
tainties were gotten by employing proper Lyapunov
functions. Meanwhile, numerical simulations were given
to demonstrate the effectiveness of the proposed method.
Comparison among the proposed controller, classical
backstepping controllers, and radial basis function ANN
terminal sliding mode surface controller was carried
out, showing the proposed controller to have a better
performance.

Finally, fractional power series ANN for solving:
delay fractional optimal control problems and fractional
optimal control problems with equality and inequal-
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Table 4 ANN involved with FC to reach stability

Application References ANN architecture Fractional derivative

Exponential stability [171] FANN
[32] Complex-valued FANN Caputo derivative
[232] Interval projection FANN
[271] Delayed BAM FANN

Uniform stability [241] FANN
[237] FANN with and without

delays
[76,242] Delayed FANN
[240] Hopfield FANN
[239] Memristive FANN
[272] Delayed memristive FANN Caputo derivative
[273] Delayed memristive fuzzy

BAM FANN
[238] Cellular FANN
[79,233,234] Delayed complex-valued

FANN
[235,236] Delayed BAM FANN
[274] Delayed BAM FANN

Finite-time Stability [248] FANN
[75,85,246,275] Delayed FANN
[247] Delayed FANN
[112,243,276] Delayed complex-valued

FANN
[277] Delayed complex-valued

memristive FANN
[244] Delayed complex-valued

memristive FANN
Caputo derivative

[175] Cohen–Grossberg memristive
FANN

[245] Delayed Cohen–Grossberg
FANN

[89] Delayed Hopfield FANN
[207] Delayed BAM FANN
[103] Delayed BAM FANN

Global stability [28] FANN
[59] BAM FANN
[278] Delayed BAM FANN
[62] Fuzzy FANN
[38,256] Hopfield FANN
[86] Delayed Hopfield FANN Caputo derivative
[16] Memristive FANN
[117,174,180,279] Delayed memristive FANN
[106] Delayed Cellular FANN
[185,258] Delayed cellular FANN
[257] Delayed complex-valued

FANN
Global Stability [259] Delayed FANN

[95] Delayed FANN Riemann–Liouville derivative
[280] Delayed fuzzy BAM FANN
[255] Delayed hybrid BAM FANN

Stability and Bifurcation [41] Recurrent FANN
[36,37] Hopfield FANN
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Table 4 continued

Application References ANN architecture Fractional derivative

[74,250,281] Delayed FANN
[251] Complex-valued Hop-

field FANN
[80] Delayed complex-

valued Hopfield FANN
Caputo derivative

[108] Delayed complex-
valued FANN

[77,249,282] Delayed BAM FANN
[73] Delayed cellular FANN

Stability [54,57,155,263,267] FANN
[268] Delayed FANN
[260] FANN with time-

varying delays
[99] Hopfield ANN
[35,39,261] Hopfield FANN
[84,87] Delayed Hopfield FANN
[41,66] Recurrent FANN
[262] Nonautonomous FANN Caputo derivative
[113] Delayed complex-

valued Hopfield FANN
[266] Delayed complex-

valued memristive
FANN

[105] Delayed BAM FANN
[94] Delayed quaternion-

valued FANN
[265] Delayed cellular FANN

Stability [264] Delayed neutral type
FANN

Riemann–Liouville
derivative

Monostability
and multista-
bility

[283] FANN Caputo derivative

Asymptotical
stability

[284] Delayed FANN Caputo derivative

Quasi-uniform
stability

[252] Delayed FANN Caputo derivative

Fractional
input stability

[253] FANN Caputo Derivative

Global stabil-
ity and global
periodicity

[254] Delayed complex-
valued FANN

Caputo derivative

[269] Delayed non-
autonomous FANN

Synchronization
stability

[270] Delayed Complex
FANN

Riemann–Liouville
Derivative

Stability and
passivity

[285] Memristive FANN Caputo derivative

ity constraints were developed in [47,69] respectively,
involving Caputo derivative, feed-forward ANNs and
according to the Pontryagin minimum principle. In
both works, the optimization techniques and colloca-
tion methods were proposed to determine the approx-
imate solution of the fractional optimal control prob-
lems. The obtained results were compared with the
exact solutions and analytical solutions, respectively.

ANN involved with FC: presence of chaos

Next, several types of research where ANN involved
with FC have chaotic behaviors will be depicted:

In Ref. [170], a numerical simulation algorithm
for FDE was presented involving Riemann–Liouville
derivative, where the chaotic phenomena and their con-
trol were discussed by numerical simulation. Chaos
feedback control was developed, allowing to control and
synchronize the FANN system.
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Moreover, in Ref. [290] obtained the fractional-order
model of delayed cellular ANN for describing chaotic
behaviors for fractional-order 0.1 ≤ α < 1 interval.
Meanwhile, delay time values for which the chaos
occurred were defined using the largest Lyapunov expo-
nents. Riemann–Liouville derivative was employed in
this work, and the simulation results demonstrated that
the time delay where chaos occurred decreased as the
fractional-order decreased too.

Moreover, Kaslik and Sivasundaram Seenith in Ref.
[37] investigated the stability, multi-stability bifurca-
tions, as well as the chaos of Hopfield FANN involving
the Caputo derivative. In this work the critical values of
fractional-order where the Hopf bifurcations occurred
were identified, and the stability domain of a steady-
state was characterized. The simulation results demon-
strated that the chaotic behavior appeared when the
fractional-order of the system increased.

In Refs. [31,83], the authors studied the behaviors of
the complex dynamics of a cellular FANN and a delayed
Hopfield FANN, respectively. To carried out these stud-
ies, numerical simulations involving the Caputo deriva-
tive were developed. The systems investigated in these
works presented dynamic behaviors, such as periodic
and chaotic motions. Furthermore, in both works, the
existence of chaotic attractors was demonstrated. This
was verified using bifurcation diagrams and phase por-
traits.

On the other hand, the projective synchronization
of chaotic memristive FANN with time-varying delay
and switching jumps mismatch involving Riemann–
Liouville derivative, was studied in [178]; also, in this
work, the chaotic behavior of the memristor-based
FANN system was showed.

Subsequently, Luo et al. in Ref. [156] developed
an adaptive synchronization methodology combining
Chebyshev ANN, extended state tracking differentiator,
and adaptive backstepping, to reach the synchroniza-
tion between the drive system and response system of a
fractional-order chaotic arch micro-electro-mechanical
system with the uncertain item and time delay under
distributed electrostatic actuation. Caputo derivative
was employed in this work, and the stability of the
closed fractional-order arch micro-electromechanical
system was guaranteed based on the fractional-order
Lyapunov stability criterion. The simulation results
demonstrated the effectiveness of the proposed scheme.

