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ABSTRACT The Internet of Things (IoT) represents a mean to share resources (memory, storage

computational power, data, etc.) between computers and mobile devices, as well as buildings, wearable

devices, electrical grids, and automobiles, just to name few. The IoT is leading to the development of

advanced information services that will require large storage and computational power, as well as real-time

processing capabilities. The integration of IoT with emerging technologies such as Fog Computing can

complement these requirements with pervasive and cost-effective services capable of processing large-

scale geo-distributed information. In any IoT application, communication availability is essential to deliver

accurate and useful information, for instance, to take actions during dangerous situations, or to manage

critical infrastructures. IoT components like gateways, also called Fog Nodes, face outstanding security

challenges as the attack surface grows with the number of connected devices requesting communication

services. These Fog nodes can be targeted by an attacker, preventing the nodes from delivering important

information to the final users or to perform accurate automated actions. This paper introduces an Anomaly

Behavior Analysis Methodology based on Artificial Neural Networks, to implement an adaptive Intrusion

Detection System (IDS) capable of detecting when a Fog node has been compromised, and then take the

required actions to ensure communication availability. The experimental results reveal that the proposed

approach has the capability for characterizing the normal behavior of Fog Nodes despite its complexity due

to the adaptive scheme, and also has the capability of detecting anomalies due to any kind of sources such

as misuses, cyber-attacks or system glitches, with high detection rate and low false alarms.

INDEX TERMS Anomaly behavior, cyber security, fog computing, IoT, neural networks.

I. INTRODUCTION

The growth in the use of mobile computing, social media

technologies, cloud and pervasive computing, and the explo-

sive growth and acceptance of Software as a Service (SaaS)

has derived into the development of next-generation of Inter-

net services that are pervasive and touch every aspect of

modern life, as it is the case of the Internet of things. It is

projected that there will be 75 billion IoT devices connected

to the internet globally by 2025; making IoT technology a

7.5 trillion dollar market [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhui Yuan .

The advent of Fog computing has led the computation host-

ing services to be moved to the network edge, reducing the

latency induced by communication. Fog computing allows

IoT services to become the key technology for the develop-

ment of smart cities enabling a revolution in the way business

is done, health services are provided, critical infrastructure is

managed, resident safety and security is maintained, educa-

tion is provided, etc. [2], [3].

Although this use of Fog computing and IoT application

has led to the growth of Smart Infrastructures, Smart Build-

ings and Smart Cities [3]–[5], it has also led to an increase

in attack surfaces that attackers can target to exploit vulner-

abilities. IoT usage has exposed devices and applications to
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attackers at a scale like never before. IoT devices, designed to

work in isolated environments, are now connected to a wider

area network to satisfy particular requirements (e.g., remote

administration requirements). This increases the attack sur-

face of IoT systems, making them vulnerable to attacks that

might lead to the delivery of inaccurate information to the

end-users, resulting in catastrophic consequences when these

users respond to this incorrect information, e.g., the Stuxnet

attack [3], or face service outages wherein the user is unable

to control his IoT device or Fog nodes [4]. The authors in [4]

highlight the relevance of using a resilient Data Distribution

algorithm to avoid data to be lost during connectivity outage

periods caused by issues like regular maintenance, hardware

constraints (e.g. buffer size), or cyber-attacks.

Diverse strategies about fog computing and IDS have been

reported. Sohal et al. in [6] present a literature review of

different network devices employed in Fog computing includ-

ing routers, switches, and hubs. The authors present an IDS

that make use of Virtual Honeypot Devices together with

Markov models with the goal of identifying compromised

edge devices in a fog environment. Another intrusion detec-

tion effort has been reported by Shafi et al. [7]. The authors

developed a fog-assisted software design networking (SDN)

solution through a computational arrangement with IoT net-

work elements. The proposed system was able to identify

attacks at the right time by employing four machine learning

classifiers automatically detect attacks. Intrusion detection

has been also possible by analyzing IDS log statistics in the

fog nodes with a query-based strategy plus uncertainty tests to

calculate the degree of a potential threat. This approach was

tested for fog radio access networks (F-RANs) [8]. A different

approach reported an IDS architecture for edge computing.

