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Abstract

Background—Trauma has long been considered unpredictable. Artificial neural networks 

(ANN) have recently shown the ability to predict admission volume, acuity and operative needs at 

a single trauma center with very high reliability. This model has not been tested in a multicenter 

model with differing climate and geography. We hypothesize that an artificial neural network can 

accurately predict trauma admission volume, penetrating trauma admissions, and mean ISS with a 

high degree of reliability across multiple trauma centers.

Methods—Three years of admission data was collected from five geographically distinct US 

level 1 trauma centers. Patients with incomplete data, pediatric patients and primary thermal 

injuries were excluded. Daily number of traumas, number of penetrating cases, and mean ISS was 

tabulated from each center along with National Oceanic and Atmospheric Administration data 

from local airports. We trained a single two-layer feed-forward ANN on a random majority (70%) 

partitioning of data from all centers using Bayesian Regularization and minimizing mean squared 

error. Pearson’s product-moment correlation coefficient was calculated for each partition, each 

trauma center, and for high and low volume days (>1 standard deviation above or below mean total 

number of traumas).
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Results—5,410 days were included. 43,380 traumas, including 4,982 penetrating traumas. The 

mean ISS was 11.78 (SD=6.12). On the training partition, we achieved R = 0.8733. On the testing 

partition (new data to the model), we achieved R = 0.8732, with a combined R = 0.8732. For high 

and low volume days, we achieved R = 0.8934 and R = 0.7963, respectively.

Conclusions—An ANN successfully predicted trauma volumes and acuity across multiple 

trauma centers with very high levels of reliability. The correlation was highest during periods of 

peak volume. This can potentially provide a framework for determining resource allocation at both 

the trauma system level and the individual hospital level.

Level of Evidence—Level III, prognostic

Background

Physicians and nurses with extensive experience in emergency departments or trauma 

centers often report a somewhat predictable variation to the ebb and flow of trauma 

admissions. This has given rise to the belief, at some centers, that there is a “trauma season.” 

This ebb and flow can have significant effects on the workflow of trauma centers. The ability 

to forecast these variations in trauma admissions at a granular level, particularly with regards 

to times of increased patient volume, has the potential to allow hospitals to adjust staffing 

and resource allocation to allow for optimal patient care. Unfortunately, quantifying this ebb 

and flow has been elusive.

In recent years, an increased focus has been placed on building and implementing tools to 

predict illness severity, complications, outcomes, and the cost associated with treatment 

within medicine and surgery.(1–5) Classically, this has been done with conventional 

statistics or scoring systems. However, machine-learning technology has been useful across 

various medical specialties, including predicting outcomes in traumatic brain injuries, post-

surgical outcomes and lengths of stay in trauma and other surgical subspecialties. (6–11) 

Recently, there have been two major uses in characterizing skin tumors malignancy (12), and 

identifying pneumonia-like structures on chest x-ray. (13) One class of machine-learning 

algorithms, known as an Artificial Neural Networks (ANNs), has been used in some of these 

models to predict an outcome based on pattern recognition.(1, 4, 5) These tools often prove 

useful as they are able to improve their predictive ability, or “learn”, as they encounter new 

data, and they benefit from internal validation and testing.(1, 2, 5, 6, 14, 15) These ANNs 

are computational constructs that can segregate inputs and pattern recognize within these 

data to make predictions, using historical outputs. Over time, they can be trained to continue 

to fine tune their predictions as more input and output data is provided, and overtime can 

“learn” to make better predictions, in a way that, for example, logistic regression and most 

conventional statistics cannot. One challenge this may present is that they may require larger 

computational infrastructure to facilitate the increased computational demands and to 

provide real time data input and learning.(1, 4, 5)

Previous studies have attempted to identify patterns in trauma volume based on temporal and 

weather-related variations.(16–31) Using retrospective data, temporal and weather-related 

trends have been identified. Nights and weekends have been associated with higher 

admission rates, injury severity and need for emergent operation.(20, 29) Seasonal patterns 
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have also been identified with summer months having higher rates of admissions.(16, 18, 22) 

Studies attempting to identify patterns in trauma admission and severity based on specific 

weather patterns, such as rain or sunshine have been more mixed.(16–18, 22, 26) Emergency 

department visits, ED radiology usage, burn admissions and orthopedic volumes have also 

identified some temporal and weather-related trends. (19, 23, 25, 27, 28) Each of these 

studies was unable to integrate these past trends in weather, season, and time and create a 

predictive model for trauma volume and acuity. In an earlier study, we demonstrated that an 

ANN, using historical admission volumes and weather data, could be used to predict trauma 

volume, acuity and operative volume with a high degree of accuracy at a single trauma 

center.(31, 32) Variability in weather, trauma center volume and geography limited this 

initial study. A multi-center study was needed to determine if this tool had applicability to 

the broader trauma environment.

