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Abstract
The growing demands of brain science and artificial intelligence create an urgent need for the development of

artificial neural networks (ANNs) that can mimic the structural, functional and biological features of human neural

networks. Nanophotonics, which is the study of the behaviour of light and the light–matter interaction at the

nanometre scale, has unveiled new phenomena and led to new applications beyond the diffraction limit of light.

These emerging nanophotonic devices have enabled scientists to develop paradigm shifts of research into ANNs. In

the present review, we summarise the recent progress in nanophotonics for emulating the structural, functional and

biological features of ANNs, directly or indirectly.

Introduction
The human brain is the most complex biological organ

in the universe and remains unknown to us. Several

countries have started large programmes or alliances on

brain science1. Together, these initiative projects will

undoubtedly lead to major breakthroughs in under-

standing how the human brain functions, which will

provide possible solutions to curing brain-related diseases.

These projects will also inspire neuromorphic computing

to meet growing demand for artificial intelligence2 to

build a machine that mimics the capability of humans

towards various applications.

To obtain a better understanding of the brain, investi-

gations of biological neural networks (BNNs) have been

widely carried out to study the biological, structural and

functional features of the brain. One category of this

research involves the use of advanced electrophysiology

and imaging techniques to map and study the activities of

BNNs, which include: microelectrodes3, electro-

encephalograms (EEGs)4, magnetic resonance imaging5,

computed tomography6, electron beam microscopy6 and

super-resolution fluorescence microscopy7. This category

allows an understanding of the operation of the brain via a

bottom–up approach using the large amount of data

obtained through BNN studies. Another category of BNN

research focuses on the building of artificial neural net-

works (ANNs) that could emulate the biological, struc-

tural and functional features of BNNs. This category uses

simplified and controllable models to test new theories of

brain functions derived from the data of BNNs and to test

new drugs on the brain-related diseases. ANNs can also

provide brain-like computing platforms for artificial

intelligence with higher efficiencies.

Building ANNs includes research in the fields of soft-

ware simulations based on conventional von Neumann

computers8,9 and hardware simulations, such as the

implementation of ANNs indirectly based on electro-

nics10,11 and photonics12–15 and the direct growth of

ANNs with biological neuron cells16. Although versatile

supercomputers based on conventional von Neumann

computers are now available to conduct millions of

operations, the software simulation of ANNs with von

Neumann computers in 100% real time and at the scale of

the whole human brain has not yet been achieved and

would consume at least 500MW of energy17, not to

mention its huge size. These drawbacks are mainly owing

to the serial nature of von Neumann computers, which is

fundamentally different from how the BNNs work. The
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development of ANNs based on hardware is an important

step for the practical realisation of ANNs.

Nanophotonics—the study of the behaviour of light and

the light–matter interaction at the nanometre scale—is of

great importance to demonstrate hardware-based ANNs.

In fact, the interplay between nanophotonics and ANNs

has already generated new fields. The application of

software-based ANNs in nanophotonics has enabled new

realms in automatic optical sensing18, automatic optical

microscopy imaging19 and the inverse design of photonic

devices20. Nanophotonics is a highly promising tool for

studying BNNs with optical imaging and optogenetics.

The development of optical imaging—especially the

invention of far-field super-resolution optical microscopy

(awarded the 2014 Nobel Prize in Chemistry), has initiated

research into imaging neural networks at the nanos-

cale21,22. Based on the same principle as far-field super-

resolution imaging, a two-beam optical nanolithography

technique, termed super-resolution photoinduction-

inhibited nanolithography (SPIN), has been developed to

fabricate features as small as 9 nm23, which reaches the

feature size of BNNs. Such a technique has the potential to

develop the three-dimensional (3D) direct nanoprinting of

ANNs with high complexity and capacity. In addition, the

photon is an important information carrier for ANNs,

exhibiting a broad bandwidth and low transmission scat-

tering compared with the electron. The development of

ANNs based on nanophotonic devices has opened a new

avenue to achieve orders-of-magnitude improvements in

both computational speed and energy consumption over

existing solutions based on electronics (Fig. 1).

In the present review, we discuss the recent advance-

ments in nanophotonic techniques for the development of

ANNs that mimic and study the structural, functional and

biological features of BNNs. First, we describe the

nanophotonics-enabled indirect ANNs based on electronics

and photonics, including the laser writing of electronic

devices for ANNs and the development of nanophotonic

devices for ANNs. After that, we briefly summarise the

recent advancement in building ANNs based on biological

neurons with controlled topology. Finally, we summarise

the nanophotonic techniques used for the imaging and

signal detection of ANNs based on biological neurons.