To deal with the limitations in edge nodes, the solution han-

dled a multilayer dominant and max-min fair (MDMMF)

allocation of resources to improve IDS computational and

storage efficiency [9].

A type of threat for fog computing who has gained impor-

tance is the Distributed Denial of Service (DDoS) attack. This

type of invading agent illegally appropriates resources of the

fog node. A solution is to modify a traditional IDS to gen-

erate a fog computing intrusion detection system (FC-IDS)

framework. An et al. [10] proposed a hypergraph clustering

model based on inferred decisions. Data mining work was

carried out to study the type of link between the DDoS and

the fog node under attack.With this knowledge and additional

information provided by another fog node, a description of

the attack could be obtained to respond with an adequate

security action plan.

In this paper, we introduce a methodology to protect IoT

Gateways and Fog devices against cyber-attacks. The aim of

the proposed methodology is the assurance of Fog devices

availability, despite the origin of abnormalities such as cyber-

attacks, human errors and regular churn conditions, to name

few. The benefit of applying the proposed ABA-IDS at fog

level instead of applying it at cloud or end-devices level is the

fact that Fog Nodes at the edge of the network, are necessary

to communicate end-devices, which are constrained in mem-

ory, with the Cloud, where more sophisticated detection sys-

tems can be applied. Pacheco and Hariri in [11] presented

an approach to develop a threat modeling methodology to

recognize vulnerabilities in each of the four layers in IoT

device architecture: devices, network, services and applica-

tions, and present countermeasures to mitigate each of the

vulnerabilities. In [11] authors present a technique to detect

anomaly behavior on compromised sensors. They developed

a threat model that identifies attacks against end nodes, net-

work, service and application layers. However, their approach

is developed under the premise that the amount of sensors is

limited; if this condition is not fulfilled, then data association

is required in order to track signals of several classes. To deal

with such scenario, fog computing and adaptive schemes

based on machine learning are more appropriate. The adap-

tive properties of neural networks are incorporated to rein-

force the ABA-IDS methodology proposed in [11], in order

to address the data association requirement where a large

amount of sensor is presented. In this paper, the methodology

presented in [11] is extended to the design and development

of an adaptive Anomaly Behavior Analysis Intrusion Detec-

tion System (ABA-IDS) using Artificial Neural Networks

(ANN) [12], [13] to model the normal behavior of Fog and

IoT devices. The performance of the approach was measured

against attacks like the Replay, Flooding and DoS attacks

on an IoT testbed, developed in the Center for Cloud and

Autonomic Computing (CAC), at the University of Sonora.

The results obtained demonstrate that the proposed ABA-IDS

methodology can be used to deploy security methods capable

of protecting the normal functionality of IoT Gateways and

Fog devices. The approach was successfully able to detect

known and unknown abnormalities such as cyber-attacks

applied to IoT end nodes exhibiting high detection rate (up

to 93%) with low false alarms (less than 3.3%) while intro-

ducing low overhead (up to 13% execution time overhead).

The rest of the paper is organized as follows. Section II

offers the required information about basic concepts of fog

computing, cyber security for the IoT, intrusion detection

based on abnormal behavior, and the threat model applicabil-

ity. Section III exposes the proposed security framework that

can be used for IoT applications. Section IV focuses on the

description of the ABAmethodology. In section V, the exper-

imental setup is described along with a brief discussion of the

obtained results. SectionVI concludes the paper summarizing

the findings and providing potential research directions.

II. BACKGROUD

A. FOG COMPUTING

Fog Computing technology extends the Cloud computing

paradigm to the edge of the computational network, enabling

a wide range of applications and services that exhibit lower

latency, better awareness for location services, mobility, and

elasticity [14]–[16]. Fog computing has been seen to be

effective in supporting IoT applications that require pre-

dictable latency. For example, in [17] the authors described
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an approach to secure fog-based systems under Byzantine

attacks while enhancing the efficiency of data processing for

IoT applications. Fog computing leverage IoT-based systems

by providing the required mechanisms to ensure confidential-

ity, integrity, and availability (CIA) to the IoT infrastructure.

