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Abstract

Late detection and manual resolutions of performance anomalies in Cloud Computing and Big Data systems may lead to

performance violations and financial penalties. Motivated by this issue, we propose an artificial neural network based

methodology for anomaly detection tailored to the Apache Spark in-memory processing platform. Apache Spark is widely

adopted by industry because of its speed and generality, however there is still a shortage of comprehensive performance

anomaly detection methods applicable to this platform. We propose an artificial neural networks driven methodology to

quickly sift through Spark logs data and operating system monitoring metrics to accurately detect and classify anomalous

behaviors based on the Spark resilient distributed dataset characteristics. The proposed method is evaluated against three

popular machine learning algorithms, decision trees, nearest neighbor, and support vector machine, as well as against four

variants that consider different monitoring datasets. The results prove that our proposed method outperforms other

methods, typically achieving 98–99% F-scores, and offering much greater accuracy than alternative techniques to detect

both the period in which anomalies occurred and their type.

Keywords Performance anomalies � Apache Spark � Neural network � Big data � Machine learning � Artificial intelligence �

Resilient distributed dataset (RDD)

1 Introduction

Cloud computing and Big Data technologies have become

one of the most impactful forms of technology innovation

[16]. Cloud Computing provides scalability [10], low start-

up costs [6], and a virtually limitless IT infrastructure that

can be provisioned in a short period of time [5]. The

combined benefits of available computing resources and

advancements in data storage encourage a significant

increase in Big Data creation over the Internet, such as data

from the Internet of Things (IoT), e-commerce, social

networks, and multimedia, increasing the popularity of in-

memory data processing technologies, such as Apache

Spark [4].

Due to the widespread growth of data processing ser-

vices, it is not uncommon for a data processing system to

have multiple tenants sharing the same computing resour-

ces, leading to performance anomalies due to resource

contention, failures, workload unpredictability, software

bugs, and several other root causes. For instance, even

though application workloads can feature intrinsic vari-

ability in execution time due to variability in the dataset

sizes, uncertainty scheduling decisions of the platform,

interference from other applications, and software con-

tention from the other users can lead to unexpectedly long

running times that are perceived by end-users as being

anomalous.

Research on automated anomaly detection methods is

important in practice since late detection and slow manual

resolutions of anomalies in a production environment may

cause prolonged service-level agreement violations, pos-

sibly incurring significant financial penalties [12, 40]. This

leads to a demand for performance anomaly detection in

cloud computing and Big Data systems that are both

dynamic and proactive in nature [21]. The need to adapt

these methods to production environment with very
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different characteristics means that black-box machine

learning techniques are ideally positioned to automatically

identify performance anomalies. These techniques offer the

ability to quickly learn the baseline performance from a

large space of monitoring metrics to identify normal and

anomalous patterns [36].

In this paper, we develop a neural network based

methodology for anomaly detection tailored to the char-

acteristics of Apache Spark. In particular, we explore the

consequences of using an increasing number and variety of

monitoring metrics for anomaly detection, showing the

consequent trade-offs on precision and recall of the clas-

sifiers. We also compared methods that are agnostic of the

workflow of Spark jobs with a novel method that leverages

the specific characteristics of Spark’s fundamental data

structure, the resilient distributed dataset (RDD) to improve

anomaly detection accuracy.

Our experiments demonstrate that neural networks are

both effective and efficient in detecting anomalies in the

presence of a heterogeneous workloads and anomalies, the

latter including CPU contention, memory contention, cache

thrashing and context switching anomalies. We further

explore the sensitivity of the proposed method against

other machine learning classifiers and with multiple vari-

ations on the duration and temporal occurrence of the

anomalies.

This paper extends an earlier work [2] by providing an

evaluation against three popular machine learning algo-

rithms, decision trees, nearest neighbor, and support vector

machine (SVM), as well as against four variants that con-

sider different monitoring metrics in the training dataset. In

addition, the proposed methodology is examined with

different types of overlapped anomalies. The rest of the

paper is organized as follows: prior art and prerequisite

background on in-memory technologies are given in Sect.

2, followed by a motivating example in Sect. 3. The pro-

posed methodology of this work is presented in Sect. 4,

followed by systematic evaluation in Sect. 5. Finally,

Sect. 6 gives conclusions and outlines future work.

2 Background

2.1 Related work

We point to [9] and [19] for general discussions on

machine learning, statistical analysis, and anomaly detec-

tion. Table 1 further shows a summary of detection tech-

niques used in the context of cloud computing systems.

Some studies have used statistical methods to detect

anomalous behavior, such as Gaussian-based detection

[31, 43], regression analysis [11, 23], and correlation

analysis [1, 34, 38]. Many statistical techniques depend on

the assumption that the data are generated from a particular

distribution and can be brittle when assumptions about the

distribution of the data do not hold. For example, distri-

bution assumptions often do not hold true in cases that

involve highly dimensional real-time datasets [9].

Gow et al. [17] propose a method to characterize system

performance signatures. The authors explored the service

measurement paradigm by utilizing a black box M/M/1

queueing model and regression curve fitting the service

time-adapted cumulative distributed function. They exam-

ined how anomaly performance can be detected by tracing

any changes in the regression parameters. Gow et al. [17]

use probabilistic distribution of performance deviation

between current and old production conditions. The authors

argued that this method could be utilized to identify slow

events of an application. The method that has been used by

authors [17] is worth examining in our research, specifi-

cally the anomaly detection part because applying such a

method is not specific to any certain n-tier architecture,

which makes its methods a platform agnostic. We focus

here on methods that address these limitations based on

machine learning techniques such as classification, neigh-

bor-based methods, and clustering, either with supervised

or unsupervised learning approaches [21].