Indirect ANNs enabled by nanophotonics
The construction of intelligent machines that mimic

BNNs has been pursued since soon after the invention of

the modern computer. Most of the research into ANNs is

based on software simulation using von Neumann com-

puters. The concept of mimicking BNNs with electronic

or photonic hardware, which is also called neuromorphic

computing, was introduced in late 1980s12,24. Compared

with the ANNs directly based on biological neural cells,

these ANNs rely on electronic or photonic systems con-

taining artificial neurons to indirectly mimic the neuro-

biological architectures presented in BNNs.

Working principles of indirect ANNs

The biological counterparts of artificial neurons are

biological neurons, which represent the building blocks of

BNNs. The BNNs consist of billions of neurons of dif-

ferent types and sizes. Figure 2a shows a schematic of a

simplified biological neuron25 with the four basic funda-

mental units—dendrites, axons, somas and synapses.

ANNs follow a simplified model inspired by BNNs. The

unit of this model, a simple formalised artificial neuron

introduced by McCulloch and Pitts26, acts as a compu-

tational element in the ANN. The execution of a task

involves the parallel activation of a large number of arti-

ficial neurons. As shown in Fig. 2b, one or more inputs (x)

from the other neurons were sent into an artificial neuron

and the inputs are summed up to produce outputs (y) to

the other neurons on axons. Separated by weighted (w), a

non-linear function known as an activation function or

transfer function (f); the activation function can be a step

function, Sigmoid function, etc. The mathematical form

of the artificial neuron is as follows:

yj ¼ f
Xn

i¼0
wijxi

� �

ð1Þ

The functions of the key components (axon, dendrite,

soma and synapse) in ANNs are summarised in Table 1.

The analogy between artificial neurons and biological

neurons holds that the interconnections of the signals

stand for the axons and dendrites, the summation and

threshold approximate the activation in the soma, and the

connection weights and memory represent the synapses.

Artificial neurons can be organised in any topological

architecture to form ANNs. A common architecture, the
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Fig. 1 Development of artificial neural networks8,10,12,15
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feed forward ANN27, is shown in Fig. 2c. In this network,

the information moves only in the forward direction. A

series of artificial neurons are integrated to form the layer

of input. Within the ANNs, the input signal is passed

through one or more hidden layers. At the end of this

structure, the output layer provides the results. Different

from the current von Neumann computer that performs

tasks by the pre-design of the programme, the ANN can

learn to run a task through a sequence of training with

examples. For example, one of the typical learning pro-

cesses is the supervised learning method by updating

weights with the backpropagation errors between known

target values and the output values28.

The most common unsupervised learning method is the

spike timing-dependent plasticity (STDP) algorithm29,

inspired from the spiking nature of BNNs. Recent neu-

rological research has shown that biological neurons

encode information in the timing of single spikes29.

Functionally, STDP constitutes a mechanism for imple-

menting a Hebbian learning rule30, allowing for the

learning process without supervision.

Laser-written electronic memristors for ANNs based on

electronics

The ANNs based on electronics were first demonstrated

with very large-scale integration (VLSI) systems24. The

electronic wires on the chips can be used as electronic

axons and dendrites. The combination of several tran-

sistors in VLSI are used to approximate electronic

synapses and somas. ANNs with a large amount of arti-

ficial neurons based on VLSI have been developed11.

However, the integrated level of such a kind of ANN is

still low owing to the complexity of the architecture.

Memristors, the fourth basic element in electronic circuits

predicted in 197131 and demonstrated in 200832, provide a

new path to demonstrate ANNs with a high integration of

electronic devices.

Memristors are passive two-terminal circuit elements,

usually with a metal/insulator/metal structure33 (Fig. 3a).

Mimicking a biological synapse, the resistance of a

memristor can be adjusted by tuning input amplitude of

the charge or flux. It has been demonstrated that the

synaptic functions can be implemented experimentally
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Fig. 2 Working principle of artificial neural networks. a A
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Table 1 Summary of the key components of artificial neural networks

Components Functions Photonic devices

Axon and dendrite Interconnection Free space12, waveguides13–15

Soma Summation and thresholding Photodetectors12–15, electric-optic modulators14, light sources (LED and laser)12, optical

amplifiers52, saturable absorbers52, optical bistable devices53

Synapse Weighting Hologram12, MZI15, micro-ring resonators14

Memory Electronic memories12–15, reversible optical memories54
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with nanoscale silicon-based memristors34. The learning

function has been demonstrated in a circuit composed of

memristor synapses and complementary metal-oxide

semiconductor neurons35. An artificial soma function

has been demonstrated with a neuristor built using two

nanoscale Mott memristors36. An ANN unsupervised

learning for pattern classification based on memristors

has recently been demonstrated recently37.