Moreover, in Ref. [291] stability, bifurcation, and
chaos of a Memristive FANN with discontinuous mem-
ductance functions were investigated, employing Caputo
derivative and identifying interesting dynamics, such
as chaotic motion, tangent bifurcation, and intermit-
tent chaos. The chaotic attractors were demonstrated
to exist over a wide range of some specified parameters.

Otherwise, the chaotic Chua’s attractor of fractional-
order was studied in Ref. [169]. In Ref. [292] the Lorenz
system was studied, the chaotic attractors of Hopfield
FANN in [293], memristor-based FANN in Ref. [210],
two-dimensional delayed FANN in Ref. [101], time-
delayed inertial FANN in Ref. [220], and nonidentical
FANN chaotic behaviors were studied in Ref. [163].

Finally, Han in Ref. [200] performed a compos-
ite learning sliding mode control approach to attain
the synchronization of chaotic FANN with unmatched
unknown parameters, employing Caputo definition. A
comparison between the proposed composite learning
sliding mode control and the common sliding mode con-
trol demonstrated that the proposed composite learning
sliding mode control establishes an accurate parame-
ter estimation without the permanent excitation condi-
tion having better control performance than the sliding
mode control scheme.

Other research related to chaos of ANN involved with
FC applied to image encryption will be found later in
this paper, [82,186,294] and [295].

ANN involved with FC: applications in estimation

The main works about estimation involving ANN and
FC will be depicted in the following summary:

On-line state estimation of nonlinear dynamic sys-
tems was carried out using Differential FANN. The sim-
ulation of two coupled tanks was carried out to demon-
strate the feasibility of Differential FANN as a nonlinear
systems identifier [296]. In [35], the same author solved
a parameter estimation problem for demonstrating the
Hopfield FAN existence using the Caputo derivative. In
this case, the stability of Hopfield FANN was reached
applying an energy-like function analysis.

Besides, in Ref. [11] authors studied the parameter
estimation problem of unknown system parameters on
FANN involving Caputo and Riemann–Liouville deriva-
tives. Synchronization-based identification method of
fractional-order was achieved thanks to the combina-
tion of adaptive control and parameter update law,
demonstrating the correctness of the obtained results
through a numerical example.

Moreover, in Refs. [297,298] were designed a state
estimator and non-fragile state estimator for delayed
memristive FANN involving the Caputo derivative,
respectively. In work [297], the state estimators’ exis-
tence was ensured, and a suitable state estimator for
memristive FANN was proposed. Accordingly, based
on the fractional-order Lyapunov direct method, some
new sufficient conditions were given to guarantee the
existence of the state estimator. On the other hand, in
Ref. [298] by using the Lyapunov technique, the authors
were getting sufficient conditions to ensure the global
asymptotic stability of the error model.

A radial basis function ANN was used to estimate the
bound of disturbances in Ref. [299]. And an adaptive
fractional sliding mode controller with a neural estima-
tor for a class of nonlinear systems also was designed.

A robust control law was designed to guarantee
the occurrence of the sliding motion, as well as the
Hopfield FANN stabilization involving the Riemann–
Liouville derivative in Ref. [164]. Moreover, the system’s
unknown parameters were estimated, and the sliding
surface to origin finite-time stability was achieved based
on the fractional-order Lyapunov theory. An example of
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Hopfield FANN was presented to demonstrate the effec-
tiveness of the proposed scheme.

The non-fragile state estimation issue for memristive
BAM FANN with and without time delays was studied
in Ref. [300] by applying the fractional-order derivative
in Caputo sense. Based on fractional-order Lyapunov
functionals and linear matrix inequalities was ensured
the asymptotical stability of the error system.

The quasi-estimation was investigated by Li in Ref.
[301] employing fuzzy memristive FANN based on
the Caputo derivative. The quasi-estimation was stud-
ied through a Laplace transformation, and the quasi-
synchronization control was attained due to the designed
feedback controller.

Besides, in Ref. [104], the authors studied the Mittag–
Leffler state estimator and an adaptive synchronization
for delayed BAM FANN by applying the Caputo deriva-
tive. An adaptive feedback control was designed, and
Mittag–Leffler adaptive synchronization was reached
using fractional-order inequality techniques.

Another novel approach in this area is the robust
state estimation of complex-valued FANN with uncer-
tain parameters and BAM FANN with norm-bounded
uncertainties, investigated in Refs. [278,302], respec-
tively. Hu in Ref. [302], applied the Riemann–Liouville
derivative, and Nagamani in [278] used the Caputo
derivative. Since both systems presented time delays,
a new linear matrix inequality criterion was obtained
to reach the asymptotic stability of the systems’ error.
In both cases, numerical simulations were performed to
confirm the effectiveness of the proposed schemes.

Finally, in Refs. [120,303], the authors investigated
the finite-time projective synchronization of memris-
tive FANN with mixed time-varying delays and uncer-
tain parameters and the finite-time synchronization of
memristive Cohen–Grossberg FANN with time-varying
delays, respectively. In these works, the Caputo deriva-
tive and feedback controllers were applied. Moreover,
the settling times were estimated.

ANN involved with FC: applications in dissipativity

Following relevant works related to dissipativity involv-
ing FC applied to ANN will be shown:

First, in Ref. [100], the authors investigated the
global dissipativity of delayed FANN and discontinuous
activation functions employing Caputo derivative. In
this research, sufficient conditions were given to ensure
the dissipativity of the model solution. The effectiveness
of the proposed scheme was demonstrated by numerical
examples.

Second, the dissipativity and global asymptotic sta-
bility of delayed complex-valued FANN were investi-
gated in Ref. [257]. In this research, the authors used
the Caputo derivative. Numerical simulations showed
the effectiveness of the proposed scheme.

Finally, Li in Ref. [304] investigated the dissipa-
tivity and the exponential synchronization control of
Memristive FANN involving reaction-diffusion terms,
the Caputo derivative, and a feedback controller. The

proposed scheme results presented fewer conservation
effects when comparing with other works found in the
literature.

ANN involved with FC: applications in periodicity

The overview of the research works focused on the peri-
odicity involving FC on ANN will be depicted below:

First, in Ref. [71], the authors demonstrated that
the fractional derivative of a periodic function cannot
be a periodic function with the same period involving
Caputo, Riemann–Liouville, and Grünwald–Letnikov
derivatives; in this paper a FANN was employed to
guarantee the non-existence of periodic solutions in
fractional-order dynamical systems.