B. IoT CYBER SECURITY

The IoT allows the operation and administration of a large

variety and quantity of devices that are heterogeneous,

by gathering and managing information as well as smart

objects [18]. It represents interconnected systems and devices

that comprise a large range of technologies including sensors,

actuators, communication networks, etc. [19]. The hetero-

geneity of resources and dynamic utilization of services turns

cybersecurity into a major problem because existing cyberse-

curity solutions are not necessarily appropriate for IoT-based

systems due to [18], [19]: 1) IoT spreads ‘‘internet’’ through

traditional networks, including the current Internet; 2) Most

smart objects lack computational resources required to sup-

port complex security algorithms; 3) High interconnectivity

in IoT devices, leads to multiple entry points that can be

exploited to target the network; and 4) Shared IoT devices

and services are prone to have different policies.

These issues are required to be tackled in order to build reli-

able IoT-based applications, where Confidentiality, Integrity,

and Availability must be guaranteed. Therefore, there is a

great research concern in developing novel security tech-

niques that can secure and protect IoT applications and

services [20].

C. ANOMALY BEHAVIOR ANALYSIS

The growth of cloud computing and IoT have brought their

own set of challenges in the form of increased attack surfaces

and data security. Current cyber security solutions are not

capable of stopping these threats in terms of their efficacy and

scalability [17], [21]. In addition, there is a trend in increasing

attack sophistication and speed of attack propagation as the

internet has reached a global scale, making it possible to

launch sophisticated attacks at little or no development costs

in a few seconds to target entities across the globe [20].

To address this threat, there is a need to design Intrusion

Detection Systems (IDS) that will be able to detect these

sophisticated attacks before they cause significant damage to

the target. There are two main methodologies to design IDSs:

Signature based IDS and Anomaly based IDS [22]–[25].

Signature based IDS use known attack signatures to detect

attacks, making them incapable of detecting new or modified

attacks. Anomaly based IDS use modeling techniques like

statistical modeling, machine learning, and deep learning

to model the normal behavior of the system, making them

capable of detecting not only known attacks but also new

(zero day) or modified attacks.

The key feature of the anomaly detection approach is the

capability of new attack detection. An anomaly-based IDS

first defines a model of normal characteristics of the system

through off-line training. Any activity outside this normal

behavior is labeled to be abnormal behavior (caused due to

potential attack or misconfiguration). Historically anomaly

behavior analysis has been associated with high false positive

rates. This drawback can be by performing a fine-grained

behavior analysis while modeling the system behavior as

shown by Satam et al. in [25].

D. THREAT MODELING

Developing appropriate countermeasures to mitigate threats

heavily depends on analyzing the system’s vulnerabilities and

the associated risks [26]. A threat model defines potential

threats and correlates them with associated risks. This corre-

lation helps in the analysis of glitches, as well as in the design

of mitigation strategies plans before deploying the system.

It also helps to prioritize what is required to be protected

in case the solution is not feasible. A threat model is useful

for detecting changes that need to be applied to an initial

layout/architecture to minimize possible system threats. The

general steps to create a threat model are: 1) Identification of

potential assets and their associated threats; 2) rank the risks;

3) choose strategies to mitigate the threats; and 4) develop

solutions based on the best possible strategies [26], [27]. The

listed steps will be followed to study an IoT Fog node.

FIGURE 1. IoT framework defined in multiple layers [7].