Nanophotonics offers a new solution to fabricate mem-

ristors by the laser reduction of graphene oxide. Graphene

has received significant attention owing to its superior

electronic and optical properties38. Direct laser writing

(DLW) with laser reduction can realise the simultaneous

direct growth and patterning of rGO. Various rGO elec-

tronic devices such as capacitors39, gas sensors40 and mul-

tifunctional devices41 have been demonstrated.

A memristor based on rGO has been experimentally

demonstrated. DLW is used to realise rGO fabrication for

use as the bottom electrode of the memristor on flexible

substrates (Fig. 3b). An insulating layer of 10 nm HfOx is

blanket deposited by thermal evaporation. The top elec-

trode is made by curable silver paste or using thermal

evaporation. The fabricated Ag/HfOx/rGO structure

exhibits stable switching up to 100 cycles42. Metal-free

memristors have been fabricated through the DLW pro-

cess with rGO/g-C3N4-NSs/rGO thin films43.

Introduction of ANNs based on photonics

Photons are an ideal information carrier because of

their specific properties, such as inherently massive par-

allelism, fast propagation speed and no side effects of

mutual interference. Optical signals can be multiplexed in

time44, space45, polarisation45,46, angular momentum47

and wavelength45,48 domains, and optical technologies

may overcome the problems inherent to electronics.

Thus, the research and development into optical inter-

connect technology has already led to the replacement of

copper connections in computer chips and data centres

by optical waveguides or fibres49, which can potentially

improve the performance of ANNs based on software

simulation and electronics. An ANN based on reservoir

computing50 has been demonstrated with temporal mul-

tiplexing in a single optical fibre. ANNs based on nano-

photonics offer a promising alternative approach with a

faster response and lower power consumption.

ANNs based on nanophotonics can be achieved by

providing key optoelectronic or optical components for

the functions of ANNs (Table 1). Nanophotonic tech-

nology has several advantages in making interconnections

with free space and waveguides, specifically with regard to

broad bandwidth, low-loss and low-crosstalk. Photonic

somas can be achieved either by optical–electrical and

electrical–optical signal transferring with photo-

detectors12,14,15, electro-optic modulators14 and light

sources (LED and laser)51 or by an all-optical process with

lasers51, optical amplifiers52, saturable absorbers52 and

optical bistable devices53. The weighting function can be

achieved by optical switches such as holograms12,

Mach–Zehnder interferometers (MZIs)15 and MRRs14.

The memory function to record the weights in a synapse

can be achieved by electronic memories or non-volatile

optical memories12,54.

ANNs based on holography in free space

In ANNs based on holography, the full parallelism of

light in free space can be used and additional function-

alities become available. These strengths have been

recognised for many years, and early implementations

utilised reconfigurable holograms for forming inter-

connections between optoelectronic artificial neurons12.

The architect of the ANNs based on holography with

optoelectronic artificial neurons is shown in Fig. 4a. The

light sources and photodetectors combine as optoelec-

tronic neurons. The input signal is generated by the

modulation of the light source. The holographic inter-

connection is achieved by optical diffraction with
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holographic gratings. Holography gratings can be pro-

duced by using spatial light modulators (SLMs)55 and the

photorefractive effect12. The detectors integrate the

optical signal and transfer it into an electronic signal. The

threshold function is achieved by processing the electro-

nic signal with electronic circuits. Although free-space
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optics provide the media for the highly integrated large

number of free-space interconnections and data com-

munication at the speed of light, the hologram provides

an approach for storing and implementing the weight

matrix data between fully connected neural layers.

Recently, a all-optical deep learning framework in the

terahertz region (0.4 THz) has been demonstrated as an

all-optical deep learning network, in which the ANN

consists of multiple layers of a hologram fabricated by 3D

additive printing56. The ANN is created by using several

layers of a diffractive surface, where each point on a given

layer represents an artificial neuron (Fig. 4b). The learning

process of such an ANN is based on a computer simu-

lation to design the phase modulation of each layer (Fig.

4c), which can be fabricated with a 3D printer and based

on plastic materials. The ANN cannot be tuned after the

fabrication process. Compared with previous ANNs based

on holography composed of optoelectronic neurons, this

kind of ANN is based on all passive elements.