Subsequently, Wu and Zeng in Ref. [62] derived the
S-asymptotic ω-periodicity and global asymptotic ω-
periodicity of fuzzy FANN, involving Caputo deriva-
tive. The difference between integer-order neurody-
namic systems and fractional-order neurodynamic sys-
tems was shown. Several simulations were performed to
demonstrate the effectiveness of the proposed method.

On the other hand, the global stability and global
asymptotic periodicity for complex-valued FANN with
time-varying delays was discussed in Ref. [254], while
for non-autonomous FANN with time-varying delays
was addressed in Ref. [269] by applying the Caputo
derivative. In these works, the solutions converged to
the same periodic function. Numerical examples were
given to demonstrate the feasibility of the schemes.

Finally, the global asymptotic ω-periodicity for a
non-autonomous FANN involving Caputo derivative
was investigated in [262]. The authors demonstrated
that FANN has S-asymptotically periodic solutions.
Furthermore, all solutions of FANN globally converge
to a periodic function.

Heat transfer process

Only one work related to the FC on ANN with the heat
transfer process will be depicted as follows:

The heat transfer process was modeled using a dis-
crete FANN involving Grünwald–Letnikov derivative in
Ref. [305]. The experiments and the obtained results
showed that the proposed FANN modeled the unknown
dynamics correctly.

ANN involved with FC: applications in sustainable
energy

ANN involved with FC has been applied in the sustain-
able energy area, specifically in wind turbine applica-
tions [30,34,149]. These works will be addressed below:

The behavior of a wind turbine in operation was
identified using a variable order FANN and a Dynamic
FANN involving the Caputo derivative in Refs. [30,34],
respectively. The proposed methods were evaluated and
validated by using experimental data obtained from the
wind turbine under operation. Moreover, in Ref. [34],
results obtained with the dynamic FANN were com-
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pared with the obtained with the integer-order dynamic
ANN showing that the fractional approach was more
accurate.

Also, in Ref. [149] was presented a fractional-order
PID control implementation for regulating both the
rotor speed and the power production of a wind tur-
bine. The control scheme was combined with a radial
basis function ANN, allowing it to reach better per-
formance and robustness than with the integer-order
controllers.

ANN involved with FC: applications in medicine

ANN involved with FC has been applied to the medical
field and reported in Refs. [24,145,197,306]. Below we
will describe these research works.

In Ref. [145], the detection of left-sided and right-
sided hearing loss was carried out using the fractional
Fourier transform and a feedforward ANN trained
by the Levenberg–Marquardt algorithm. Also, in Ref.
[306] the authors developed a pathological brain detec-
tion system based on multi-layer perceptron ANN
to improve the interpretation of magnetic resonance
brain images. In this work, the ANN was the classi-
fier that received the fractional Fourier entropy features
extracted from the brain images. The adaptive real-
coded biogeography-based optimization was the algo-
rithm implemented to train this ANN, and the pro-
posed method was able to interpret the images with
an accuracy of 99.53%, improving the results obtained
from other pathological brain detection system.

Subsequently, Sharafian in Ref. [197] used a radial
basis function ANN with a sliding mode observer for
modeling the uncertainties of the human immunodefi-
ciency virus infection fractional model. The fractional
mathematical model involved the Caputo derivative.
The ANN estimated the system uncertainties while the
sliding mode observer eliminated the external distur-
bances. In this work, the finite-time stability of the
observer was guaranteed. In fact, the radial basis func-
tion ANN estimated the complex nonlinearity of the
system accurately.

Finally, in Ref. [24], the fractional-order Darwinian
particle swarm optimization (FO-DPSO) algorithm was
employed for training a feed-forward ANN to approxi-
mate the solutions of the corneal shape model for eye
surgery. In this work, the Adams–Bashforth–Moulton
numerical method was used to show the effectiveness of
the proposed scheme

ANN involved with FC: applications in unmanned
aerial vehicles (UAVs)

ANN involved with FC has been applied to unmanned
aerial vehicles (UAVs). Some relevant works have been
reported in Refs. [144,307]. Following, we will address
these works.

In Ref. [144], the authors approximated the realiza-
tion of an analogical fractional-order PID controller
using feed-forward ANN and a finite impulse response

filter to establish a robust control for applications
of unmanned aerial vehicles (UAVs). Posteriorly, in
Mobarez et al. the authors implemented a fractional-
order PID control based on ANN for fixed-wing UAVs,
where the proposed autopilot was evaluated in lin-
earized and nonlinear systems. The fractional controller
showed better performance against wind disturbance,
the effect of the sensors’ noise, and system uncertain-
ties when compared with other controllers.

ANN involved with FC: applications in circuits
realization

ANN involved with FC has been applied to circuit
realization. In works [25,165,189,198,199,292] relevant
research have been presented on this issue. Below we
will present an overview of these works:

In Ref. [165], the authors developed an adaptive frac-
tional sliding mode control involving the Caputo deriva-
tive. The fractional controller was based on the dual
radial basis function ANN, allowing to improve the per-
formance of three-phase shunt active power filters. Also,
the Chua’s circuit with Caputo derivative was devel-
oped in Ref. [25] to investigating the fractional Chua’s
system and discuss its chaotic behavior. Furthermore,
in Ref. [189], the authors developed an adaptive ANN
backstepping control of fractional-order Chua–Hartley
chaotic system, as well as an electronic circuit. In this
work, the ANN was used to estimate the unknown non-
linear function, and the proposed controller was able to
guarantee the stability of the closed-loop system. Oth-
erwise, in Ref. [292], a lathe machine tool was the basis
to study turning chatter vibration by means of ANN-
based on Chua’s circuit and fractional-order Lorenz
master/slave chaotic system. Finally, fractional-order
sliding mode controllers based on recurrent ANN were
developed for the current compensation and the current
harmonic compensation of active power filter involving
Caputo derivative in [198,199], respectively.

Also, Liu [308] employed a reaction/diffusion cel-
lular FANN to describe the diffusion behavior that
happened on the electromagnetic field where the elec-
trons describe nonuniform movement. In this work,
the Caputo derivative was used, and the stability of
the FANN has achieved thanks to an observed-based
boundary control.

On the other hand, Ding et al. [309] accomplished
the first sampling-controlled memristive FANN with
stochastic sensor faults via an impulsive method based
on Caputo derivative. This novel approach was applied
to the fractional-order Chua’s circuit system, where
they reached its stabilization.