III. IoT SECURITY FRAMEWORK FOR

SMART INFRASTRUCTURES

Several IoT frameworks and architectures can be uti-

lized to establish a threat model and apply mitigation

schemes [28]–[30]. Fig. 1 illustrates the general framework

employed in this study. The framework was introduced and

extensively explained in [11] and can be used for the devel-

opment of security mechanisms in IoT-based systems. The

framework contains four layers: end devices, Network, Ser-

vices, and Applications. Fog computing is a key component

for linking end devices layer with the service layer. Cyber-

attacks and other threats can influence the functionality in

each level shown in Fig. 1. For each layer, risks are weighted
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in considering target, impact, and effectiveness of known

mitigation techniques.

In the first layer (perception layer), the information is

taken by physical devices to identify the physical world or

apply control to it [11]. The key components (targets) in this

layer are sensors, actuators, and local controllers. Any attack

targeting this layer will result in a loss of life, monetary

loss or economic loss, and loss in service providers reputa-

tion. Mitigation mechanisms include lightweight encryption,

authentication, IDS, anti-jamming, and behavior analysis.

The network layer is in charge of information exchange

from/to final devices [30]. Communication technologies such

as mobile communication networks, infrastructures for net-

working, protocols, and the Internet itself, constitute this

layer. Network security is responsible for defending against

cyber-attacks targeting infrastructures such as the Fog nodes,

and information embedded in protocols. An attack on this

layer can cause monetary loss, damage in reputation, and

excessive energy consumption. Network mitigation methods

include access control, anti-DoS, encryption, packet filtering,

congestion control, anti-jamming, and behavior analysis IDS.

The services layer provides the required computational

power by implementing Cloud services as well as Fog ser-

vices [29], [30]. In this layer, the targets are confidential infor-

mation, sensors and actuators, and monitor/control functions.

An attack on this layer will cause a loss of safety, monetary

loss, and information leakage. This layer can be secured

by the implementation of encryption, access control, period

identifiers, selective data disclosure, and behavior analysis.

The application layer presents customized services to end-

users [30]. In this layer, data sharing is an important fea-

ture and consequently, cybersecurity must address privacy,

access control, and data disclosure. The impacts could be in

unauthorized access to data, disclosure of critical information

and damage in reputation, and excessive energy consumption.

Reported mitigation techniques include data encryption, and

access control [31], [32].

A. INTERNET OF THINGS TESTBED

The Fig. 2 depicts an overview of the IoT testbed at the

CAC center at the University of Sonora. This testbed follows

the architecture in Fig. 1 and can be split into the same

four layers. In the testbed the components are sensors like

temperature, current, and water flow; actuators like electric

valves, fan, lights, door locks; and control units like PLC’s,

NI CompactRIO, and Arduino UNO as the end nodes. Ama-

zon Web Services and Microsoft Azure over wired ethernet

network andWi-Fi network form the services and the network

layers.

The shown characteristics are considered as a minimum to

deploy the proposed system with acceptable overhead. In the

case of resources constrained devices, other methodologies

such as rule-based approaches can be applied as discussed

in [11]. To demonstrate the methodology described in this

paper, a raspberry pi3 model B [33] configured as a fog

node with internet access will be used. The node is a key

FIGURE 2. IoT testbed overview.

component in the IoT testbed, it contains 4 ARMCortex-A53

cores, with 1.2GHz, 1GB LPDDR2 (900 MHz) ram memory,

and 32 GB storage. It works under Raspbian lite (Debian) for

ease of configuration.

B. IDENTIFICATION OF ATTACK SURFACE

Systems can be compromised by deploying cyberattacks

inside the operating ecosystem or by launching an attack from

an outside location [34]. Both scenarios will make use of the

system’s resources, methods, and data to initiate the attack.

In this research, the security of an IoT application is consid-

ered with respect to the local and public networks [35]. Local

networks include controllers and devices, communications

and gateways, while public networks include IoT services and

applications. From Fig. 1 an attack surface can be derived as

shown in Table 1.

TABLE 1. Attack surface for IoT architecture.

