
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998 987

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas,Member, IEEE,and Dimitrios I. Fotiadis

Abstract—We present a method to solve initial and boundary
value problems using artificial neural networks. A trial solution
of the differential equation is written as a sum of two parts. The
first part satisfies the initial/boundary conditions and contains
no adjustable parameters. The second part is constructed so as
not to affect the initial/boundary conditions. This part involves
a feedforward neural network containing adjustable parameters
(the weights). Hence by construction the initial/boundary con-
ditions are satisfied and the network is trained to satisfy the
differential equation. The applicability of this approach ranges
from single ordinary differential equations (ODE’s), to systems of
coupled ODE’s and also to partial differential equations (PDE’s).
In this article, we illustrate the method by solving a variety of
model problems and present comparisons with solutions obtained
using the Galekrkin finite element method for several cases of
partial differential equations. With the advent of neuroprocessors
and digital signal processors the method becomes particularly
interesting due to the expected essential gains in the execution
speed.

Index Terms—Collocation method, finite elements, neural net-
works, neuroprocessors, ordinary differential equations, partial
differential equations.

I. INTRODUCTION

M ANY methods have been developed so far for solving
differential equations. Some of them produce a solution

in the form of an array that contains the value of the solution
at a selected group of points. Others use basis-functions to
represent the solution in analytic form and transform the
original problem usually to a system of algebraic equations.
Most of the previous work in solving differential equations
using neural networks is restricted to the case of solving
the systems of algebraic equations which result from the
discretization of the domain. The solution of a linear system of
equations is mapped onto the architecture of a Hopfield neural
network. The minimization of the network’s energy function
provides the solution to the system of equations [2], [6], [5].

Another approach to the solution of ordinary differential
equations is based on the fact that certain types of splines,
for instance -splines, can be derived by the superposition
of piecewise linear activation functions [3], [4]. The solution
of a differential equation using -splines as basis functions,
can be obtained by solving a system of linear or nonlinear
equations in order to determine the coefficients of splines.
Such a solution form is mapped directly on the architecture

Manuscript received December 1, 1996; revised May 21, 1998.
The authors are with the Department of Computer Science, University of

Ioannina, GR 45110 Ioannina, Greece.
Publisher Item Identifier S 1045-9227(98)05911-6.

of a feedforward neural network by replacing each spline
with the sum of piecewise linear activation functions that
correspond to the hidden units. This method considers local
basis-functions and in general requires many splines (and
consequently network parameters) in order to yield accurate
solutions. Furthermore, it is not easy to extend these techniques
to multidimensional domains.

In this article we view the problem from a different angle.
We present a method for solving both ordinary differential
equations (ODE’s) and partial differential equations (PDE’s)
(defined onorthogonal boxdomains) that relies on the function
approximation capabilities of feedforward neural networks
and results in the construction of a solution written in a
differentiable, closed analytic form. This form employs a
feedforward neural network as the basic approximation ele-
ment, whose parameters (weights and biases) are adjusted to
minimize an appropriate error function. To train the network
we employ optimization techniques, which in turn require
the computation of the gradient of the error with respect to
the network parameters. In the proposed approach the model
function is expressed as the sum of two terms: the first
term satisfies the initial/boundary conditions and contains no
adjustable parameters. The second term involves a feedforward
neural network to be trained so as to satisfy the differential
equation. Since it is known that a multilayer perceptron with
one hidden layer can approximate any function to arbitrary
accuracy, it is reasonable to consider this type of network
architecture as a candidate model for treating differential
equations.

The employment of a neural architecture adds many attrac-
tive features to the method:

• The solution via ANN’s is adifferentiable, closed analytic
form easily used in any subsequent calculation. Most
other techniques offer a discrete solution (for exam-
ple predictor-corrector, or Runge–Kutta methods) or a
solution of limited differentiability (for example finite
elements).

• The employment of neural networks provides a solution
with very good generalization properties. Comparative
results with the finite element method presented in this
work illustrate this point clearly.

• The required number of model parameters is far less
than any other solution technique and, therefore, compact
solution models are obtained with very low demand on
memory space.

• The method is general and can be applied to ODE’s,
systems of ODE’s and to PDE’s defined on orthogonal

1045–9227/98$10.00 1998 IEEE

988 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

box boundaries. Moreover, work is in progress to treat
the case of irregular (arbitrarily shaped) boundaries.