Finally, Sanchez et al. [310] simulated the incremen-
tal capacity curve of an LFP battery model by train-
ing a recurrent FANN. In this work, the model-based
health prognosis of the LFP battery with an accuracy
that is comparable with the laboratory measurements
was attained.

123



2082 Eur. Phys. J. Spec. Top. (2022) 231:2059–2095

ANN involved with FC: applications in robotic

ANN involved with FC and Models to control Robots
have been developed in Refs. [52,68], and they will be
summarized as follows:

In Ref. [52], the authors proposed a deep convo-
lutional ANN based on the fractional-order sliding
mode control scheme to control trajectory tracking of
robotic manipulators involving Caputo derivative. The
proposed control showed to have robust performance
against parametric uncertainties and external distur-
bances. In this work, several simulations were carried
out to validate the proposed methods.

In Ref. [68] was presented a nonlinear neural
fractional-order PID controller based on ANN applied
to the motion control of nonholonomic differential drive
mobile robot, involving Grünwald–Letnikov derivative.
The hybridization of a modified adaptive PSO and
the EFF optimization algorithms were implemented for
tuning the parameters of the fractional-order PID con-
troller based on ANN. The authors showed with numer-
ical simulations that the performance of the designed
fractional controller was excellent compared with non-
linear controllers of integer-order on the trajectory
tracking of the differential drive mobile robot with dif-
ferent trajectories as study cases.

ANN involved with FC: applications in image
encryption

ANN involved with FC have been applied to image
encryption in Refs.: [82,186,294,295]. Such works will
be overviewed as follows:

First, in Ref. [186], the authors presented an image
encryption approach based on impulsive synchroniza-
tion of chaotic ANN applying the fractional-order
approach involving Caputo derivative and considering
a delayed cellular FANN.

Second, image encryption algorithms were designed
based on chaotic fuzzy cellular neural FANN with time-
varying delays and chaotic three-dimensional discrete
Hopfield FANN in Refs. [82,294], respectively. The
authors used the Caputo derivative and the FANNs
as a pseudo-random number generator. The dynamic
behavior and synchronization of the systems were inves-
tigated and applied to image encryption algorithms
where solutions allowed to improve encryption security.
Third, in [82], numerical evaluations were developed,
and analysis of bifurcation diagrams, phase space dia-
grams, and time series plots to explore the effects of
the time-varying delay and the fractional-order. In this
work, the global stability conditions were derived under
the design of an adaptive control approach guarantee-
ing the global asymptotic and the exponential stabil-
ity by synchronizing the drive-response system when
time tends to large. On the other hand, in Ref. [294],
phase portraits, bifurcation diagrams, and Lyapunov
exponents were developed to show the chaotic dynam-
ics of the system. A control approach was designed to
synchronize the system. The results show the effective-

ness of the encryption system. The simulation results
demonstrated that the algorithms have good encryption
features.

Similar to the research works presented above, in Ref.
[295], another chaotic image encryption algorithm was
proposed. In this case, a five-dimensional cellular FANN
was employed as a diffusion controller in the encryp-
tion system. The results showed that this new algorithm
improves encryption efficiency with good security per-
formance. Furthermore, it resisted the common attack
methods.

Finally, the synchronization of a class of FANNs was
carried out by designing an adaptive control to develop
a crypto-system algorithm for encryption/decryption of
unmanned aerial vehicle color images in secure commu-
nications, employing Caputo derivative [311].

ANN involved with FC: applications in other
engineering applications

Blasik et al. [312] developed an accurate numerical
method based on ANN and Caputo derivative to extend
the front fixing method developed in a previous work
based on the one phase fractional-order Stefan prob-
lem (anomalous molecular diffusion where the diffusion
coefficient is generalized).

7 Future research topics arising on ANNs
involved with FC

The main advantage of modeling systems involving
FANNs is that the fractional derivatives are an excellent
tool in describing the memory and hereditary properties
of various processes. Therefore, the simulated systems
involving FANNs are more accurate than the integer-
order models. However, there are few works done in
this field to date, and there are many important top-
ics that have not been approached yet. Therefore, we
would like to recommend some future research topics
where the FANNs could be successfully applied, which
are detailed as follows:

• We propose to apply the FANNs to the identifica-
tion, control, performance studies, and prediction
of behaviors on physical models. Thus, the mod-
els could improve their accuracy without increasing
their complexity.

– The employment of FANNS for the simulation of
trajectorial physical models could allow that the
effectiveness of the trajectories prediction to be
increased, avoiding wasting time and resources
in the experimental studies.

– The management of the plants of industrial pro-
cesses is usually complex in nature. Often, the
training ANN models must attain a fast response
concerning corresponding physical models and
for the real-time monitoring of the plants; We
propose to use FANNs to model the indus-
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trial plants since FANNs could do the manage-
ment of them more efficiently with the fractional
approach on their simulations.

• We propose to apply the FANNs on the sustain-
able energy technologies to realize a better analysis
and optimization of their parameter, and thus, help
environmental care.

– FANNs could be an accurate tool for the study
of behaviors, the prediction of performance, and
the optimization of solar collectors, biomass
heating systems, wind turbines, and so on.

– FANNs could be an excellent tool in studying
voltage prediction on PEM fuel cells with min-
imum time demand and good accuracy, reduc-
ing costs and avoiding extensive experiments.
FANNs could lead to a better analysis of the
PEM fuel cell components and better optimize
their parameters to minimize the voltage losses
and reach their best efficiency.

• We propose to employ FANNs on modeling of the
epidemic spreading of viruses that affect the health
of animals and human beings.

– The employment of FANNs in modeling the
parameters that determine the diagnosis of
COVID-19 would provide fast and accurate diag-
nostics of the actual COVID-19 pandemic, help-
ing clinicians in detecting COVID-19, quantifica-
tion, follow-up of the infected cases, and helping
the activation of the plan actions.

– The spreading prediction and analysis of the per-
formance of common viruses such as HIV, H1N1,
Dengue, Ebola, and others could be successfully
modeled using FANNs, which is beneficial for
preserving lives since predictions are helpful to
control and prevent the spread of the viruses.

• We propose to employ FANNs to model the spread
of cancer cells from where they first formed to
another part of the body.

– The identification of cancer cells and the predic-
tion of their movement into the human body are
essential for preserving life. Thanks to the effec-
tiveness of FANNs on modeling and predicting
behaviors in different areas of science, we believe
that some accurate FANNs models based on can-
cer cell propagation could help in its identifica-
tion and prediction.

• We propose to apply the FANNs for the simulation
of biological processes.