This work focuses on the security of a Fog node (Gateway)

implemented on a Raspberry Pi 3 configured to perform com-

munications between other Fog nodes and IoT subsystems

such as the Smart Water Testbed introduced in [35]. Fog

nodes security is crucial to develop trustworthy IoT applica-

tions and services, providing resiliency and preventing cyber

threats to be disseminated among other IoT subsystems. In the

context of this study, trustworthy service is defined as the one

capable of performing self-protection against cyberattacks

(self-protect), that can operate normally meeting required

73910 VOLUME 8, 2020



J. Pacheco et al.: ANNs-Based IDS for IoT Fog Nodes

performance goals regardless of operational conditions (self-

optimization), and can update its configuration to comply

with new requirements (self-configuration).

IV. ANOMALY BEHAVIOR ANALYSIS METHODOLOGY

ABA aims at modeling the usual behavior of a system, such

that it is able to identify any abnormal behavior i.e. an attack

on the target system that it is modeling [5], [36]. The proposed

methodology focuses on the availability of the secure gateway

(see Fig. 1) to recognize potential threats that can affect its

functionality, preventing it to deliver the information where

required. The modeling of the Fog node is carried out by

foot-printing features like system memory, CPU usage, hard-

ware configuration, etc. Fig. 3 depicts the ABA deployment

methodology.

FIGURE 3. Anomaly behavior analysis deployment methodology.

The algorithm that explains the procedure depicted

in Fig. 3 is presented in Table 2.

TABLE 2. Anomaly behavior analysis general algorithm.

A. TRAINING PHASE (OFFLINE)

The training phase in the ABA methodology is carried out

offline and is used to characterize the normal behavior of the

Fog node. In what follows, the steps of the training phase are

explained.

1) FEATURES SELECTION

The correlation of 260 system variables or features was ver-

ified using the Pearson product-moment correlation coeffi-

cient technique [37]. The results show that 11 features are

sufficient to describe the node normal behavior, these fea-

tures are: 1) available memory (AM), 2) buffers utilization

(BU), 3) CPU utilization (CU), 4) sockets (SO), 5) processes

(PO), 6) process running (PR), 7) Active Connections (AC),

8) WLAN Reception (WR), 9) WLAN Transmission (WT),

10) Ethernet Reception (ER), and 11) Ethernet Transmission

(ET). These features will constitute the dataset after being

collected. The same features are inspected online as they

will be used to build the reference model (off-line) and later

compared with the on-line model.

2) DATASET

In the offline stage, the IoT testbed was used to create the

training dataset. For each inspection, the information (fea-

tures) is stored in a MySQL database [38] which will be

used to train the ANN-based model. Legitimate commands

were executed on the testbed to collect the data for the origi-

nal feature set (e.g. Open_Actuator_1, Read_Sensor_1, etc.).

On completion of retrieving all the information for a specific

command, the next instruction is processed. Those steps are

repeated for all available commands until the incoming traffic

shows similarity, meaning that the command has been fully

processed. The universe should be U = N∪A for all data in

the dataset, where N represents the normal behavior and A

represents abnormality. However, Equation (1) shows a more

precise description for the described method.

U = N ∪ A+ N u (1)

where N u is the non-classified normal traffic. The proba-

bility of getting false positives (false alerts) will rise as N u

increases. Therefore, the accurateness of the reference model

will strongly depend on the quality and quantity of informa-

tion in the dataset.

3) TRAINING UNIT

The training unit is the knowledge builder of the behav-

ioral analysis. Required features (recall the features selection

module), stored in the dataset, are internally taken from the

system to perform the offline training of an Artificial Neural

Networks (ANNs) cluster that will be formally defined in

subsection B. Table 3 displays the algorithm’s steps to train

one ANN.

By following the steps listed in Table 3, a cluster of

ANNs was tuned and used as the reference model. The

next step is to calibrate the ANNs to predict the trend in

the extracted features, this task is performed taking runtime

information.
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FIGURE 4. Anomaly behavior analysis deployment methodology.

TABLE 3. NN training process: prediction of series Ŷ (t) given D past
values of y(t).