The goal of this study was to integrate trauma admission and weather data from several 

trauma centers that are distinct geographically, climatologically, and in terms of trauma 

volume and acuity. We then sought to use this data to create and train a multicenter artificial 

neural network to predict trauma admissions at an individual center. We hypothesize that the 

ANN will predict trauma admission volume and severity of injury with a high degree of 

reliability within multiple, varied trauma centers.

Methods

Three years (July 1, 2013 to June 30, 2016) of trauma admission data was collected from 

five geographically and climatologically distinct US trauma centers (Nashville, TN, Denver, 

CO, Houston, TX, Des Moines, IA, Rochester, NY). Pediatric patients and primary thermal 

injuries were excluded. At each center, the daily number of traumas, number of penetrating 

cases, and mean ISS was tabulated for each day of the study across the five centers. For days 

in which 0 traumas were recorded at a center, the mean ISS was not computable and 

therefore not included in training. These data are described graphically using LOWESS for 

fitting across the year following normalization by the median for each trauma center, as well 

as with heat maps showing both relative and absolute frequency of trauma volume per hour 

and descriptive statistics. Heat maps required data for time of arrival and date of arrival only. 

Data was also extracted from the National Oceanic and Atmospheric Administration’s 

(NOAA) Climate Online Database to capture weather readings from one of each center’s 

local airport (Nashville International Airport, Denver International Airport, George Bush 

Intercontinental Airport, Des Moines International Airport, Greater Rochester International 

Airport).(33)

We trained a single two-layer feed-forward Artificial Neural Network (ANN) with 15 

sigmoid hidden neurons and 3 linear output neurons on a random majority (70%) 

partitioning of the data from all centers using Bayesian Regularization and minimizing mean 

square error over all targets. One hidden layer was chosen to prevent overfitting this model 

with only 7 likely collinear inputs and 3 outputs, we chose 15 nodes as it minimized the 

mean squared error (MSE) while providing similar fit on the test and training partition. As 

input to this model we take the date parsed into the 1) day of the year, 2) the day of the 

week, 3) the daily high temperature (°F), 4) the daily low temperature (°F), 5) precipitation 

Dennis et al. Page 3

J Trauma Acute Care Surg. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(binary) 6) snow (binary), and 7) center identifier (Figure 1). High and low temperature were 

both incorporated despite co-linearity, which the ANN can account for during weight 

assignment. This data predicted: 1) number of trauma contacts that will present on a given 

date, 2) the number of penetrating trauma contacts, and 3) and the mean ISS score for that 

day. Fifteen percent of data (of the total trauma days) were reserved each for testing and 

validation, and Pearson’s product-moment correlation coefficient was calculated for the 

output versus target spaces on each of the partitions: training, testing and validation. 

Mathematical, statistical and graphical analysis was performed with offline MATLAB 

R2017b.

Results

Our parameter of investigation in this study is the 24-hour calendar day, to which we assign 

measures of trauma volume and acuity. Across the five study centers and three study years 

there were 5,480 potential days of study, of which 5,410 days were included with 70 being 

excluded due to insufficient data. This captured 43,380 traumas, including 4,982 penetrating 

traumas. These data are summarized by center in Table 1.

We analyzed temporal patterns across the five centers using heat maps and curves capturing 

the seasonal change in trauma volume. Figure 2 shows the relative frequency of all traumas 

per hour for all centers combined. Figure 3 shows the relative frequency of traumas per hour 

(color bar, right), normalized for each center’s mean number of traumas (color bar = 1) for 

each center. These data reveal similar temporal patterns across the week between these 

centers, with few trauma contacts in the morning at all centers, particularly on weekdays, 

and a higher density of trauma contacts over nights and weekends. At all centers, the 

weekend nadir in trauma contacts is later than on weekdays. Figure 4 captures these same 

data, but represents the absolute frequency of trauma per hour, where the color bars are 

consistent across all centers (using Houston’s trauma as the metric due to the largest 

volume).