– FANNs could be efficiently used in the process
control of biological systems, reaching a better
online optimization of these systems than in the
integer-order cases.

• We propose to simulate probabilistic models using
FANNs.

– The meteorological time series prediction could
be more accurate when the ANN describes the

system as simulated employing FC. Guarantee-
ing a good prediction, the forecast of human
and economic losses in front of natural disasters
could be employed successfully.

• We propose combining fractional-order physically-
based modeling and deep learning.

– The fractional deep neural networks are a tool of
machine learning and artificial intelligence more
powerful than integer-order deep neural net-
works; the FC improves the deep learning meth-
ods, reaching a better optimization of parame-
ters of the physical models.

• We propose the application of FANNs to predict
economic trends.

– The realization of economic models based on
FANNs could help economists and business peo-
ple accurately identify entrepreneurship oppor-
tunities. This approach could help governments
and economists establish correct predictions of
the prices of crude oil, natural gas, power, risk
management, trading strategies, etc.

8 Conclusions

This manuscript presented a bibliographic review of
fractional calculus (FC) on artificial neural networks
(ANN). We have focussed on realizing a thorough inves-
tigation related to the employment of FC on ANN, the
methods used to solve their fractional differential equa-
tions (FDE), the optimization algorithms employed to
train these systems, the control approaches involved
with them, and their main applications in different
areas of science and engineering. According to the bib-
liographic review, the most used method to solve the
FDE on ANNE involved with FC is the analytical
Laplace transform method, followed by the Adams–
Bashforth–Moulton method. Also, other methods have
been used to solve FDE in these systems, such as
the Homotopy perturbation method, the power series
expansion method, Adomian decomposition method,
among others. All of them have allowed establishing
a comparison between the proposed schemes and the
analytical or numerical solution of FDE to validate
them. Regarding the optimization algorithms used for
the training of ANN involved with FC, there have
been developed a few algorithms with the fractional
approach, indeed, just gradient descent algorithm,
Back-propagation algorithm, and Darwinian particle
swarm optimization algorithm have their fractional ver-
sion. Nevertheless, there are lots of classical algorithms
employed with the aim of training ANN involved with
FC. According to the advantages of FC, most of these
algorithms could be implemented with a fractional
approach in the future, obtaining results very differ-
ent from the obtained using classical algorithms and
probably with solutions more near reality. For train-
ing of these systems, the most used derivative was the
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Caputo derivative, followed by the Riemann–Liouville
derivative, Atangana–Baleanu in Caputo’s sense, and
Grünwald–Letnikov, respectively. Otherwise, another
important topic that has been presented here is the con-
trol of such systems; since several works joined control
strategies with FC to guarantee synchronization and
stabilization of the ANN involved with FC. Concerning
the control strategies, the most reported in the litera-
ture is the feedback control, followed by adaptive con-
trol, sliding mode control, adaptive feedback control,
impulsive control, and washout filter control. Therefore,
we can affirm that FC is an excellent mathematical tool
to be used with ANN. Also, we have confirmed that the
Caputo derivative is the most applied with ANN due to
its ability to describe physical systems. The Riemann–
Liouville derivative is the second derivative most used
on these types of systems. This derivative is applied
to describe theoretical systems, while the Grünwald–
Letnikov derivative is less used in these types of sys-
tems. Other interesting applications of ANN involved
with FC are the approximation of functions, the dissipa-
tivity, periodicity demonstration, description of chaotic
behaviors, among others. But some of the most impor-
tant advances related to ANN involved with FC are
their recent applications in medicine, robotic, cryptog-
raphy, image processing, and sustainable energy. This
implies that the research community is paying attention
to the fractional calculus theory.
We are in the presence of an interesting branch of
mathematics compared with integer-order calculus. The
FC can better describe several processes’ memory and
genetic characteristics, having unlimited memory and
more degrees of freedom.
However, few applications exist until today; we con-
sider many promising works to do shortly. Therefore,
we decided to guide the researchers for the realization
of future works in this field. Some of the future direc-
tions we suggested are the following: the application
of FANNs on the study of trajectorial physical models
for reach more accurate simulated systems and better
prediction of trajectories than in integer-order cases;
the employment of FANNs for the improvement of the
voltage prediction in PEM fuel cells and better identifi-
cation of their parameters; the simulation of industrial
plants using FANNs to reach more accurate computa-
tional systems which can be managed on real-time with
fast-response. In medicine and biology, we proposed
implementing FANNs based on the epidemic spread-
ing of viruses such as Covid-19, HIV, Ebola, H1N1,
and others for a better analysis, diagnosis, prediction,
and forecast of them. Also, we proposed to realize the
simulation of cancer cells spreading into the human
body to help clinicians detect, study the behavior of
cancer cells, and predict their performance accurately,
helping save lives. Besides, we proposed implementing
FANNs on the biology process to aid the development
of process control of biological systems and predict the
performance of these systems, avoiding realize exhaus-
tive failed experiments. On the other hand, we recom-
mended applying FANNs on probabilistic meteorologi-
cal models to attain accurate systems capable of making

good predictions avoiding human and economic losses
when natural disasters happen. Finally, but not less
important, we recommended implementing the FANNs
based on economic models for guiding governments and
economists to make decisions based on a correct predic-
tion of the economic phenomena. All our recommenda-
tions are based on the certainty that the accurate mod-
els reached employing FANNs avoid the employment
of exhaustive repetitive experimental tests. Thus, the
FANNs help the growth of science and engineering less
time employing the optimum resources for their devel-
opment.
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Rodŕıguez, Solving fractional differential equations of
variable-order involving operators with Mittag–Leffler
kernel using artificial neural networks. Chaos Solitons
Fract. 103, 382–403 (2017)

4. S. Qureshi, A. Yusuf, A. Shaikh, M. Inc, Transmission
dynamics of varicella zoster virus modeled by classi-
cal and novel fractional operators using real statistical
data. Phys. A 534, 1–12 (2019)

5. A. Jajarmi, A. Yusuf, D. Baleanu, M. Inc, A new frac-
tional HRSV model and its optimal control: a non-
singular operator approach. Phys. A 547, 1–12 (2020)

6. S. Qureshi, A. Yusuf, A. Ali Shaikh, M. Inc, D.
Baleanu, Mathematical modeling for adsorption pro-
cess of dye removal nonlinear equation using power law
and exponentially decaying kernels. Chaos Interdiscip.
J. Nonlinear Sci. 30, 1–10 (2020)