B. REFERENCE MODEL

The reference model relies on the adaptive properties of the

ANNs, whose properties are well known and described in the

literature [39]. Accurate detection of attacks and failures is

crucial for the discrimination of normal vs abnormal opera-

tions [40]. The scheme developed in this paper leans on an

ANN Cluster (ANN-C) architecture as shown in Fig. 4. The

proposed ANN-C is architected upon a) an adaptive stage, b)

a comparison stage, c) a discriminant memory, and d) a risk

management unit.

1) ANN MODELS (NNI)

Neural Networks are frequently employed for time-series

prediction in non-deterministic scenarios, they are config-

ured to calculate future values
{

yN+1, yN+2, . . .
}

given a

time-series represented by N values
{

y1, y2, yN
}

. The adap-

tive model is tuned by the training unit using healthy informa-

tion (as defined in SectionV) using a nonlinear autoregressive

model (NAR) [12], [13], as shown in Equation (2) to be

integrated with the architecture as depicted in Fig. 4.

ŷ = f (y(t − 1), . . . , y(t − d)), (2)

where d is the feedback unit represented as Delay n in Fig. 4.

2) COMPARISON STAGE

To determine the amount of drift between normal behavior

yi (t) and the NNi output, a residual signal is generated [40].

The comparison module is designed to obtain the residuals

ρi (t) defined as

ρi(t) = yi(t) − ŷi(t), (3)

where yi (t) are the data generated by the system operation

and ŷi (t) are the data predicted by the ith-NN module. The

following elements (Discriminant Memory and Risk Man-

agement Unit) are used for the runtime unit (see Fig. 3).

In what follows, the runtime unit is described.

C. RUNTIME UNIT

The runtime unit (Fig. 3) is in charge of the behavioral

classification of the system (normal or abnormal), as well as
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of ranking the impact of an abnormality. Once an abnormality

is detected and ranked, the required mitigation mechanism is

applied.

1) ONLINE MONITORING

A key ability of the ABA is monitoring in runtime. The sys-

tem’s information was monitored from files in /proc directory

(Debian Operating System). The data was retrieved with a

daemon that running independently, and automatically over-

comes from crashes. The runtime unit monitors the features

(see Equation (4)) whose output is fed into the classification

unit to build the model to be used in runtime.

y =
[

AM · · · ET
]

. (4)

2) CLASSIFICATION UNIT

Using the residuals, the following function is proposed:

µ(t) =

N
∑

i

wiρi(t). (5)

which evaluates the contribution of each residual obtained

after all comparisons. As can be seen, Equation (5) describes

a Discriminant Memory (DM). The DM characterizes the

drift in the normal behavior of the system. Equation (5) is

parametrized by weighting values wi which are computed

online considering the normalized version of the LMS cost

criteria as follows:

wi =
1

σ 2N

N
∑

i=1

(yi − ŷi)
2
, (6)

where wi are positive values that weigh the contribution of

the residuals to the function µ(t). Is important to remark that

in the absence of a fault condition ρi(t) = 0, the output of

the DM is only due to noise which does not affect the rule

mechanism.

3) RISK MANAGEMENT UNIT

This unit chooses the appropriate mitigation method and

prioritizes the actions to be taken. This unit provides a label

that will be used to take the required action if an alert is

triggered. It maps the output of the classification unit into an

alert code represented by a label, which is forwarded to the

action handling unit. Equation (7) shows the definition for

this unit

f (t) =























Label1 if µ (t) ≤ τ1

Label2 if τ1 < µ (t) ≤ τ2
...

...
...

LabelN if µ (t) ≥ τN−1.

(7)

whereµ (t) is the residual defined in (5); τ is a threshold value

selected by the user; LabelN is the categorical data associated

with the events and the actions to be taken by the Action

Handling Unit.

FIGURE 5. Healthy data from process.

4) ACTION HANDLING UNIT

This unit implements the actions requested by the risk man-

agement unit. Table 4 shows the possible measures imple-

mented by this unit. The issue may persist, for instance,

a malicious entity could trigger Event1 code each time the

connection is renewed. The Action Handling Unit employs

a log file to keep a record of each error, including its times-

tamp. Before enforcing any protective policy, the log file is

reviewed looking for the periodicity of a given error. If the

period is less than 24 hours, the unit will handle it as Event3.