• The method can be realized in hardware, using neuro-
processors, and hence offer the opportunity to tackle in
real-time difficult differential equation problems arising
in many engineering applications.

• The method can also be efficiently implemented on par-
allel architectures.

In the next section we describe the general formulation
of the proposed approach and derive formulas for computing
the gradient of the error function. Section III illustrates some
classes of problems where the proposed method can be ap-
plied, and describes the appropriate form of the trial solution.
Section IV presents numerical examples from the application
of the technique to several test problems, and provides details
concerning the implementation of the method and the accuracy
of the obtained solution. We also make a comparison of our
results with those obtained by the finite element method for
the examined PDE problems. Finally, Section VI contains
conclusions and directions for future research.

II. DESCRIPTION OF THEMETHOD

The proposed approach will be illustrated in terms of the
following general differential equation definition:

(1)

subject to certain boundary conditions (BC’s) (for instance
Dirichlet and/or Neumann), where

denotes the definition domain and is
the solution to be computed.

To obtain a solution to the above differential equation, the
collocation method is adopted [1] which assumes a discretiza-
tion of the domain and its boundary into a set points
and , respectively. The problem is then transformed into the
following system of equations:

(2)

subject to the constraints imposed by the BC’s.
If denotes a trial solution with adjustable parame-

ters , the problem is transformed to

(3)

subject to the constraints imposed by the BC’s.
In the proposed approach, the trial solution employs a

feedforward neural network and the parameterscorrespond
to the weights and biases of the neural architecture. We choose
a form for the trial function such that by construction
satisfies the BC’s. This is achieved by writing it as a sum of
two terms

(4)

where is a single-output feedforward neural network
with parameters and input units fed with the input vector.

The term contains no adjustable parameters and satis-
fies the boundary conditions. The second termis constructed

so as not to contribute to the BC’s, since must also
satisfy them. This term employs a neural network whose
weights and biases are to be adjusted in order to deal with
the minimization problem. Note at this point that the problem
has been reduced from the original constrained optimization
problem to an unconstrained one (which is much easier to
handle) due to the choice of the form of the trial solution that
satisfies by construction the BC’s.

In the next section we present a systematic way to construct
the trial solution, i.e., the functional forms of both and .
We treat several common cases that one frequently encounters
in various scientific fields. As indicated by our experiments,
the approach based on the above formulation is very effective
and provides in reasonable computing time accurate solutions
with impressive generalization (interpolation) properties.

A. Gradient Computation

The efficient minimization of (3) can be considered as a
procedure of training the neural network, where the error
corresponding to each input vectoris the value which
has to become zero. Computation of this error value involves
not only the network output (as is the case in conventional
training) but also the derivatives of the output with respect to
any of its inputs. Therefore, in computing the gradient of the
error with respect to the network weights, we need to compute
not only the gradient of the network but also the gradient of
the network derivatives with respect to its inputs.

Consider a multilayer perceptron with input units, one
hidden layer with sigmoid units and a linear output unit.
The extension to the case of more than one hidden layers
can be obtained accordingly. For a given input vector

the output of the network is
where denotes the weight from
the input unit to the hidden unit denotes the weight
from the hidden unit to the output, denotes the bias of
hidden unit , and is the sigmoid transfer function. It is
straightforward to show that

(5)

where and denotes the th-order derivative of
the sigmoid. Moreover, it is readily verifiable that

(6)

where

(7)

and
Equation (6) indicates that the derivative of the network

with respect to any of its inputs is equivalent to a feedforward
neural network with one hidden layer, having the same
values for the weights and thresholds and with each
weight being replaced with . Moreover, the transfer

LAGARIS et al.: ANN’S FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 989

function of each hidden unit is replaced with theth-order
derivative of the sigmoid.

Therefore, the gradient of with respect to the parameters
of the original network can be easily obtained as

(8)

(9)

(10)

Once the derivative of the error with respect to the network
parameters has been defined it is then straightforward to
employ almost any minimization technique. For example it
is possible to use either the steepest descent (i.e., the back-
propagation algorithm or any of its variants), or the conjugate
gradient method or other techniques proposed in the literature.
In our experiments we have employed the quasi-Newton BFGS
method [9] (independently proposed at 1970 by Broydenet al.)
that is quadratically convergent and has demonstrated excellent
performance. It must also be noted, that the derivatives of each
network (or gradient network) with respect to the parameters
for a given grid point may be obtained simultaneously in the
case where parallel hardware is available. Moreover, in the
case of backpropagation, the on-line or batch mode of weight
updates may be employed.