The ANNs based on holography can be easily scaled up

using various fabrication techniques including electron

beam lithography and photolithography. ANNs based on

holography provide the potential for a large number of

artificial synapses and neurons owing to the high paralle-

lism in free space. If we assume that the artificial neurons in

two adjacent layers of an ANN are all arbitrary inter-

connected. The relationship between the density of artificial

neurons (Dn) and the density of artificial synapse (Ds) is:

Dn ¼
ffiffiffiffiffi

Ds
2
p

ð2Þ

The maximum number of artificial synapse via holo-

graphy is equal to the maximum number of gratings that

can be supported by the hologram12. From the sampling

theorem, the number of sinusoids or gratings that can be

recorded in the medium is equal to the number of sam-

ples. Considering the pixel size of a hologram is δ in all

dimension (δ > λ), the maximum number of independent

artificial synapse is V/δ3 in a volumetric hologram or A/δ2

in a thin hologram, where V and A are the volume and

area of the hologram, respectively. As shown in Fig. 4d, for

a commercial SLM with a pixel size of 4 µm, the areal

density of synapses (Dsa) is 6.25 × 104/mm2. A recent

advancement in holography induced by laser has

demonstrated a hologram with a pixel size of 0.55 µm46,

which corresponds to a synapse density of 3.31 × 106/

mm2. As this hologram is induced by the tight focusing of

laser light, it has potential to achieve a volume synapse

density (Dsv) of 6.01 × 109/mm3 if a volume hologram can

be induced by laser in three dimensions. The corre-

sponding maximum areal neuron density (Dna) and

volume neuron density (Dna) can be calculated by Eq. (2),

as shown in Fig. 4d. A recent advancement in the SPIN

technique, with a feature size of 9 nm23 and optical signal

multiplexing45,47, can further improve the density of

synapses and neurons.

Apart from plastic materials and SLMs, ANNs based on

holography can be achieved with different materials (Table

1). The 3D two-photon polymerisation of polymers23 and

chalcogenide glass57 can be used for ANNs based on

holography. Holography imaging has been demonstrated by

DLW with the photoreduction of graphene oxide46. A

hologram with a thickness of 60 nm using a topological

insulator material has been demonstrated by DLW58. ANNs

based on the materials above are write-once only owing to

the non-reversible photoinduced effect, requiring learning

with pre-design structures in computers.

Reversible holograms have been demonstrated with pho-

torefractive polymers59 and photorefractive polymers syn-

thetised with nanoparticles60. A hologram based on an

ultrathin layer of phase change material Ge2Sb2Te5 (GST)
61

is also demonstrated. These holograms can be erased and

written by the DLW technique owing to the thermally

reconfigurability of GST. These reversible holography effects

open a new avenue for ANNs with a closed-loop learning

capability, which allows direct updates of the weighting in

ANNs after receiving feedback from the outputs.

ANNs based on photonic circuits on a chip

Integrated photonic circuits on a chip are an ideal

platform for ANNs with a high compactness and high

stability. As the photonic axons and dendrites, the low-

loss waveguides transmit the optical signal. The devel-

opment of integrated lasers, photodetectors and optical

non-linear devices can serve as photonic somas. The

weights can be achieved in the optical domain by using

reconfigurable optical switches or splitters, which utilise

the temperature dependence of the refractive index (the

thermo-optics effect) to realise reconfigurable function-

ality by heating the devices in most of current devices.

Interest in integrated lasers with neuron-like-spiking

behaviour has flourished over the past several years51.

Biological neurons use spikes to send information. Recently,

neurological research has discovered that information in

biological neurons are encoded in the temporal domain of

single spikes29. Lasers operating in the excitable regime are

perfectly dynamic candidates but are ~ 8 orders-of magni-

tude faster. However, most experimental work has focused

on isolated neurons or single chain of neurons (Fig. 5a).

Isolated artificial synapses on photonic circuits have

been demonstrated by integrating a phase change mem-

ory (PCM) on an optical waveguide62 (Fig. 5b). As shown

in Fig. 5b, the synapse is based on a tapered waveguide

with PCM regions on top. The synaptic weight can be

controlled by changing the number of optical pulses sent

through the waveguide.

In parallel with the work on isolated artificial neurons

and synapses, recent research has also investigated the
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capability of photonic circuits to mimic neural networks,

focusing on the networks with connectivity to multiple

neurons and layers. An ANN scheme based on silicon

waveguide interconnections has been demonstrated by

using a reconfigurable MZI to control the weights

between the interconnections of neurons (Fig. 5c), which

are laser and photodetectors15. Recently, a “broadcast-

and-weight” scheme has been demonstrated to use

wavelength-division multiplexing (WDM) to support a

large number of reconfigurable interconnections enabled

by micro-ring resonators (MRRs) on a silicon photonic

chip14. A 294-fold acceleration against a conventional von

Neumann computer is predicted.

The size of the reconfigurable MRRs or MZIs is from 625

to 20,000 µm2, resulting in a synapse density of 50–1600/

mm2. The neuron density is at the same level and is based

on the size of the integrated lasers and photodetectors on

the chip. As mentioned in the previous paragraphs, current

ANNs utilise the thermo-optics effect in reconfigurable

MZIs or MRRs to realise artificial synapse functionality by

heating the devices, resulting in an additional power con-

sumption of 10mW per synapse to maintain the reconfi-

gurable MRRs or MZIs. However, the weights can be set by

integrated on-chip non-volatile memory, such as a PCM,

which requires no power to maintain.