TABLE 4. Actions to be taken by the action handling unit.

V. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETUP

Aswe are targeting availability, three variables (MA, BU, and

CU) were used to test the performance of the ANN-C. Under

DoS or flooding attacks (which target systems availabil-

ity), the most affected components are memory, processing

capacity, and internal communication [41], therefore, mem-

ory availability, buffer utilization, and CPU utilization are

critical variables when seeking for availability. The k-index is

designated to identify each variable type as shown in Table 5.

The k-index is used as a variable selector when algorithm 1 is

applied (see Table 3).
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FIGURE 6. In the first column, NN trained for MA, BU and CPU are depicted. In the second column the respective training error are shown.

TABLE 5. Variable selection (k-index).

FIGURE 7. Output from discriminant memory due to process noise when
the system is operating under normal condition.

The experimental setup consists of two phases: 1) offline

phase, to train the system, and 2) online phase to test the

NN-ABA-IDS. In the offline phase, three neural networks

were trained, each one for a variable k. The NN was trained

on 1000 samples collected while the system was operating

normally. Parameter for NN are as follows: 10 neurons in

the hidden layer; 2 delay units; one linear output neuron;

the activation function g(t) is a sigmoid symmetric function

designed as:

g(t) =
2

1 + e−2t
− 1, (8)

FIGURE 8. NN response under flood attack: memory available.

FIGURE 9. Error from NN response under flood attack: memory available.

Raw data is scaled to the [0 1] space bymeans of the min-max

method as follows

x =
x-min(x)

max(x) − min(x)
(9)

where x is the scaled value of x. Pre-processed data is shown

in Fig. 5, where healthy data is generated under normal

operative condition of the sensor, with no attacks nor anomaly

behavior affecting the system and it constitutes the baseline

data for normal operation.

73914 VOLUME 8, 2020



J. Pacheco et al.: ANNs-Based IDS for IoT Fog Nodes

FIGURE 10. NN response under flood attack: buffers.

FIGURE 11. Error from NN response under flood attack: buffers.

B. OFFLINE TRAINING PHASE

The k-index is used to train the NN for each variable. In the

design of the NN three layers are taking in consideration

a) input layer, which is feed by the previous values of data
{

yt−1, yt−2, · · · , yt−d

}

; b) output layer, which give the

estimation value of the neural network ŷt ; and c) hidden layer,

which process data between input and output layers.

In Fig. 6, the ANN estimated output is displayed; they

were trained using the Levenberg-Marquardt backpropaga-

tion algorithm. As can be seen, it exhibits an error close to

zero, which means that the ANN-C is capable of tracking the

behavior of the system.

C. ONLINE PHASE

A threat level (TL) was proposed to detect the severity from

attacks. The discriminant memory and risk management unit

implemented by Equations (4) to (7) worked together to

FIGURE 12. NN response under flood attack: CPU.

FIGURE 13. Error from NN response under flood attack: CPU.

generate an attack severity profile. The threshold τ , for the

rule mechanism, was selected as follows: 1 for τ < 0.3, 2 for

0.3 ≤ τ ≤ 0.6, and 3 for τ > 0.6. Several tests were applied

in order to evaluate the ANN Based IDS for IoT Fog Nodes

performance.

1) NO ATTACK

The first test was to investigate the performance of the

approach under normal operational conditions (no attack

condition was applied). As depicted in Fig. 7, only noise

of the overall process was present at the output of the

ABA-IDS.

2) FLOODING ATTACK

A flooding attack constituting a large stream of packets

aiming to fill the target memory [42], was performed on

the system reducing legitimate packet delivery from 90%
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FIGURE 14. Two events detected under flood attack.

FIGURE 15. Detection rate vs attack intensity for Flooding attack.

to less than 40 Fig. 8 shows the response of memory

available variable and Fig. 9 shows the error of the neural

network.