123



Eur. Phys. J. Spec. Top. (2022) 231:2059–2095 2085

7. A. Khan, G. Hussain, M. Inc, G. Zaman, Existence,
uniqueness, and stability of fractional hepatitis B epi-
demic model. Chaos Interdiscip. J. Nonlinear Sci. 30,
1–10 (2020)

8. M. Inc, N. Bouteraa, M. Akinlar, S. Benaicha, Y. Chu,
G. Weber, B. Almohsen, New positive solutions of non-
linear elliptic PDEs. Appl. Sci. 10, 1–13 (2020)

9. A. Yusuf, B. Acay, U. Mustapha, M. Inc, D. Baleanu,
Mathematical modeling of pine wilt disease with
Caputo fractional operator. Chaos Solitons Fract. 143,
1–13 (2021)

10. B. Acay, M. Inc, Fractional modeling of temperature
dynamics of a building with singular kernels. Chaos
Solitons Fract. 142, 1–11 (2021)

11. Y. Gu, Y. Yu, H. Wang, Synchronization-based param-
eter estimation of fractional-order neural networks.
Phys. A 483, 351–361 (2017). https://doi.org/10.1016/
j.physa.2017.04.124

12. M. Asif, Z. Raja, R. Samar, M. Anwar, Design of unsu-
pervised fractional neural network model optimized
with interior point algorithm for solving Bagley–Torvik
equation. Math. Comput. Simul. 132, 139–158 (2017).
https://doi.org/10.1016/j.matcom.2016.08.002

13. J. Yu, C. Hu, H. Jiang, X. Fan, Projective synchroniza-
tion for fractional neural networks. Neural Netw. 49,
87–95 (2014). https://doi.org/10.1016/j.neunet.2013.
10.002

14. L.M. Wang, Q.K. Song, Z.J. Zhao, Global asymptotic
stability of memristor-based fractional-order complex-
valued neural networks with time delays. Appl. Math.
Mech. 38(3), 333–346 (2017). https://doi.org/10.1016/
j.neucom.2017.02.086

15. Z. Ding, Y. Shen, Projective synchronization of non-
identical fractional-order neural networks based on
sliding mode controller. Neural Netw. 76, 97–105
(2016). https://doi.org/10.1016/j.neunet.2016.01.006

16. A. Wu, Z. Zeng, Global Mittag–Leffler stabilization
of fractional-order memristive neural networks. IEEE
Trans. Neural Netw. Learn. Syst. 28(1), 206–217
(2017)

17. I. Podlubny, in Fractional Differential Equations: An
Introduction to Fractional Derivatives, Fractional Dif-
ferential Equations, to Methods of Their Solution and
Some of Their Applications, vol. 198 (Elsevier, 1998)

18. A. Atangana, D. Baleanu, New fractional derivatives
with nonlocal and non-singular kernel: theory and
application to heat transfer model. Therm. Sci. 20,
763–769 (2016)

19. K. Rajagopal, M. Tuna, A. Karthikeyan, s Koyuncu,
P. Duraisamy, A. Akgul, Dynamical analysis, sliding
mode synchronization of a fractional-order memristor
Hopfield neural network with parameter uncertainties
and its non-fractional-order FPGA implementation.
Eur. Phys. J. Spec. Top. 228(10), 2065–2080 (2019)

20. X. Yang, C. Li, Q. Song, J. Chen, J. Huang, Global
Mittag–Leffler stability and synchronization analysis
of fractional-order quaternion-valued neural networks
with linear threshold neurons. Neural Netw. 105, 88–
103 (2018). https://doi.org/10.1016/j.neunet.2018.04.
015

21. A.H. Hadian-Rasanan, D. Rahmati, S. Gorgin, K.
Parand, A single layer fractional orthogonal neural net-
work for solving various types of Lane–Emden equa-

tion. New Astron. 75(2019), 101307 (2020). https://
doi.org/10.1016/j.newast.2019.101307

22. A.H. HadianRasanan, N. Bajalan, K. Parand, J.A.
Rad, Simulation of nonlinear fractional dynamics aris-
ing in the modeling of cognitive decision making using
a new fractional neural network. Math. Methods Appl.
Sci. 43(3), 1437–1466 (2020)

23. M. Syed Ali, G. Narayanan, V. Shekher, A. Alsaedi,
B. Ahmad, Global Mittag–Leffler stability analysis of
impulsive fractional-order complex-valued BAM neural
networks with time varying delays. Commun. Nonlin-
ear Sci. Numer. Simul. 83, 105088 (2020). https://doi.
org/10.1016/j.cnsns.2019.105088

24. W. Waseem, M. Sulaiman, A. Alhindi, H. Alhakami,
A soft computing approach based on fractional order
DPSO algorithm designed to solve the corneal model
for eye surgery. IEEE Access 8(c), 61576–61592 (2020)

25. N.A. Khan, T. Hameed, O.A. Razzaq, M. Ayaz, Track-
ing the chaotic behaviour of fractional-order Chua’s
system by Mexican hat wavelet-based artificial neural
network. J. Low Freq. Noise Vib. Act. Control 38(3–4),
1279–1296 (2018)

26. M. Pakdaman, A. Ahmadian, S. Effati, S. Salahshour,
D. Baleanu, Solving differential equations of frac-
tional order using an optimization technique based on
training artificial neural network. Appl. Math. Com-
put. 293, 81–95 (2017). https://doi.org/10.1016/j.amc.
2016.07.021

27. Jing, Y., Dong, H., Liang, G.: Study on charac-
teristic of fractional master-slave neural network, in
Proceedings—2012 5th International Symposium on
Computational Intelligence and Design, ISCID 2012,
vol. 2. (IEEE, 2012), pp. 498–501

28. S. Zhang, Y. Yu, J. Yu, LMI conditions for global sta-
bility of fractional-order neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017)

29. Z. Yang, J. Li, X. Tang, Y. Niu, Hybrid projective syn-
chronization of fractional-order neural networks with
different dimensions. J. Phys. Soc. Jpn. 88(8), 1–6
(2019)

30. Z. Aslipour, A. Yazdizadeh, Identification of nonlinear
systems using adaptive variable-order fractional neu-
ral networks (case study: a wind turbine with practi-
cal results). Eng. Appl. Artif. Intell. 85(2018), 462–
473 (2019). https://doi.org/10.1016/j.engappai.2019.
06.025

31. X. Huang, Z. Zhao, Z. Wang, Y. Li, Chaos and
hyperchaos in fractional-order cellular neural networks.
Neurocomputing 94, 13–21 (2012). https://doi.org/10.
1016/j.neucom.2012.01.011