Future perspectives

The ANNs based on photonics have a significantly

higher rate and lower computation energy compared to

those of their electronic counter parts. ANNs based on

holography can achieve an ultrahigh density of synapses

owing to the high parallel processing in free space.

Nonetheless, current ANNs based on photonic circuits

cannot compete with the density of electronics. However,

novel implementations of ANNs based on nanoscale

optical data storage63, photonic crystal nanocavity64 and

plasmonic nanocavity65 technologies may become

important to the future scaling down of the artificial

neuron and synapses on a chip to the diffraction limit

scale (~ 1 µm) or even beyond the diffraction limit. Three-

dimensional photonic integration enabled by DLW could

enable ANNs with larger number of artificial neurons and

synapses by adding another spatial degree of freedom.

Furthermore, the feeding of input signals through tem-

poral multiplexing would be able to realise ANNs with

larger number of artificial neurons and synapses

effectively.

Apart from the demonstration of single lasers or laser

chains, the coding of ANNs based on photonics has been

demonstrated using analogue optical signals. ANNs based

on photonics can be coded with the spiking method to

further improve the signal robustness and enable unsu-

pervised learning. Current ANNs based on photonics are

derived from simplified artificial neuron models. The

performance of ANNs can be further improved with a

better understanding of the working mechanism of BNNs.

Direct ANNs enabled by nanophotonics
One of the fundamental interests in building ANNs lies

in the possibility of unravelling the myth in the
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interactions between neurons. Building well-defined

ANNs based on biological neurons with controlled

topology (micro-platforms)66 can be used for studying

neural activities such as axonal path finding and synap-

togenesis, drug screening and targeting, and recreation

computational units based on living cells67. Furthermore,

transplantable ANNs68 consisting of biological neural

tissue might offer the capability to treat several diseases

that interrupt the connectome in neural systems, includ-

ing Parkinson’s disease, traumatic brain injury, stroke and

brain tumour excision69. A crucial unit for the successful

building of ANNs based on intricate 3D bio-tissue is the

manufacturing and adoption of well-designed 3D scaf-

folds. Successful scaffolds in tissue engineering applica-

tions rely critically on the physical and chemical

characteristics of microstructures. Nanophotonics is the

key enabling technology for the building of 3D scaffolds.

In this chapter, we summarise different approaches and

materials that are available to build ANNs enabled by

nanophotonics.

Fabrication of direct ANNs in two dimensions

The mechanical and geometrical features of the sur-

rounding structural matrix can have an impact on the

structure and functions of the neurons70. To create well-

defined direct ANNs with a desired topology, micro-

platforms that emulate the structural features of BNNs

should be created on a biologically compatible substrate,

as shown in Fig. 6a–c. Different lithographic techniques

have been utilised to create 2D microstructures on bio-

logically compatible materials.

Soft lithography can be used to build small hutches to

trap neurons on the surface of electrodes71. Similar

structures such as troughs and wells can be etched into a

silicon wafer. A triangular network with next-nearest-

neighbour connections can be manufactured with the

same method72. The biocompatible materials for ANN

fabrication are polydimethylsiloxane (PDMS) parylene73

and hydrogels74. With structures like through-holes,

neuron cells can be immobilised and connected and using

micro tunnels, which can be encoded into a layer of

2D Lithography
a

Mask

2D structures

Substrate

UV laser

3D additive printing

d

3D direct laser writing
g

Biocompatible 2d structures

b

Biocompatible sponge-like inks

e

Photosensitive polymers/hydrogels

h

2D artificial neural networks

c

mm-scale 3D artificial neural networks

f

µm-scale 3D artificial neural networks

i

Fig. 6 Recent developments in building artificial neuronal networks based on biological neurons with controlled topologies at different

scales using different techniques a–c Steps in the creation of 2D ANNs using 2D fabrication technologies72 (photolithography, electron beam

lithography, and micro-imprinting). d–f Millimetre-scale 3D ANNs created by 3D additive printing79. g–i The creation of micrometre scale 3D ANNs

using 3D direct laser writing87
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PDMS or hydrogel for neurite outgrowth nanodiamond

(ND) layering75 has also been demonstrated to be an

excellent growth substrate for functional neuronal net-

works with the aid of photolithography methods.

After the fabrication of a scaffold, the ANN with desired

topology can be achieved by cell placement, which is

usually the combination of cell delivery and localisation.

Cell placement is usually feasible using glass micro-

pipettes76, microfluidics, laser guidance77 and micro-

manipulation systems78 for pick-and-place positioning.