The response of Buffers variable is shown in

Fig. 10 and 11. It is remarkable that the respective NN trained

for Buffer can deal with the flooding attack (Fig. 10) with

high accuracy, which is verified by the performance of the

error shown in Fig. 11. The CPU utilization response of

the NN is depicted in Fig. 12. In this case, the NN fits

with an error very close to zero (Fig. 13). From the results

depicted in Fig. 8 to Fig. 13, one can figure out that the

error of the neural network contributes in different ways to

the performance of each variable. It is possible to establish

that the performance of the NN trained for AM variable is

worst that the performance of BU and CPU. This differences

in the error (residuals) are processed by the Discriminant

Memory in Equation (5), whose output was evaluated as

indicate Table 5.

In Fig. 14, the Threat Level was obtained when the flood

attack was simulated in the process. According to Fig. 14,

two events are detected when the threshold is reached. The

TL with τ = 0.3 is tagged as Event1 by the rule mechanism

triggered by Equation (7), which indicates that a minor threat

is detected. As can be seen in Fig. 14, the dynamics of the

discriminant memory can track the behavior of the threat.

If TL overpasses the value τ = 0.6, a new event is triggered

and labeled as Event2.

3) ATTACK INTENSITY VS DETECTION RATE AND OVERHEAD

The ABA-IDS approach was tested under different intensities

for attacks. Flooding attack is established as a control subject,

sending 100 to 1000 packets per second. It is assumed that

for intensities under 100 packets per second, the node is not

compromised, as it can handle such traffic. Fig. 15 shows how

different intensities affect the detection rate. As can be seen,

the detection rate is satisfactory (more than 90%) for inten-

sities of 600+ packets per second. The node was operated

for 24 hours under no attack (in an isolated environment) to

verify false positives. After 86400 trials, the system indicated

2803 alerts (3.24% false positives).
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TABLE 6. Evaluation metrics.

The system overhead is another important parameter to be

considered when implementing intrusion detection. To verify

this parameter, the experiments were executed without the

IDS and then using it, inspecting three features: 1) time

to execute commands (time overhead); 2) memory con-

sumption; and 3) CPU usage. To inspect time overhead,

1 to 10 commands were sent in the same request. In the

worst-case scenario for the time overhead, the proposed

approach consumes 0.3milliseconds, from 2.2 without IDS to

2.5 milliseconds running the IDS, which represents 13% in

time overhead.

With 0.3 milliseconds overhead, the end-user will not be

able to notice a delay in the issued commands, however, it will

notice how the system is capable of operating even under net-

work unstable circumstances. The overhead in memory rep-

resents 0.8%, and the CPU overhead is about 0.05%, which

means that the approach can be considered as lightweight for

the fog node. Notice that the given overhead is only possible

due to the node specifications discussed in section 3. A.

Finally, metrics such as Accuracy, Precision, and Recall

were used to evaluate the performance of the proposed

approach

A =
TP+ TN

TP+ TN + FP+ FN

P =
TP

TP+ FP

R =
TP

TP+ FN
(10)

VI. CONCLUSION

In this paper, an Intrusion Detection System was introduced.

The system is based on the Anomaly Behavior Analysis

Methodology (ABA-IDS) which is in turn powered by a

cluster of Artificial Neural Networks. We demonstrated how

to apply a methodology based on the ABA-IDS to secure and

protect a fog node integrated into the IoT realm, ensuring

availability. The proposed methodology includes the use of

a profile based on features extracted from the node and

fed to Artificial Neural Networks, configured to accurately

characterize the normal operations of the node. The proposed

approach showed to be effective in detecting both known and

unknown attacks with high detection rates (more than 90%)

and low false-positive alerts (less than 3.3%), also having

insignificant overhead in terms of execution time, memory

and CPU utilization. It is important to emphasize that the

proposed methodology is meant to assure the availability of

the fog node, providing resiliency to the overall process of IoT

applications that make use of Fog computing technology.
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