Fitting of relative trauma volume versus day of year showed, at all centers individually and 

when combined, seasonal variation of overall trauma volume (Figure 5). At all centers, mid-

year (summer) had above-median trauma volume, while mid-winter demonstrated the 

smallest volume. This pattern held when all centers data was combined (dashed blue line). 

While the overall pattern (summer has higher volume than winter) held for each center, there 

were more subtle differences between centers in when the precise peaks and nadirs occur, 

and how long these peaks and trough lasts.

We successfully trained an ANN with the seven input variables to predict the number of 

daily traumas, the number of penetrating cases, and the mean daily ISS. On the partition 

dedicated to model training, we achieved R = 0.8733, on the testing partition (new data to 

the model) the model achieved R = 0.8732, with a combined dataset R = 0.8732.

The correlation coefficients were also calculated for each location on the combined dataset: 

Nashville R = 0.8729, Des Moines R = 0.7481, Rochester R = 0.9093, Houston R = 0.8895, 

Denver R = 0.7721. We also identified high volume trauma days (days greater than one 
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standard deviation above average for total number of traumas at that specific center) and 

compute the correlation coefficient for all three output as R = 0.8934. Similarity, we 

identified low volume days and, on these days, found R = 0.7963. This indicates the model 

has better performance on high volume trauma days than low volume trauma days.

Discussion

We have analyzed the trauma landscape at multiple level one trauma centers of varying size, 

climate and geographic location in order to determine if an ANN can reliably predict trauma 

admission volume, penetrating trauma volume, and mean ISS. Our correlation coefficients 

demonstrate success with this methodology. There is a dearth of published literature on this 

application of ANNs to predict trauma volume and acuity. We have previously demonstrated 

the predictive ability of ANNs with respect to trauma admissions, acuity, and need for urgent 

operation at a single level 1 trauma center.(32) This is the first study to use ANNs to predict 

trauma volumes and severity across multiple trauma centers. Unique to this study, we have 

performed a larger study by incorporating multiple trauma centers into the model. We 

intentionally chose level one centers of varying volume and mechanism of injury. 

Additionally, we chose centers with wide geographic and climate variation in an attempt to 

validate the broad applicability of this methodology.

Our results show that, while trauma volume may vary across centers, patterns emerge that 

are similar across all centers. As a whole, Figures 2–4 suggest that while volume may vary 

greatly from center to center, the overall relative temporal patterns are similar across centers. 

Weekday mornings are relatively low volume times for all trauma centers included in the 

study. Conversely, evenings and weekends are high volume times for trauma centers. Figure 

5 shows relative trauma volume as a function of day of the year. Variation exists between 

trauma centers, but a general pattern emerges in which the warmer months are higher 

volume times, giving credence to the anecdotally identified “trauma season.”

The ANN performed well across all centers but did have some variability between the 

centers. Correlation coefficients increased as trauma admission volume increased. This 

general trend is likely related to sample sizes from the various centers. Similarly, we noted 

higher correlation coefficients with higher volume days as compared to lower volume days. 

The lone exception was Rochester, which had the highest correlation coefficient but the 

fourth highest admission volume. It is not entirely clear why Rochester performed best in the 

model despite not being the highest volume center. The correlation coefficient for Rochester 

was only slightly higher than for Houston and Nashville. This suggests there was currently 

unidentified subtle pattern to trauma admissions at that center that allows it to more closely 

align with the model. The correlation coefficients are similar enough between the centers to 

be considered essentially the same. These findings suggest this ANN may be useful in 

identifying periods of increased needs for trauma centers.

Relative to our previous studies, we continue to refine the ANN. As demonstrated in Figure 

1, we created a new input variable for the specific trauma center. Also, we included more 

weather data, specifically low temperatures and snow, as inputs into the model. Due to 

variations in data submitted by the different trauma centers, we were unable to standardize 
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the data in way that would allow for prediction of operative case volume. The model 

accounts for holidays that occur on the same day each year (e.g. Independence Day, 

Halloween, Christmas, etc.) by virtue of the fact that they do occur on the same day each 

year. Holidays that occur on different dates each year (e.g. Memorial Day, Labor Day, 

Thanksgiving) are slightly more difficult to account for but ultimately average out over time 

as these holidays occur on different dates but within the same basic calendar window from 

year to year. We used a 3-year admission sample to account for this variability in our model. 

Local holidays and “one-off” events like disaster events or unique celebration events are 

inherently difficult to predict. Inclusion of these events would serve to reduce the broader 

applicability of the model and were not included.