Fabrication of direct ANNs in two dimensions

The current methods for building direct ANNs based

on biological neurons are largely limited to two-

dimensional (2D) substrates. Such 2D neural cultures

cannot achieve the 3D spatial extensions of axons and

dendrites. However, BNNs in the human brain possess

extraordinary connectivity and complexity from the

millimetre-scale down to a scale of several nanometres in

3D, which include the microscale of single neurons and

synapses (nm–μm, synapse-by-synapse), the mesoscale of

neuronal populations and their interconnecting circuitry

(region-by-region), and the macroscale of anatomically

distinct brain regions and pathways. Consequently, the

development of accurate ANNs that mimic the brain

remains a significant obstacle to our understanding of the

functioning of the brain at different levels.

Recent developments in using 3D additive printing

technique demonstrated it great capability potential in

building large-scale 3D ANNs (Fig. 6d–f). Hydrogel-made

3D brain-like structures consisting of primary neurons

have been created with a peptide-modified biopolymer79.

This technique has been used for the creation of intricate

functionalized 3D brain-like modular formed from cor-

tical tissue, maintained alive for months in vitro. 3D

architectures that compartmentalising biological tissues

have also been achieved by 3D additive printing using silk-

collagen protein scaffolds80 and hydrogels81, which have

then been used to build 3D brain-like tissue seeded with

primary cortical neurons.

One clear disadvantage of these 3D ANNs is that the

connections between neurons are randomly patterned.

The fabrication resolution of traditional 3D additive

printing limits its capability of creating 3D ANNs with

micrometre- or nanometre scale resolution.

Towards building direct ANNs based on biological neurons

with nanoscale resolution in three dimensions

One potential solution towards the building of 3D and

nanometre scale ANNs lies in the recent development of

3D DLW. 3D DLW, such as single-beam two-photon

DLW and two-beam SPIN23,82, has been widely studied

and utilised to produce 3D nanophotonic structures82,

holograms46, microfluidics83, biomedical implants84,85, 3D

scaffolds for cell cultures and tissue engineering86,87 and

biomimetic neuron structures88–91.

Owing to an intrinsic ability to produce 3D structures

with a wide range of photosensitive materials, single-beam

two-photon DLW has been used to fabricate scaffolds for

ANNs with biological cells to study the growth of neurons

and guidance92, as shown in Fig. 6g–i. Low-profile barrier

structures have been successfully fabricated using bovine

serum albumin (BSA) and laminin to guide the interactions

of brain cortical neurons and neuroblastoma–glioma hybrid

cells (NG108-15) in neuron cell culture93,94. Using hya-

luronic acid hydrogels, guidance pathways of biotinylated

BSA functionalized with IKVAV peptides for rat dorsal root

ganglion cells and rat hippocampal neural progenitor cells

have also been created95. 2PP have also been used to create

scaffold using synthetic biodegradable polymers. 3D struc-

tures have been fabricated using polylactide-based photo-

polymer with the shape of linear guidewires, with which the

directed growth behaviour of NG108-15 and PC12 neuro-

blastoma cells have been studied96.

Future perspectives

Intense ongoing research activity is focused on the use

of two-photon DLW in the fabrication of 3D scaffolds for

neuron growth and neuron tissue regeneration. Two-

photon DLW is the only technique able to provide the 3D

fabrication capability and high spatial resolution that are

necessary to create a scaffold mimicking the structural

features of BNNs. This technique may offer the means to

produce scaffolds that are bioactive at micrometre scale

and even at nanometre scale.

Modification of the physical and chemical character-

istics of 3D nano/microstructures with submicron reso-

lution will act as a crucial key in the study of BNNs.

Because of the unique electrical and optical properties

assembled on these platforms, they also hold the potential

to augment brain functions. Creation of 3D nano/micro-

structures-based biosensors is faced with many chal-

lenges, but the aim is to achieve single electrical

connections in brain neuron circuits and neural networks

of interest. Eventually, nano/microstructures manifest the

interactive platform between nanotechnology and neu-

roscience, making them promising medium in neuron

technology for diagnosing and treatment of brain diseases

in neurology.

Signal detection of direct ANNs enabled by
nanophotonics
Unlike indirect ANNs based on electronics and photo-

nics with input and output connections for signal detec-

tions, the spiking of biological neurons are the signals of

direct ANNs. The detection of such weak electric signals

at the nanoscale is of critical importance to studying

neural activities. Novel devices that are ultrasensitive to
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weak electric fields, such as micro-electrode arrays and

patch clamps, have been introduced to study neural

activities. However, these devices have a low spatial

resolution and are invasive, which might cause damage to

the biological neurons. Nanophotonics, especially nano-

sensing enabled by nitrogen-vacancy (NV−) centres in

bulk diamonds and NDs, has opened the possibility of the

far-field detection of neural activities with nanoscale

resolution.