III. I LLUSTRATION OF THE METHOD

A. Solution of Single ODE’s and Systems of Coupled ODE’s

To illustrate the method, we consider thefirst-order ODE

(11)

with and the IC .
A trial solution is written as

(12)

where is the output of a feedforward neural network
with one input unit for and weights . Note that
satisfies the IC by construction. The error quantity to be
minimized is given by

(13)

where the ’s are points in [0, 1]. Since
it is straightforward to compute the

gradient of the error with respect to the parametersusing
(5)–(10). The same holds for all subsequent model problems.

The same procedure can be applied to thesecond-order
ODE

(14)

For theinitial value problem: and
, the trial solution can be cast as

(15)

For thetwo point DirichletBC: and
the trial solution is written as

(16)

In the above two cases of second-order ODE’s the error
function to be minimized is given by the following equation:

(17)

For systems of first-order ODE’s

(18)

with we consider one neural
network for each trial solution which is
written as

(19)

and we minimize the following error quantity:

(20)

B. Solution of Single PDE’s

We treat here two–dimensional problems only. However, it
is straightforward to extend the method to more dimensions.
For example, consider thePoisson equation

(21)

with Dirichlet BC:
and

. The trial solution is written as

(22)

where is chosen so as to satisfy the BC, namely

(23)

Formixed boundary conditionsof the form
and

(i.e., Dirichlet on part of the boundary andNeumann
elsewhere), the trial solution is written as

(24)

990 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 1. Exact solutions of ODE problems 1 and 2.

and is again chosen so as to satisfy the BC’s:

(25)

Note that the second term of the trial solution does not affect
the boundary conditions since it vanishes at the part of the
boundary where Dirichlet BC’s are imposed and its gradient
component normal to the boundary vanishes at the part of the
boundary where Neumann BC’s are imposed.

In all the above PDE problems the error to be minimized
is given by

(26)
where are points in [0, 1] [0, 1].

IV. EXAMPLES

In this section we report on the solution of a number of
model problems. In all cases we used a multilayer perceptron
having one hidden layer with ten hidden units and one lin-
ear output unit. The sigmoid activation of each hidden unit
is . For each test problem the exact
analytic solution was known in advance. Therefore
we test the accuracy of the obtained solutions by computing
the deviation . To perform the
error minimization we employed the Merlin/MCL 3.0 [7],
[8] optimization package. From the several algorithms that

are implemented therein, the quasi-NewtonBFGS[9] method
seemed to perform better in these problems and hence we used
it in all of our experiments. A simple criterion for the gradient
norm was used for termination. In order to illustrate the
characteristics of the solutions provided by the neural method,
we provide figures displaying the corresponding deviation

both at the few points (training points) that were
used for training and at many other points (test points) of
the domain of each equation. The latter kind of figures are of
major importance since they show the interpolation capabilities
of the neural solutions which seem to be superior compared
to other solutions. Moreover, in the case of ODE’s we also
consider points outside the training interval in order to obtain
an estimate of the extrapolation performance of the obtained
solution.

A. ODE’s and Systems of ODE’s

1) Problem 1:

(27)

with and . The analytic solution is
and is displayed in Fig. 1(a).

According to (12) the trial neural form of the solution is taken
to be . The network was trained using
a grid of ten equidistant points in [0, 1]. Fig. 2 displays the
deviation from the exact solution corresponding at the
grid points (diamonds) and the deviation at many other points

LAGARIS et al.: ANN’S FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 991

Fig. 2. Problem 1: Accuracy of the computed solution.

Fig. 3. Problem 2: Accuracy of the computed solution.

in [0, 1] as well as outside that interval (dashed line). It is
clear that the solution is of high accuracy, although training
was performed using a small number of points. Moreover, the
extrapolation error remains low for points near the equation
domain.

2) Problem 2:

(28)

992 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 4. Problem 3 with initial conditions: Accuracy of the computed solution.

with and . The analytic solution is
and is presented in Fig. 1(b). The

trial neural form is according to (12). As
before we used a grid of ten equidistant points in [0, 2] to
perform the training. In analogy with the previous case, Fig. 3
displays the deviation at the grid points (diamonds) and
at many other points inside and outside the training interval
(dashed line).

3) Problem 3: Given the differential equation

(29)

consider theinitial value problem: and
with . The exact solution is

and the trial neural form is
[from (15)].