Gu and Wang propose a supervised Bayesian classifi-

cation technique in [18] to detect anomaly indications that

relate to performance anomaly root localization. They

apply Bayesian classification methods to detect an anomaly

and its root, alongside Markov models to detect the change

in the patterns of different measurement metrics. Com-

bining Markov modeling with Bayesian classification

methods allows the prediction of anomalous behaviors that

will likely occur in the future.

The local outlier factor (LOF) algorithm is a type of

neighbor-based technique for unsupervised anomaly

detection, as shown for cloud computing systems in [20].

The main idea is to identify anomalies by comparing the

local density deviation of a data point (instance) with its

neighbors. Each instance with a lower density than its

neighbors is considered an anomaly.

The work in [14] considers the cloud computing system

and applies principal component analysis (PCA) to reduce

metric dimensions and maintain the data variance. Semi-

supervised decision tree classifiers are used to reduce

metric dimensionality and to identify anomalies.

Few works exist for anomaly detection in Spark.

Ousterhout et al. [33] develop a method to quantify end-to-

end performance bottlenecks in large-scale distributed

computing systems to analyze Apache Spark performance.

The authors explore the importance of disk I/O, network

I/O as causes of bottlenecks. They apply their method to

examine the system performance of two industry SQL

benchmarks and one production workload. The approach
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involves analysis of blocking time, using white-box log-

ging to measure time execution for each task in order to

pinpoint bottleneck root-causes.

Support vector machines [41] algorithm is used for

anomaly detection in the form of one class SVM. This

algorithm uses one class to learn the regions, which contain

boundary of training data instance [9]. Kernels can be used

to learn complex areas. Each test instance is used to

determine that instance is located inside the learned region

(normal instance) or outside the learned region (anoma-

lous). The anomaly detection techniques using SVM are

used for intrusion detection [25], documents classification

[30], and cloud systems [15]. Although one-class SVM is

effective at making a decision from well-behaved feature

vectors, it can be more expensive for modeling the varia-

tion in large datasets and high-dimensional input features

[9, 13, 19].

Convolution neural networks are widely used for a

variety of learning tasks. They are commonly more effec-

tive for image classification issues than fully connected

feedforward neural networks. In large images, where

thousands or millions of weights are needed to train the

network, issues such as slow training time, overfitting, and

underfitting issues can be alleviated using convolutional

neural networks, which have the ability to reduce the size

of input features (e.g., a matrix of image size) to lower

dimensions using convolutions operations [28]. In our case,

the proposed neural networks based techniques for anom-

aly detection in Apache Spark cluster has less number of

input features and output classes than what is used in image

processing classification, making less relevant the use of

techniques such as convolutional neural networks.

2.2 Apache Spark

Apache Spark is a large-scale in-memory processing

technology that can support both batch and stream data

processing [4]. The main goal of Apache Spark is to speed

up the batch processing of data through in-memory com-

putation. Spark can be up to 100 times faster than Hadoop

MapReduce for in-memory analytics [4]. The core engine

of Apache Spark offers basic functionalities for in-memory

Table 1 Summary of the state-of-the-art techniques

References Approach Detection technique System/environment

Gow et al. [17] Statistical Regression curve fitting the service time-adapted
cumulative distributed function

Online platform and configuration agnostic

Wang et al.
[42]

Statistical Gaussian-based detection Online anomaly detection for conventional data
centers

Markou and
Singh [31]

Statistical Gaussian-based detection General

Kelly [23] Statistical Regression analysis Globally-distributed commercial web-based,
application and system metrics

Cherkasova
et al. [11]

Statistical Regression analysis Enterprise web applications and conventional data
center

Agarwala et al.
[1]

Statistical Correlation Complex enterprise online applications and
distributed system

Peiris et al.
[34]

Statistical Correlation Orleans system, distributed system and distributed
cloud computing services

Sharma et al.
[38]

Statistical Virtualized cloud computing and distributed systems Hadoop, Olio and RUBiS

Gu and Wang
[18]

Machine
learning

Supervised Bayesian classification Online application for IBM S-distributed stream
processing system

Huang et al.
[20]

Machine
learning

Unsupervised neighbor-based technique (local outlier
factor algorithm)

General cloud computing system

Fu [14] Machine
learning

Semi-supervised principle component analysis and Semi-
supervised Decision-tree

Institute-wide cloud computing system

Fu et al. [15] Machine
Learning

One class and two class support vector machines Cloud computing environments

Ren et al. [35] Machine
learning

Anomaly detection approach based on stage-task behaviors
and logistic regression model

Online framework for Apache Spark streaming
systems

Lu et al. [29] Machine
Learning

Anomaly detection using convolutional neural networks
based model

Big Data system logs using Hadoop distributed file
fystem
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cluster computing, such as task scheduling, memory man-

agement, fault recovery, and communicating with database

systems [22].

Running Spark application involves five main compo-

nents, including driver programs, cluster managers, worker

nodes, executor processes, and tasks as shown in Fig. 1.

The Spark application runs as an independent set of pro-

cesses on a cluster, which are coordinated by an object

called SparkContext. This object is the entry point to

Spark, and it is created in a driver program, which is the

main function in Spark. In cluster mode, SparkContext has

the ability to communicate with many cluster managers to

allocate sufficient resources for the application. The cluster

manager can be Mesos, YARN, or a Spark stand-alone

cluster [4].

2.2.1 Resilient distributed datasets

Spark engine provides the API for the main programming

data abstraction, which is the Resilient Distributed Dataset

(RDD) to enable the scalability of data algorithms with

high performance. RDD offers operations, including data

transformation and actions, that can be used by other Spark

libraries and tools for data analysis. This paper proposes an

anomaly detection method that performs in its most

effective instantiation anomaly detection at the level of the

RDDs. We thus briefly overview the main features of these

data structures and their relationship to the job execution

flow within Spark.