Sensing of the action potential

The electrical potential associated with the passage of a

spiking impulse along neurons is called action potential

(AP). APs play a central role in the communication

between individual neurons. The signals between neurons

propagate along axons via APs. Different techniques can

be implemented for the measurement of APs. Electro-

physiology is a recording method with a patch-clamping

configuration that remains the gold standard for the

measurement of individual APs. The technique has an

excellent temporal resolution and good signal-to-noise

ratio, but the spatial resolution is limited to ~ 10 µm.

Nanophotonic techniques to measure APs offer many

advantages, but they typically require high power, which

can cause photodamage to neurons. In addition, voltage-

sensitive fluorescent proteins must be genetically

expressed, which may alter the neuronal functions. Owing

to their optical and magnetic properties, NV− centres can

be applied to study neural networks and the firing of

neural cells to study brain activity97.

NV− centres have attracted significant attention in the

recent years owing to their outstanding optical and

magnetic properties98,99. The ground state of an NV−

centre is a triplet state with six unpaired electron spins,

each one with an associated magnetic moment; the spin

sublevels are ms= ±1,0100. The energy sublevels ms= ±1

in the ground state can be perturbed with an external

magnetic field. This paramagnetism of the ground state

can be mathematically described by the spin Hamiltonian

of the system100:

H ¼ DgsS
2
z þ Egs S2x � S2y

� �

þ ggsμB
!

� S
!

ð3Þ

where Dgs is the ground state zero-field splitting, ~S is the

spin operator vector, Egs is the ground state strain-

induced splitting coefficient, ggs the ground state g-factor

and µ is the Bohr magneton101. In brief, the first term

corresponds to the energy gap between the two sublevels

in the ground state, the second term represents the energy

shift owing to the strain from the lattice, and the last term

is the Zeeman effect102,103.

When NDs are stimulated by a microwave (mw) field, it

is possible to redistribute the population of ground state

electrons in NV− centres. In particular, by switching on

an mw field at the zero-field splitting frequency, D=

2.87 GHz, there is a redistribution of the electrons from

the most populated sublevel, ms= 0, to the less-populated

sublevel, ms= ±1.

Under an excitation beam at wavelength 532 nm, an

NV− centre is polarised in its ground state ms= 0. The

application of an mw field at the zero-field splitting fre-

quency causes an increase in the population of the ms=

±1 spin sublevels. This leads to an overall decrease in the

fluorescence because of the non-radiative decay via the

intermediate metastable state. The observed photo-

luminescence decrease is called the optically detected

magnetic resonance (ODMR) signal. It is also possible to

apply a magnetic field along the z axis that degenerates

the energy sublevels ms= ±1.

In case of the weak-magnetic field regime, the magnetic

field is calculated with the following104:

BNV ¼
ω2 � ω1

2ggsμ
ð4Þ

Under this circumstance, the recorded ODMR signal

shows two dips owing to the redistribution of the elec-

trons in the sublevels ms=−1 and ms=+1. The

separation between the recorded ODMR dips increases

with the strength of the applied magnetic field.

In fact, APs are time-varying electrical fields, which lead

to time-varying magnetic fields. The main principle

behind sensing APs with NV− centres is the detection of

time-varying magnetic fields generated by APs via ODMR

signals. The measurement of the AP via magnetic field

sensing confers important advantages: it is non-invasive,

label-free and able to detect neuronal activity through

intervening tissue and whole organisms.

In the first work of applying NV− centres to measure

the axon transmembrane potential, the magnetic field

generated by a single axon potential is modelled, magnetic

field generated by a single axon potential is modelled and

the magnetic field has been generated by a microwire on

the surface of a diamond substrate, which simulates the

AP of a morphologically reconstructed hippocampal CA1

pyramidal neuron. The detection system is composed of a

commercial grade single crystal ultra-pure diamond sub-

strate with a layer NV− defect centres with a standoff of

100 nm. The detection system is able to image planar

neuron dynamics non-invasively with temporal resolution

at millisecond and spatial resolution at micron spatial

resolution (10 µmTHz−1/2) within wide-field view105.

NV− centres in bulk diamonds have been implemented to

measure the APs of a giant axon in an invertebrate,

Myxicola infundibulum97.

The bipolar azimuthal magnetic field associated with an

AP is depicted in Fig. 7a, in the inset is the energy level of

the NV− centres. A light beam at a wavelength of 532 nm

is applied to the sensing NV− centre layer through the
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diamond at a sufficiently shallow angle so that the light

reflects off the top diamond surface and therefore does

not irradiate the living sample (Fig. 7b)97. The magnetic

field from the AP measured via electrophysiology can be

mathematically expressed as97:

ϕinðtÞ : BðtÞ ¼

Z

sdϕindt ð5Þ

The measured AP voltage and the calculated magnetic

field are illustrated in Fig. 7c–e. The measurements with

NV− centres are consistent with the prediction97.