32. J. Jian, P. Wan, Lagrange α-exponential stability
and α-exponential convergence for fractional-order
complex-valued neural networks. Neural Netw. 91,
1–10 (2017). https://doi.org/10.1016/j.neunet.2017.03.
011

33. Z. Aslipour, A. Yazdizadeh, Identification of Dama-
vand tokamak using fractional order dynamic neural
network. Trans. Inst. Meas. Control. 41(5), 1447–1457
(2019)

34. Aslipour, Yazdizadeh, Identification of wind turbine
using fractional order dynamic neural network and
optimization algorithm. Int. J. Eng. 33(2), 277–284
(2020)

123

https://doi.org/10.1016/j.physa.2017.04.124
https://doi.org/10.1016/j.physa.2017.04.124
https://doi.org/10.1016/j.matcom.2016.08.002
https://doi.org/10.1016/j.neunet.2013.10.002
https://doi.org/10.1016/j.neunet.2013.10.002
https://doi.org/10.1016/j.neucom.2017.02.086
https://doi.org/10.1016/j.neucom.2017.02.086
https://doi.org/10.1016/j.neunet.2016.01.006
https://doi.org/10.1016/j.neunet.2018.04.015
https://doi.org/10.1016/j.neunet.2018.04.015
https://doi.org/10.1016/j.newast.2019.101307
https://doi.org/10.1016/j.newast.2019.101307
https://doi.org/10.1016/j.cnsns.2019.105088
https://doi.org/10.1016/j.cnsns.2019.105088
https://doi.org/10.1016/j.amc.2016.07.021
https://doi.org/10.1016/j.amc.2016.07.021
https://doi.org/10.1016/j.engappai.2019.06.025
https://doi.org/10.1016/j.engappai.2019.06.025
https://doi.org/10.1016/j.neucom.2012.01.011
https://doi.org/10.1016/j.neucom.2012.01.011
https://doi.org/10.1016/j.neunet.2017.03.011
https://doi.org/10.1016/j.neunet.2017.03.011


2086 Eur. Phys. J. Spec. Top. (2022) 231:2059–2095

35. A. Boroomand, M.B. Menhaj, Fractional-order Hop-
field neural networks, in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol.
5506 LNCS, no. PART 1 (2009), pp. 883–890

36. E. Kaslik, S. Sivasundaram, Dynamics of fractional-
order neural networks, in The 2011 International Joint
Conference on Neural Networks. (IEEE, 2011), pp.
611–618

37. E. Kaslik, S. Sivasundaram Seenith, Nonlinear dynam-
ics and chaos in fractional-order neural networks. Neu-
ral Netw. 32, 245–256 (2012). https://doi.org/10.1016/
j.neunet.2012.02.030

38. S. Zhang, Y. Yu, W. Hu, Robust stability analysis of
fractional-order Hopfield neural networks with parame-
ter uncertainties. Math. Probl. Eng. 2014, 1–22 (2014)

39. C.A. Tavares, T.M. Santos, N.H. Lemes, J.P. dos San-
tos, J.C. Ferreira, J.P. Braga, Solving ill-posed prob-
lems faster using fractional-order Hopfield neural net-
work. J. Comput. Appl. Math. 381, 112984 (2020).
https://doi.org/10.1016/j.cam.2020.112984

40. J. Jia, Z. Zeng, LMI-based criterion for global Mittag–
Leffler lag quasi-synchronization of fractional-order
memristor-based neural networks via linear feedback
pinning control. Neurocomputing 412, 226–243 (2020).
https://doi.org/10.1016/j.neucom.2020.05.074

41. M. Xiao, W.X. Zheng, G. Jiang, J. Cao, Undamped
oscillations generated by Hopf bifurcations in
fractional-order recurrent neural networks with
Caputo derivative. IEEE Trans. Neural Netw. Learn.
Syst. 26(12), 3201–3214 (2015)

42. M.A.Z. Raja, I.M. Qureshi, J.A. Khan, Swarm intelli-
gence optimized neural networks for solving fractional
differential equations. Int. J. Innov. Comput. Inf. Con-
trol 7(11), 6301–6318 (2011)

43. T. Hu, X. Zhang, S. Zhong, Global asymptotic synchro-
nization of nonidentical fractional-order neural net-
works. Neurocomputing 313, 39–46 (2018). https://
doi.org/10.1016/j.neucom.2018.05.098

44. M.A.Z. Raja, M.A. Manzar, R. Samar, An efficient
computational intelligence approach for solving frac-
tional order Riccati equations using ANN and SQP.
Appl. Math. Model. 39(10–11), 3075–3093 (2015).
https://doi.org/10.1016/j.apm.2014.11.024

45. H. Jahanbakhti, A novel fractional-order neural net-
work for model reduction of large-scale systems with
fractional-order nonlinear structure. Soft. Comput.
24(17), 13 489-13 499 (2020). https://doi.org/10.1007/
s00500-020-04763-5

46. M.A.Z. Raja, J.A. Khan, I.M. Qureshi, A new stochas-
tic approach for solution of Riccati differential equa-
tion of fractional order. Ann. Math. Artif. Intell. 60(3),
229–250 (2010)

47. S. Ghasemi, A. Nazemi, A fractional power series neu-
ral network for solving a class of fractional optimal con-
trol problems with equality and inequality constraints.
Netw. Comput. Neural Syst. 30(1–4), 148–175 (2019).
https://doi.org/10.1080/0954898X.2019.1693647

48. M. Yavari, A. Nazemi, An efficient numerical scheme
for solving fractional infinite-horizon optimal control
problems. ISA Trans. 94, 108–118 (2019). https://doi.
org/10.1016/j.isatra.2019.04.016

49. Yavari, Nazemi, Fractional infinite-horizon optimal
control problems with a feed forward neural network
scheme. Netw. Comput. Neural Syst. 30(1–4), 125–
147 (2019). https://doi.org/10.1080/0954898X.2019.
1688878

50. H. Antil, R. Khatri, R.L. Lohner, D. Verma, Frac-
tional deep neural network via constrained optimiza-
tion. Mach. Learn. Sci. Technol. 2, 1–21 (2020)

51. N. Sadati, A. Ghaffarkhah, S. Ostadabbas, A new neu-
ral network based FOPID controller, in Proceedings of
2008 IEEE International Conference on Networking,
Sensing and Control, ICNSC (2008), pp. 762–767

52. M. Zhou, Y. Feng, C. Xue, F. Han, Deep convolutional
neural network based fractional-order terminal sliding-
mode control for robotic manipulators. Neurocomput-
ing (2019). https://doi.org/10.1016/j.neucom.2019.04.
087 (online)