The RDD is Spark’s core data abstraction. It is an

immutable distributed collection of objects that can be

executed in parallel. It is resilient because an RDD is

immutable and cannot be changed after its creation. An

RDD is distributed because it is sent across multiple nodes

in a cluster. Every RDD is further split into multiple par-

titions that can be computed on different nodes. This means

that the higher the number of partitions, the larger paral-

lelism will be. RDD can be created by either loading an

external dataset or by paralleling an existing collection of

objects in their driver programs. One simple example of

creating an RDD is by loading a text file as an RDD of

string (using sc.textFile()) [4].

After creation, two types of operations can be applied to

RDDs: transformations and actions. A transformation

creates a new RDD from an existing RDD. In addition,

when applying a transformation, it does not modify the

original RDD. An example of transformation operation is

filtering data that returns a new RDD that meets filter

conditions [37]. Some other transformation operations are

map, distinct, union, sample, groupByKey, and join. The

second type of RDD operation is an action, which returns a

resulting value after running a computation and either

returns it to the driver program or saves it to external

storage, such as Hadoop Distributed File System (HDFS).

A basic example of an action operation is First(), which

returns the first element in an RDD. Other action operations

are collect, count, first, takesample, and foreach [4].

RDDs are reliable and use a fault-tolerant distributed

memory abstraction. Spark has the ability to reliably log

the transformation operation used to build its lineage graph

rather than the actual data [44]. The lineage graph keeps

track of all transformations that need to be applied to RDDs

and information about data location. Therefore, if some

partition of an RDD is missing or damaged due to node

failure, there is enough information about how it was

derived from other RDDs to efficiently recompute this

missing partition in a reliable way. Hence, missing RDDs

can be quickly recomputed without needing costly data

replication. An RDD is designed to be immutable to

facilitate describing lineage graphs [44].

2.2.2 Jobs, stages, and tasks

Every Spark application consists of jobs , each job is fur-

ther divided into stages that depend on each other. Each

stage is then composed of a collection of tasks as shown in

Fig. 2 [3].

Spark Job. A Spark job is created when an action

operation (e.g., count, reduce, collect, save, etc.) is called

to run on the RDD in the user’s driver program. Therefore,

each action operation on RDD in the Spark application will

correspond to a new job. There will be as many jobs as the

number of action operations occurring in the user’s driver

program. Thus, the user’s driver program is called an

application rather than a job. The job scheduler examines

the RDD and its lineage graph to build a directed acyclic

graph (DAG) of the stages to be executed [44].

Spark Stage. Breaking the RDD DAG at shuffle

boundaries will create stages. Each stage contains many

pipelined RDD transformation operations that do not

require any shuffling between operations, which is called

narrow dependency (e.g., map, filter, etc.). Otherwise, ifFig. 1 Spark application components
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stages depend on each other through RDD transformation

operations that require shuffling, these are called wide

dependencies (e.g., group-by, join, etc.) [44]. Therefore,

every stage will contain only shuffle dependencies on other

stages, but not inside the same stage. The last stage inside

the job generates results and the stage is executed only

when its parent stages are executed. Figure 2 shows how

the job is divided into two stages as a result of shuffle

boundaries.

Spark Task. The stage scheduling is implemented in

DAGScheduler, which computes a DAG of stages for each

job and finds a minimal schedule to run that job. The

DAGScheduler submits stages as a group of tasks (Task-

Sets) to the task scheduler to run them on the cluster via the

cluster manager (e.g., Spark Standalone, Mesos or YARN)

as shown in Fig. 2.

Scheduling. The task in Apache Spark is the smallest

unit of work that is sent to the executor, and there is one

task per RDD partition. The dependencies among stages

are unknown to the task scheduler. Each TaskSet contains

fully independent tasks, which can run based on the loca-

tion of data and the current cached RDD. Each task is sent

to one machine [3]. Inside a single stage, the number of

tasks is determined by the number of the final RDD par-

titions in the same stage.

3 Motivating example

In order to motivate the use of machine learning approa-

ches in anomaly detection methods for Spark, we consider

the performance of a simple statistical detection technique

based on percentiles of the cumulative distribution function

(CDF) of task execution times. Our goal is to use CDF

percentiles to discriminate whether a given task has expe-

rienced a performance anomaly or not.

We run a KMeans Spark workload with nine different

types of tasks. More details about Spark experimental

testbed and process are provided in Sect. 5.1. We inject

CPU contention using the stress tool for a continuous

period of 17 h, which corresponds to 100% of the total

execution time of a job. The intensity of the CPU load

injected in the system amounts to an extra 50% average

utilization compared to running the same workload without

stress.

We then use the obtained task execution times to esti-

mate the empirical CDF for the execution time of tasks

conditional on their stage; i.e., the population of samples

that defines the CDF corresponds to the execution time of

all tasks that executed in that specific stage. Note that since

we run 10 parallel K-means workloads, each stage and its

inner tasks are executed multiple times. We shall refer to

this CDF as a stage CDF.

We then determine the 95th, 75th, 50th, 25th, and 10th

percentiles of all the stage CDFs and assess whether they

can be used as a threshold to declare whether a job suffered

an execution time anomaly. When there is a continuous

stress CPU anomaly, the F-score is 93%, which is

acceptable. However, this technique failed to detect a short

random time CPU anomaly by achieving only 0.2% for the

F-score.