With NV− centres, it is also possible to measure the AP

propagation direction at a single point97. The results lay

the groundwork for the real time, non-invasive 3D mag-

netic mapping of functional neuronal networks, ultimately

with a circuit-scale (~ 1 cm) field-of-view.

Labelling and tracking of neuronal differentiation with NDs

An understanding of biological processes involves the

tracking of several cells to study their differentiation and

development. Owing to their photostability, their

robustness against photobleaching and their biocompat-

ibility, NDs are ideal candidates for long-term cell track-

ing106. A study has been reported on the tracking of

neuron cells derived from a model of embryonal carci-

noma stem cells with fluorescent NDs107. The NDs are

detected with a confocal microscope (Fig. 7f). No effect on

the morphological development of the cells is recorded

nor do the NDs induce apoptosis during the neuronal

differentiation (Fig. 7g). Therefore, the implementation of

fluorescent NDs to track neural cell development could

provide potential therapeutics for neural diseases107.

Future perspectives

Studies on the detection of APs by measuring the

ODMR signal with NV− centres in bulk diamonds have

been reported97. There are several technical challenges

with this technique. First, the magnetic field sensitivity

needs to be improved to enable AP measurement from

individual mammalian neurons97. Second, single-point

detection needs to be developed for the 2D and 3D

mapping of APs in neuronal networks. Third, the high-

resolution imaging of AP magnetic fields is also required.

NDs can provide a new solution to the three challenges

listed above. NDs has a wide range of applications in the

life sciences in the life sciences compared with bulk dia-

monds108. Currently, NV− centres in NDs have been

applied to study the formation and patterning of neural

networks and to label and track the neuron cells75,107.

First, a higher density of NV− centres can yield a sensi-

tivity improvement. NDs provide a substantially higher

density of NV− centres than does bulk diamond. Some

types of NDs contain ~ 1000 NV− centres in one ND with

a diameter of 5 nm. Second, NDs enable 3D magnetic

imaging. The magnetic imaging based on diamond layers

can only achieve 2D imaging because the neuron net-

works can only be fixed on the surface of the diamond

layers. However, NDs can be labelled everywhere inside

the neuron networks, which makes it possible to obtain

3D magnetic images. Third, a higher spatial resolution can

be achieved with NDs. Smaller NDs in biomedical ima-

ging are highly required, and the blinking phenomenon is

more prevalent when reducing the size of a ND is

reduced109–111. Super-resolution imaging based on

blinking fluorescence would allow the nanometric

reconstruction of synapse connections by labelling the

neuron cells with 5 nm oxide NDs109,111.

The employment of the ODMR signal to interpret APs

via magnetic field measurements could lay new ground-

work for the development of nanoscale biomarkers for

both the super-resolution optical imaging and magnetic

sensing of ANNs.

Conclusions
In the present review, we have surveyed the recent

advancements in nanophotonic technology for indirect

and direct ANNs. Holography and integrated photonic

circuits have shown potential for achieving indirect

ANNs. To date, the integration density of functional

devices in ANNs based on photonic circuits remains

limited. Three-dimensional photonic integration enabled

by DLW could be a solution to the development of

indirect ANNs with a high bandwidth and low-power

consumption. DLW can be used for the direct fabrication

of ANNs in three dimensions. In addition, photonic

sensing techniques can be used to study the neural

activities in direct ANNs based on biological neurons.

(see figure on previous page)

Fig. 7 Experimental overview of the measurement of action potential (AP) with NV centres97 and detection and location of nanodiamonds

(NDs) in ECS cells107. a A schematic of the bipolar azimuthal magnetic field associated with a giant axon. Inset: the energy-level diagram of an NV−

centre. b A schematic of the microscope implemented for the magnetic measurements. c Measured AP voltage with the electrophysiology

measurement. d Calculated magnetic field. e Measured magnetic field with NV− centres. f ECS cells treated with NDs. In red is the fluorescence

intensity of NDs excited with light at a wavelength of 580 nm. The emission is collected in the wavelength range of 600–700 nm. In blue is the

nucleus of the cell, and in yellow, the SSEA-1. g Differentiated neural cells. Fluorescent NDs are observed in the cytoplasm of undifferentiated ECS and

differentiated cells
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Further developments in nanofabrication and super-

resolution optical sensing techniques are essential to

achieve fabrication and detection capabilities at the scale

of the ANN nanofeatures.
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