The predictive ability of this model has obvious implications from a resource and personnel 

allocation perspective. Its ease of use and high reliability, especially in periods of higher 

than usual volume, make it a potentially attractive tool for hospital administrators. It can 

easily be incorporated into a web-based tool that would allow hospitals to predict times of 

increased staffing and resource needs. Weather forecasts from any source can be used to 

make predictions. The predictive application of this model can also be used to inform trauma 

service workflows, including shift changes and handoffs. Periods of relative low admission 

volume during the day could be used by nursing staff to perform essential tasks for patients 

already admitted. For physicians, this information may be useful in optimizing educational 

opportunities such as rounding and didactic lectures. This tool may provide valuable 

information to perioperative teams in identifying optimal times for inpatient procedures. On 

a broader scale, the seasonal variability could potentially inform organizations of ideal times 

for scheduling periods of necessary increases in staffing.

There are some notable limitations to our model that warrant special mention. Weather data 

was input based on actual measurements, not predictions. To maximize the predictive value 

of the model, prospective predictions using weather forecasts would be beneficial. Our 

model shows a high level of internal reliability for the centers included in the study. And 

while we intentionally chose trauma centers that had variability in volume, mechanism of 

injury, climate and geography, this model has not yet shown itself to be a viable mechanism 

for predicting trauma volume or acuity at a new center that has not provided admission data. 

Therefore, the application of its predictive ability to other centers, especially level 2 and 3 

centers, is not possible at this time. However, this study does show that incorporating data 

from other trauma centers into the model can result in predictive data that remains highly 

reliable. As previously mentioned, variations in data submissions from the participating 

centers prevented us from predicting operative needs for trauma admissions in this study. 

This is an important prediction for resource allocation at the broader hospital level if the tool 

is to be used by hospital administration. As with our previous study, there is no distinct 

comparator for this type of prediction model. It is not clear exactly what level of accuracy, in 

terms of correlation coefficient, is required to optimize resource utilization. Lastly, the 

overall model is an averaging of the predictability at each center. Other modeling 

architectures might allow for training of an institution-specific neural network that 

incorporates additional local factors (e.g. local events, school system holidays, trauma 

diversion, etc.) not included in our model.
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Conclusion

An artificial neural network can predict trauma admissions and severity of injury with high 

degree of accuracy across a variety of disparate trauma centers. Weather and trauma center 

admission data as primary inputs result in a model that demonstrates seasonal variation that 

correlates with increased volume during warmer times of the year. Admission volumes vary 

by trauma center but all follow a similar pattern of higher admission volumes at night and on 

weekends. Higher volumes correlate with more accurate predictive ability of the ANN. This 

model can be used to inform trauma centers of peak times of trauma admissions which can 

help optimize workflows, staffing needs and resource utilization.
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Figure 1. 
Schematic of ANN Setup.
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Figure 2. 
Heatmap for all trauma centers combined showing absolute frequency of trauma admissions 

by time of day (y-axis) and day of week (x-axis).
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Figure 3. 
Heatmap from each trauma center showing relative frequency of admissions by time of day 

(y-axis) and day of week (x-axis).
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Figure 4. 
Heatmap from each trauma center showing absolute frequency of admissions by time of day 

(y-axis) and day of week (x-axis).
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Figure 5. 
Relative trauma volume (y-axis) as a function of day of the year (x-axis) for each trauma 

center and for all centers combined (dotted blue line). Black dotted line represents daily 

median number of trauma for each center. All fit lines smoothed using LOWESS.
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Table 1.

Training output data for each center.

Houston Nashville Denver Rochester Des Moines

Mean No. Trauma Contacts/day 15.0 (SD 4.9) 9.8 (SD 3.9) 6.4 (SD 2.9) 4.8 (SD 2.6) 3.7 (SD 2.2)

Mean No. Penetrating Traumas/day 1.3 (SD 1.3) 1.2 (SD 1.2) 1.0 (SD 1.1) 0.8 (SD 1.4) 0.2 (SD 0.4)

Mean ISS 11.6 (SD 2.7) 14.9 (SD 4.3) 10.3 (SD 4.9) 13.0 (SD 9.5) 9.2 (5.2)

J Trauma Acute Care Surg. Author manuscript; available in PMC 2020 July 01.


	Abstract
	Background
	Methods
	Results
	Discussion
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