We used a two-sample Kolmogorov–Smirnov test to

compare the two stages CDFs with and without anomalies

[27]. The test result is true if the test rejects the null

hypothesis at the 5% level, and false otherwise, as shown in

Fig. 3. The three types of Spark stages in Fig. 3 illustrate

three stages CDFs obtained in an experiment with and

without injection of CPU contention. The three CDFs for

the three different types of tasks make it difficult to

determine whether there is an anomaly or not. For example,

Fig. 3 has a noticeable difference in the CDFs for normal

and abnormal performance. On the other hand, Fig. 3 also

has a noticeable difference between the two experiments,

but there were no anomalies occurred during all tasks in

stage 7. In addition, the CPU anomaly causes a delay while

processing the tasks. This delay propagates through the

Spark DAG workflow and therefore also affects tasks that

did not incur anomalies period.

Fig. 2 Spark DAG for a WordCount application with two stages each
consisting of three tasks
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In conclusion, this motivating example illustrates that

CDF-based anomaly detection in Spark only at the level of

execution times is significantly prone to errors. In the next

sections, we explore more advanced and general method-

ology based on a machine learning technique that is cap-

able of considering multiple monitoring metrics and

pinpointing anomalous tasks with high F-score perfor-

mance metrics.

4 Methodology

In this section, we present our neural network driven

methodology for anomaly detection in Apache Spark sys-

tems. A schematic view of anomaly detection detailed

processes is shown in Fig. 4. The following subsections

discuss the proposed methodology which covers the neural

network model, feature selection, training, and testing.

4.1 Neural network model

Our methodology revolves around using a neural network

to detect anomalies in Apache Spark environment. The

standard backpropagation with a scaled conjugate gradient

is used for the training process to update weight and bias

values of the neural network. The scaled conjugate gradient

training is normally faster than standard gradient descent

algorithms [32].

Before we initiate the backpropagation process, we

calculate the activation values of units in the hidden layer

and propagate them to the output layer. A sigmoid transfer

function (non-linear activation function) is used in the

hidden layer because it exists between (0 to 1), where zero

means absence of the feature and one means its presence.

In neural networks, non-linearity is needed in the activation

functions because it produces a nonlinear decision bound-

ary via non-linear combinations of the weights and inputs

to the neural networks. Sigmoid introduces non-linearity in

the model of neural networks, as most of the real classifi-

cation problems are non-linear. Softmax transfer function is

used in the output layer to handle classification problems

with multiple classes. Then cross-entropy is used as a cost

function to assess the neural network performance and

compare the actual output error results with the desired

output values (labeled data). Cross-entropy is used because

it has practical advantages over other cost functions; e.g., it

can maintain good classification performance even for

problems with limited data [24].
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(a) CDFs for stage type 3
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(c) CDFs for stage type 8

Fig. 3 CDF for the three types of Spark tasks under a short 50% CPU stress affecting tasks in stage type 3

Fig. 4 Methodology for
anomaly detection
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4.1.1 Structure of model

The proposed neural networks contain three layers, which

are input, hidden, and output layer. The input layer con-

tains a number of neurons equal to the number of input

features. The size of the hidden layer is determined by

using a ‘‘trial and error’’ method, choosing a number

between the sizes of input neurons and output neurons [39].

A hidden layer with ten neurons has achieved the most

accurate results for our situation as shown in Table 2. The

output layer of the neural network contains a number of

neurons equal to the number of target classes (types of

anomalies), where each neuron generates boolean values,

which are 0 for normal behavior or 1 for anomalous

behavior. For example, if there are three types of anomalies

(CPU, cache thrashing, and context switching), then the

size of the output layer will be three neurons and each of

them outputs a boolean value.

4.2 Model training and testing

In the training process, the input data to the model is

divided into three smaller subsets, called training (70%),

validation (15%), and testing (15%) sets. The training set is

used for calculating the gradient and updating the network

weights and biases. During the training process, the

weights and biases are updated continuously until the

magnitude of the scaled conjugate gradient reaches the

minimum gradient.

The validation set is used to avoid overfitting. The error

rate during the validation phase is decreased until the

magnitude of the gradient is less than a predefined

threshold (e.g., 10�5) or hits the maximum number of

validation checks. The number of validation checks is the

number of successive iterations in which the validation

performance fails to decrease (we use a maximum of six

successive iterations). After convergence, we save the

weights and biases at the minimum error for the validation

subset. The early stopping method we have described

above is known to avoid overfitting issues [7].

A third subset is used for testing purposes. It is inde-

pendently used to assess the ability of the trained model to

be generalized. Throughout the paper, we use as the main

test metric the standard F-score (F), which is defined in the

Appendix alongside the standard notions of Precision

(P) and Recall (R).

4.3 Feature selection

To evaluate the impact of the choice of input monitoring

features, we consider a simple workload execution in

which a K-means workload is injected with 50% CPU and

memory contention overheads using the stress tool, either

continuously for the duration of the experiment or in a 90-s

period out of a total runtime execution. This includes five

different scenarios, which are Non, CPU50%,

CPU50%90s, Mem50%, and Mem50%90. First scenario

Non is for running the benchmark without any contention

on CPU and memory, second scenario CPU50 is for run-

ning the benchmark with continuous contention on CPU at

50%, third scenario CPU50%90s is for running the

benchmark with a short time (90 s) of contention on CPU

50%, fourth scenario Mem50% is for running the bench-

mark with continuous contention on memory at 50% of

free memory, and fifth scenario Mem50%90s is for running

the benchmark with a short time (90 s) of contention on

memory by 50% of free memory.

We compare the performance of a basic anomaly

detection method, called DSM1, which relies solely on a

neural network trained using samples collected at the

operating system level of CPU utilization, time spent by

the processor waiting for I/O, and CPU steal percentage.