53. L. Chen, J. Qu, Y. Chai, R. Wu, G. Qi, Synchronization
of a class of fractional-order chaotic neural networks.
Entropy 15(8), 3265–3276 (2013)

54. M. Gai, S. Cui, S. Liang, X. Liu, Frequency distributed
model of Caputo derivatives and robust stability of
a class of multi-variable fractional-order neural net-
works with uncertainties. Neurocomputing 202, 91–97
(2016). https://doi.org/10.1016/j.neucom.2016.03.043

55. H. Liu, S.-G. Li, H.-X. Wang, G.-J. Li, Adaptive
fuzzy synchronization for a class of fractional-
order neural networks. Chin. Phys. B 26(3),
030504 (2017). [Online]. http://www.stacks.iop.
org/1674-1056/26/i=3/a=030504?key=crossref.
de3f8b49032fccf86e10604042b47319

56. G. Li, H. Liu, Stability analysis and synchronization
for a class of fractional-order neural networks. Entropy
18(2), 1–13 (2016)

57. X. Yang, C. Li, Q. Song, T. Huang, X. Chen, Mittag–
Leffler stability analysis on variable-time impul-
sive fractional-order neural networks. Neurocomput-
ing 207, 276–286 (2016). https://doi.org/10.1016/j.
neucom.2016.04.045

58. H. Liu, Y. Pan, S. Li, Y. Chen, Synchronization
for fractional-order neural networks with full/under-
actuation using fractional-order sliding mode control.
Int. J. Mach. Learn. Cybern. 9(7), 1219–1232 (2018)

59. A. Wu, Z. Zeng, X. Song, Global Mittag–Leffler sta-
bilization of fractional-order bidirectional associative
memory neural networks. Neurocomputing 177, 489–
496 (2016)

60. S. Yang, C. Hu, J. Yu, H. Jiang, Exponential stabil-
ity of fractional-order impulsive control systems with
applications in synchronization. IEEE Trans. Cybern.
50(7), 3157–3168 (2020)

61. S. Yang, J. Yu, C. Hu, H. Jiang, Quasi-projective syn-
chronization of fractional-order complex-valued recur-
rent neural networks. Neural Netw. 104, 104–113
(2018). https://doi.org/10.1016/j.neunet.2018.04.007

62. A. Wu, Z. Zeng, Boundedness, Mittag–Leffler stabil-
ity and asymptotical ω-periodicity of fractional-order
fuzzy neural networks. Neural Netw. 74, 73–84 (2016).
https://doi.org/10.1016/j.neunet.2015.11.003

63. S. Yang, J. Yu, C. Hu, H. Jiang, Finite-time synchro-
nization of memristive neural networks with fractional-
order. IEEE Trans. Syst. Man Cybern. Syst. PP, 1–12
(2019)

123

https://doi.org/10.1016/j.neunet.2012.02.030
https://doi.org/10.1016/j.neunet.2012.02.030
https://doi.org/10.1016/j.cam.2020.112984
https://doi.org/10.1016/j.neucom.2020.05.074
https://doi.org/10.1016/j.neucom.2018.05.098
https://doi.org/10.1016/j.neucom.2018.05.098
https://doi.org/10.1016/j.apm.2014.11.024
https://doi.org/10.1007/s00500-020-04763-5
https://doi.org/10.1007/s00500-020-04763-5
https://doi.org/10.1080/0954898X.2019.1693647
https://doi.org/10.1016/j.isatra.2019.04.016
https://doi.org/10.1016/j.isatra.2019.04.016
https://doi.org/10.1080/0954898X.2019.1688878
https://doi.org/10.1080/0954898X.2019.1688878
https://doi.org/10.1016/j.neucom.2019.04.087
https://doi.org/10.1016/j.neucom.2019.04.087
https://doi.org/10.1016/j.neucom.2016.03.043
http://www.stacks.iop.org/1674-1056/26/i=3/a=030504?key=crossref.de3f8b49032fccf86e10604042b47319
http://www.stacks.iop.org/1674-1056/26/i=3/a=030504?key=crossref.de3f8b49032fccf86e10604042b47319
http://www.stacks.iop.org/1674-1056/26/i=3/a=030504?key=crossref.de3f8b49032fccf86e10604042b47319
https://doi.org/10.1016/j.neucom.2016.04.045
https://doi.org/10.1016/j.neucom.2016.04.045
https://doi.org/10.1016/j.neunet.2018.04.007
https://doi.org/10.1016/j.neunet.2015.11.003


Eur. Phys. J. Spec. Top. (2022) 231:2059–2095 2087

64. D. Lin, X. Chen, B. Li, X. Yang, LMI condi-
tions for some dynamical behaviors of fractional-
order quaternion-valued neural networks. Adv. Dif-
fer. Equ. 1, 2019 (2019). https://doi.org/10.1186/
s13662-019-2207-0

65. A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi,
J. Cao, G. Rajchakit, Finite-time Mittag–Leffler sta-
bility of fractional-order quaternion-valued memris-
tive neural networks with impulses. Neural Process.
Lett. 51(2), 1485–1526 (2020). https://doi.org/10.
1007/s11063-019-10154-1

66. P. Liu, Z. Zeng, J. Wang, Multiple Mittag–Leffler sta-
bility of fractional-order recurrent neural networks.
IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2279–2288
(2017)

67. W. Li, Design and implement of neural network based
fractional-order controller. in Robotic Welding, Intel-
ligence and Automation (Springer, Berlin, Heidelberg,
2007), pp. 471–479

68. G.A.R. Ibraheem, A.T. Azar, I.K. Ibraheem, A.J.
Humaidi, A novel design of a neural network-based
fractional PID controller for mobile robots using
hybridized fruit fly and particle swarm optimization.
Complexity 1, 1–14 (2020)

69. F. Kheyrinataj, A. Nazemi, Fractional power series
neural network for solving delay fractional optimal
control problems. Connect. Sci. 32(1), 53–80 (2020).
https://doi.org/10.1080/09540091.2019.1605498

70. M. Ahmad, E. Al-Solami, Evolving dynamic s-boxes
using fractional-order Hopfield neural network based
scheme. Entropy 22(7), 717 (2020)

71. E. Kaslik, S. Sivasundaram, Non-existence of periodic
solutions in fractional-order dynamical systems and a
remarkable difference between integer and fractional-
order derivatives of periodic functions. Nonlinear Anal.
Real World Appl. 13(3), 1489–1497 (2012). https://
doi.org/10.1016/j.nonrwa.2011.11.013
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