Table 3 shows a comparison of the system performance

metrics among different contention scenarios on S02. The

classification performance metrics for a neural network

trained on this basic set of measures are summarized in

Fig. 5.

The K-means workload does not heavily use memory

(see Table 3). Therefore, memory contention does not have

a noticeable effect on the DSM1 dataset, and the F-score is

as low as 19.88% when the memory contention is tempo-

rary (see Fig. 5). This is because DSM1 does not consider

the memory metrics for Spark cluster. Generally, short

contention periods are harder to detect, as visible from the

fact that a 90-s CPU anomaly has an F-score of 58.05%,

compared to a 77.44% F-score when there is a continuous

CPU stress injection. We interpret this as due to the fact

that the neural network needs to train the algorithm with a

bigger dataset to detect memory contention. If we repeat

the same experiment after adding memory monitoring

metrics, referred to as the DSM2 dataset in Table 4, the

F-score immediately increases from 77.44 to 99% for

continuous CPU anomaly injection, highlighting the

importance of carefully selecting monitoring metrics even

if they do not immediately relate to the metrics that are

mostly affected by the anomaly injection.

Table 2 Impact of hidden layer size on F-score for Neural Networks
using DSM4 feature sets

Hidden layer size (neurons) F-score

5 0.98

10 0.99

15 0.96

20 0.96
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The above results suggest that while a reduced set of

core metrics can substantially decrease the training time of

the model, an important consideration for example in

online applications, it can be counterproductive to perform

feature selection by reasoning on the root causes that

generate the anomaly.

4.4 Training data

We assume the Spark testbed to be monitored at all

machines. We considered different levels of logging,

ranging from basic CPU utilization readings to complete

availability of Spark execution logs. The logs provide

details on activities related to tasks, stages, jobs, CPU,

memory, network, I/O, etc. Many metrics can be collected,

but it is challenging to decide which ones are more valu-

able to assess system performance and pinpoint the

anomalies, as this may depend on the workload. All data

collection in our experiments took place in the background

without causing any noticeable overhead on the Spark

cluster.

In this work, we propose four methods, called dataset

method 1 (DSM1), dataset method 2 (DSM2), dataset

method 3 (DSM3) and dataset method 4 (DSM4). DSM1,

introduced earlier, relies solely on a neural network trained

using CPU utilization samples. DSM2 adds operating

system memory usage metrics to the metrics employed by

DSM1. The third method is DSM3 is build upon the list of

metrics selected in [45], which examines the internal Spark

architecture by relying on information available in the

Apache Spark log, such as Spark executors, shuffle read,

shuffle write, memory spill, and java garbage collection.

DSM3 does not reflect the RDD DAG of Spark application.

The fourth method is DSM4 which includes comprehensive

internal metrics about Spark tasks that enable the proposed

technique to track the Spark RDD DAG to detect the

performance anomalies. These metrics include compre-

hensive statistics about identificators and execution times-

tamps for Spark RDDs, tasks, stages, jobs, and

applications. The detailed monitoring features used to train

these four methods are listed in Table 4.

In the proposed methodology, we assume that the col-

lected data is pre-processed by the end to ensure elimina-

tion of any mislabeled training instances and to validate the

CPU50%

CPU50%90sec

Mem50%

Mem50%90sec

Scenarios

0

20

40

60

80

100
Recall
Precision
F-score

Fig. 5 Neural network performance with DSM1 feature set for
experiments with basic CPU and memory contention (continuous or
90-s periods)

Table 3 Running Spark
K-means workload without
contention(Non), with
continuous 50% CPU stress
(CPU50%), with 90-s 50% CPU
stress (CPU50%90s), with
continuous 50% memory stress
(Mem50%), and with 90 s 50%
memory stress on only S02
(Mem%90s)

Server Stress MeanCPU SD Pr95 Pr99 Iqr UsedMem ExeTimeSec

S01:Non No 0.0203 0.0389 0.0950 0.2147 0.0177 89.3239 295

S01:CPU50% No 0.0174 0.0308 0.0663 0.1646 0.0176 89.5402 567

S01:CPU50%90s No 0.0210 0.0359 0.0874 0.2166 0.0218 89.8094 376

S01:Mem50% No 0.0205 0.0376 0.0768 0.2346 0.0211 90.0187 326

S01:Mem%90s No 0.0193 0.0356 0.0715 0.2094 0.0190 90.2926 355

S02: Non No 0.8776 0.1849 0.9519 0.9561 0.0304 81.2464 295

S02:CPU50% Yes 0.9510 0.0701 0.9799 0.9833 0.0158 81.7595 567

S02:CPU50%90s Yes 0.9152 0.0806 0.9693 0.9748 0.0315 81.9844 376

S02:Mem50% Yes 0.8656 0.1880 0.9479 0.9527 0.0318 93.2561 326

S02:Mem50%90s Yes 0.8770 0.1825 0.9513 0.9574 0.0337 85.0864 355

S03: Non No 0.4488 0.4443 0.9489 0.9550 0.9271 90.0702 295

S03:CPU50% No 0.2231 0.3719 0.9361 0.9504 0.3580 90.4513 567

S03:CPU50%90s No 0.2649 0.3572 0.8831 0.9356 0.6816 91.1414 376

S03:Mem50% No 0.4129 0.4357 0.9422 0.9507 0.9115 91.2038 326

S03:Mem50%90s No 0.3760 0.4310 0.9402 0.9506 0.8914 91.3892 355

It is clear that the different type and amounts of anomalies affect mean CPU and memory utilization in
server S02
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datasets before passing them to the neural networks to

improve their quality. For example, we sanitize utilization

measurements larger than 100% or less than 0% by

removing the corresponding entries; similarly, we exclude

from the datasets samples when some of the features are

missing, so that the input dataset is uniform.

All the collected metrics are time series, which are

additionally labeled either as normal or anomalous in a

supervised fashion, before passing them as input to our

anomaly detection method for training, validation, and

testing. In an application scenario, labeling could either be

applied using known anomalies observed in the past in

production datasets or carrying out an offline training based

on the forced injection of some baseline anomalies. Fea-

tures we have used to qualify the characteristics of the

anomalies include information on their start time, end time,

and type (e.g., CPU, memory, etc.).

5 Evaluation

In this section, we introduce an evaluation for the perfor-

mance anomaly detection methodology proposed in

Sect. 4. In particular, having shown before the benefits of

using an increasingly large dataset, we focus on evaluating

neural networks trained on the DSM2 and DSM4 feature

sets. We use as a baseline a nearest neighbor classifier

trained on the same data.

5.1 Experimental testbed

Experiments are conducted on a cluster that contains three

physical servers: S01, S02, and S03. The specifications for

these servers are as follows:

1. Node S01: 16 vcores Intel(R) Xeon(R) CPU 2.30GHz,

32 GB RAM, Ubuntu 16.04.3, and 2TB Storage.

2. Node S02: 20 vcores 9 Intel(R) Xeon(R) CPU

2.40GHz, 32 GB RAM, Ubuntu 16.04.3, and 130 GB

Storage.

3. Node S03: 16 vcores 9 Intel(R) Xeon(R) CPU

1.90GHz, 32 GB RAM, Ubuntu 16.04.3, and 130 GB

Storage.

The hyperthreading option is enabled on S01, S02, and S03

to make a single physical processor resources appear as

two logical processors. Apache Spark is deployed such that

S01 is a master and the other two servers are slaves

(workers). Spark is configured to use the Spark Standalone

Cluster Manager, 36 executors, FIFO scheduler, and a

client mode for deployment. Node S01 hosts the bench-

mark to generate the Spark workload and launch Spark

jobs. The other nodes run the 36 executors. Monitoring

data collection took place in the background, with no sig-

nificant overhead on the Spark system. All machines use

sar (System Activity Reporter) and Sysstat to collect CPU,

memory, I/O, and network metrics. Log files from Spark

are also collected to later extract the metrics for DSM4.

Table 4 List of performance metrics for the DSM1, DSM2, DSM3,
and DSM4 methods

Methods Metrics

DSM2

DSM1

CPU utilization
Percentage of time that the CPUs were
idle during outstanding disk I/O re-
quest
Percentage of time spent in involun-
tary wait by the virtual CPU
Percentage of time that the CPUs were
idle
kbmemfree: free memory in KB on
hostname
kbmemused: used memory in KB on
hostname
X.memused: used memory in % on
hostname
kbbuffers: buffer memory in KB on
hostname
kbcached: cached memory in KB on
hostname
kbcommit: committed memory in KB
on hostname
X.commit: committed memory in % on
hostname
kbactive: active memory in KB on
hostname
kbinact: inactive memory in KB on
hostname
kbdirty: dirty memory in KB on host-
name

DSM4
DSM3

Task spill: Disk Bytes Spilled
Executor Deserialize Time
Executor Run Time
Bytes Read: Total input size
Bytes Written: total output size
Garbage Collection: JVM GC Time
Memory Bytes Spilled: Number of
bytes spilled to disk
Task Result Size
Task Shuffle Read Metrics: Fetch Wait
Time, Local Blocks Fetched, Local
Bytes Read, Remote Blocks Fetched,
and Remote Bytes Read
Task Shuffle write Metrics: Shuffle
Bytes Written and Shuffle Write Time
Stage ID
Task info: Launch Time, Finish Time,
Executor CPU Time, Executor Deseri-
alize CPU Time, Input Records Read,
Output Records Written, Result Se-
rialization Time, Total Records Read
for Shuffle, and Total Shuffle Records
Written
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5.2 Workload generation

SparkBench provides workload suites that include a col-

lection of workloads that can be run either serially or in

parallel [26]. Workloads include machine learning, graph

computation, and SQL queries, as shown in Table 5. In this

section, the K-means data generator is used to generate

various K-means datasets of different sizes (e.g., 2 GB, 8

GB, 32 GB, and 64 GB), a default number of clusters

(K ¼ 2), and a seed value 127L. The K-means workload is

intensively used in our experiments with many alternative

configurations for Spark and SparkBench parameters to

compare the performance results under different scenarios.

More than 1450 experiments have been conducted and

more than 3.7TB of data have been collected to examine

our proposed solution. An example of RDD DAG for

K-means Spark job is shown in Fig. 6, which has a single

stage that contains a sequence of RDD operations (e.g.,

Scan csv, DeserializeToObject, mapPartitions, etc.). These

RDDs operations depend on each other and some may be

cached.

5.3 Anomaly injection

Node S02 is used to inject anomalies into the Apache Spark

computing environment using stress and stress-ng tools.

Table 6 shows a list of the four types of anomalies that

have been used throughout the experiments. Stress is used

to generate memory anomalies, whereas stress-ng is used

to generate CPU, cache thrashing, and context switching.

Each experiment has different configurations, depending

on the objective of the conducted experiment, which will

be discussed in detail in the following (Sect. 5.4).

5.4 Results

The experiments are conducted on a cluster (described in

Sect. 5.1), which consisted of one master server (called S1)

and two slave servers (called S02 and S03). This cluster

was isolated from other users during the experiments. A

physical cluster was used instead of a virtual cluster to

avoid any possibility of deviations in measurements. A

series of experiments are conducted on the Spark cluster to

evaluate the proposed anomaly detection technique.

5.4.1 Baseline experiment

Three experiments with different types of anomalies are

injected into the Spark cluster with random instant and

Table 5 SparkBench workloads

Application type Workloads

Graph computation Data generator

Graph generator

SQL queries SQL query over dataset

Machine learning Data generator—K-means

Data generator—linear regression

K-means

Logistic regression

Table 6 Types of anomalies

Type # Description

CPU Spawn n workers running the sqrt() function

Memory Continuously writing to allocated memory in order to cause memory stress

Cache thrashing n processes perform random widespread memory read and writes to thrash the CPU cache

Context switching n processes force context switching

Fig. 6 DAG diagram illustrates
dependencies among operations
on Spark RDDs for a single
Spark stage within the K-means
workload
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random duration chosen uniformly between 0 and 240 s.

Each experiment encompasses a single type of anomaly:

CPU contention, cache thrashing, or context switching. The

average number of samples that are used to train and test

model for every experiment is 64K samples. We focus on

evaluating neural networks trained on the DSM2 and

DSM4 feature sets. Figure 7 shows the F-score obtained

with the proposed neural network classifier versus the

nearest neighbor method used as a baseline. It is clear that

the neural network outperforms the nearest neighbor

algorithm in detecting all the three types of anomalies.

Moreover, the random instant and random duration of the

three types of anomalies have little impact on the perfor-

mance of the neural networks compared with the nearest

neighbor.

5.4.2 Sensitivity to training set size

Figure 8 depicts the impact of Spark workload size on the

F-score for anomaly detection using DSM4 and four dif-

ferent types of algorithms, which include Neural Networks,

Decision Tree, Nearest Neighbor, and SVM. The first

workload has 250 Spark tasks (micro), the second work-

load has 1K Spark tasks (small), the third workload has 4K

Spark tasks (medium), the fourth workload has 16K Spark

tasks (large), and the fifth workload has 64K Spark tasks

(x-large). All these workloads have the same benchmark

and spark configuration. Figure 8 shows that the proposed

technique achieved 85% F-score with a micro Spark

workload (200 tasks), whereas the F-score increased when

the size of workload increased to reach 99% F-score for the

x-large Spark workload. This proves that the neural

networks achieve higher F-score than Decision Tree,

Nearest Neighbor, and SVM even with more heavy Spark

workload.

5.4.3 Sensitivity to parallelism and input data sizes

In this section, we consider the execution of ten parallel

K-means workloads at the same time. This represents a

more complex scenario than the ones considered before

since the anomalies are overlapped to resource contention

effects, making it difficult for classifiers to discern whether

a heightened resource usage is due to the workload itself or

an exogenous anomaly. As before, the workload input data

size is 64 GB and we consider 50% CPU contention

injection into the Spark cluster. Figure 9 shows the minor

impact on DSM2 and DSM4 when there are a single

K-means workload and 10 parallel K-means workloads

with continuous CPU contention.

Each experiment took approximately 17 h for execution.

In order to evaluate the proposed anomaly detection

methods, four machine learning algorithms have been

applied to detect performance anomalies with DSM2 and

DSM4 as inputs to the anomaly detection methods. These

algorithms include neural networks, decision tree, nearest

neighbor, and SVM. Figure 9 shows that the neural net-

work has the highest F-score, and it selectively detects the

anomalies in the Apache Spark cluster. The nearest

neighbor has the second highest F-score, then the decision

tree and SVM respectively. Regarding the execution time

of each algorithm, the neural network, decision tree,

nearest neighbor, and SVM took approximately 1 min, 3

min, 9 min, and 19 min respectively. The neural network is

more effective than other algorithms. The results in Fig. 9

prove that the neural network is more robust than the other

three algorithms, which are affected by the size of the input
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data to workloads when the input data was increased to 64

GB.

5.4.4 Classifying anomaly types

In this experiment we assess the ability of the proposed

technique not only to detect that an experiment has suffered

an anomaly, but also to qualify the type of anomaly. In this

experiment we consider simultaneous injection of CPU,

cache thrashing, and context switching anomalies. The

classification therefore has four classes: normal, CPU

anomalies, cache thrashing anomalies, and context

switching anomalies. The classification is at the level of

individual Spark tasks.

The total number of Spark tasks collected during the

execution amount to a total of 400K tasks. Table 7 illus-

trates that DSM4 with the neural network algorithm out-

perform DSM3 and nearest neighbor technique, retaining a

99% F-score, whereas the nearest neighbor algorithm

achieves only a 70% F-score.

5.4.5 Classifying overlapped anomalies

Because many types of anomalies may occur at the same

random time from different sources and for various reasons

in complex systems, there is a vital need to go beyond

detection of a single type of anomaly. To offer a solution

for such need, the proposed technique is validated with

DSM4 to prove its capability to detect overlapped

anomalies when they occur at the same time. We trained

our model over many Spark workloads with a total number

of 950K Spark tasks. The proposed technique classifies the
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Fig. 9 Impact of parallelism and input data size of workload on
anomaly detection methods

Table 7 Classification of anomaly types using DSM3 and DSM4

DSM3: neural
network

R P F

Normal 0.99 0.81 0.89

CPU 0.21 0.97 0.34

Cache thrashing 0.34 0.81 0.47

Context switching 0.38 0.96 0.54

Average F-score 0.48 0.88 0.56

DSM3: nearest neighbor R P F

Normal 0.87 0.83 0.85

CPU 0.36 0.45 0.40

Cache thrashing 0.29 0.30 0.29

Context switching 0.16 0.15 0.16

Average F-score 0.42 0.43 0.42

DSM4: neural network R P F

Normal 1 1 1

CPU 1 1 1

Cache thrashing 0.97 1 0.98

Context switching 0.98 0.99 0.98

Average F-score 0.98 0.99 0.99

DSM4: nearest neighbor R P F

Normal 0.98 0.98 0.98

CPU 1.00 1.00 1.00

Cache thrashing 0.76 0.73 0.75

Context switching 0.09 0.09 0.09

Average F-score 0.71 0.70 0.70

R recall, P precision, and F F-score
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Spark performance into seven types: normal, CPU stress,

cache stress, context switching stress, CPU and cache

stress, CPU and context switching stress, and cache and

context switching stress. The proposed solution is validated

with two types of Spark workload: K-means and SQL

workload, as shown in Tables 8 and 9. The overall F-score

for classifying the Spark performance using Neural Net-

works and DSM4 is 98%. Finally, it is evident that the

proposed technique is capable of detecting and classifying

the three types of anomalies with more complex scenarios

such as parallel workload, random occurrence and over-

lapped anomalies. DSM4 is more agile and has the ability

not only to detect anomalies, but also to classify them and

find the affected Spark task, which is hard to do with

DSM2 and DSM3 without having comprehensive access to

the Spark logs.

The conducted experiments and the obtained results

show interesting implications that prove the importance of

utilizing memory performance metrics and the internal

metrics of Apache Spark architecture. After adding mem-

ory monitoring metrics, referred to as the DSM2 dataset in

Table 3, the F-score of anomaly detection readily increases

from 77.44% to 99% (as discussed in Sect. 4.3) for CPU

anomaly injection, highlighting the importance of carefully

selecting monitoring metrics, even if they are not intuitive

to relate to the anomaly. Another implication includes the

importance of optimizing the use of the internal features of

Spark architecture and dependencies between RDDs, as

done in the DSM4 dataset in Table 4, and its components

to accurately detect and classify anomalous behaviors

based on the Spark resilient distributed dataset (RDD)

characteristics.

6 Conclusion

Although Apache Spark is developing gradually, currently

there is still a shortage of anomaly detection methods for

performance anomalies for such in-memory Big Data

technologies. This paper addresses this challenge by

developing a neural network driven methodology for

anomaly detection based on knowledge of the RDD

characteristics.

Our experiments demonstrate that the proposed method

works effectively for complex scenarios with multiple

types of anomalies, such as CPU contention, cache

thrashing, and context switching anomalies. Moreover, we

have shown that a random start instant, a random duration,

and overlapped anomalies do not have a significant impact

on the performance of the proposed methodology.

The current methodology requires a centralized node

that runs the neural network, which may not be effective

for large scale data centers. Distributed online detection

techniques that rely on a collection of neural networks may

be considered for large scale systems. Due to the limitation

on the hardware resources and to validate the proposed

methodology, the current artificial neural networks

Table 8 Classification of 7 overlapped anomalies using DSM3 and
DSM4: K-means workload

DSM3: neural networks R P F

Normal 0.99 0.80 0.88

CPU 0.26 0.84 0.40

Cache thrashing 0.23 0.67 0.34

Context switching 0.36 0.95 0.52

CPU ? cache 0.28 0.94 0.43

CPU ? context
switching

0.25 0.78 0.38

Cache ? context
switching

0.24 0.83 0.37

Average F-score 0.37 0.83 0.48

DSM3: nearest neighbor R P F

Normal 0.80 0.77 0.78

CPU 0.20 0.25 0.22

Cache thrashing 0.11 0.11 0.11

Context switching 0.16 0.16 0.16

CPU ? cache 0.18 0.19 0.19

CPU ? context switching 0.15 0.15 0.15

Cache ? context switching 0.15 0.15 0.15

Average F-score 0.25 0.25 0.25

DSM4: neural network R P F

Normal 1 1 1

CPU 1 1 1

Cache thrashing 0.98 0.98 0.98

Context switching 0.94 0.99 0.96

CPU ? cache 0.95 1 0.97

CPU ? context switching 0.91 0.96 0.93

Cache ? context switching 0.99 0.99 0.99

Average F-score 0.97 0.99 0.98

DSM4: nearest neighbor R P F

Normal 0.84 0.84 0.84

CPU 0.50 0.50 0.50

Cache thrashing 0.06 0.06 0.06

Context switching 0.12 0.12 0.12

CPU ? cache 0.13 0.13 0.13

CPU ? context switching 0.10 0.10 0.10

Cache ? context switching 0.12 0.12 0.12

Average F-score 0.27 0.28 0.27

R recall, P precision, and F F-score
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algorithm has been trained on offline data, which can easily

generalize it to work with the online Spark systems.

In terms of future work, it would be interesting to

explore online anomaly detection. Deep Learning tech-

niques may also be explored to learn more about complex

features from the performance metrics of the Spark system,

possibly leading to even more accurate detection and pre-

diction of critical anomalies.
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Precision, Recall, and F-score

Sensitivity and Precision measures are used to evaluate the

anomaly detection classifiers, which are standard metrics

for quantifying the accuracy of the classifiers [8]. The

following are the anomaly classification classes and their

notations: true positives (tp), true negative (tn), false pos-

itives (fp), and false negatives (fn).

Throughout the paper, we use as main test metric the F-

score (F), which is defined as follows:

R ¼
tp

tpþ fn
P ¼

tp

tpþ fp
F ¼ 2

PR

Pþ R
ð1Þ

where R is the Recall, which assesses the quality of a

classifier in recognizing positive samples, and P is Preci-

sion, which quantifies how many samples classified as

anomalies are indeed anomalies. Recall will become high

when the anomaly-detection method can detect all

anomalies. The Precision assesses the reliability of the

detection method when it reports anomalies. The trade-off

between the Recall and Precision is captured by the F-

score, which is a summary score, and it is computed as the

harmonic mean of Recall and Precision.
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