Consider also theboundary valueproblem:
and . The exact solution is
the same as above, but the appropriate trial neural form is

[from (16)].
Again, as before, we used a grid of ten equidistant points

and the plots of the deviation from the exact solution are
displayed at Figs. 4 and 5 for the initial value and boundary
value problem, respectively. The interpretation of the figures
is the same as in the previous cases.

From all the above cases it is clear that the method can
handle effectively all kinds of ODE’s and provide analytic
solutions that retain the accuracy throughout the whole domain
and not only at the training points.

4) Problem 4: Consider the system of two coupled first-
order ODE’s

(30)

(31)

with and and . The analytic
solutions are and and are
displayed at Fig. 6(a) and (b), respectively. Following (19) the
trial neural solutions are and

where the networks and have the
same architecture as in the previous cases. Results concerning
the accuracy of the obtained solutions at the grid points
(diamonds and crosses) and at many other points (dashed line)
are presented in Fig. 7(a) and (b) for the functions and

, respectively.

B. PDE’s

We consider boundary value problems with Dirichlet and
Neumann BC’s. All subsequent problems were defined on
the domain [0, 1] [0, 1] and in order to perform training
we consider a mesh of 100 points obtained by considering
ten equidistant points of the domain [0, 1] of each variable.
In analogy with the previous cases the neural architecture
was considered to be a MLP with two inputs (accepting the
coordinates and of each point), ten sigmoid hidden units,
and one linear output unit.

1) Problem 5:

(32)

LAGARIS et al.: ANN’S FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 993

Fig. 5. Problem 3 with boundary conditions: Accuracy of the computed solution.

Fig. 6. Exact solutions of the system of coupled ODE’s (problem 4).

with and the Dirichlet BC’s:

and

The analytic solution is

and is displayed in Fig. 8. Using (22) the trial neural form must

be written

and is obtained by direct substitution in the general

994 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 7. Problem 4: Accuracy of the computed solutions.

Fig. 8. Exact solution of PDE problem 5.

form given by (23)

Fig. 9 presents the deviation of the obtained
solution at the 100 grid points that were selected for training
while Fig. 10 displays the deviation at 900 other points of the

equation domain. It clear that the solution is very accurate and
the accuracy remains high at all points of the domain.

2) Problem 6:

(33)

with and with mixed BC’s:
and .

The analytic solution is and is
presented in Fig. 11. The trial neural form is specified

LAGARIS et al.: ANN’S FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 995

Fig. 9. Problem 5: Accuracy of the computed solution at the training points.

Fig. 10. Problem 5: Accuracy of the computed solution at the test points.

according to (24)

(34)

where is obtained by direct substitution in (25). The
accuracy of the neural solution is depicted in Figs. 12 and 13
for training and test points, respectively.

3) Problem 7: This is an example of anonlinearPDE

(35)

with the same mixed BC’s as in the previous problem. The
exact solution is again and the param-
eterization of the trial neural form is the same as in problem

6. No plots of the accuracy are presented since they are almost
the same with those of problem 6.

C. Comparison with Finite Elements

The above PDE problems were also solved with the finite
element method which has been widely acknowledged as one
of the most effective approaches to the solution of differential
equations [10]. The used Galerkin finite element method
(GFEM) calls for the weighted residuals to vanish at each
nodal position

(36)

where is given by (1) and is the Jacobian of the isopara-
metric mapping, the coordinates of the computational
domain and the coordinates of the physical domain.
This requirement along with the imposed boundary conditions
constitute a set of nonlinear algebraic equations .
The inner products involved in the finite element formulation

996 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 11. Exact solution of PDE problems 6 and 7.

Fig. 12. Problem 6: Accuracy of the computed solution at the training points.

are computed using the nine-node Gaussian quadrature. The
system of equations is solved for the nodal coefficients of
the basis function expansion using the Newton’s method
forming the Jacobian of the system explicitly (for both linear
and nonlinear differential operators). The initial guess
is chosen at random. For linear problems convergence is
achieved in one iteration and for nonlinear problems in one
to five iterations.

All PDE problems 5–7 are solved on a rectangular domain
of 18 18 elements resulting in a linear system with 1369
unknowns. This is in contrast with the neural approach which
assumes a small number of parameters (30 for ODE’s and 40
for PDE’s), but requires more sophisticated minimization algo-
rithms. As the number of employed elements increases the fi-
nite element approach requires an excessive number of param-
eters. This fact may lead to higher memory requirements par-
ticularly in the case of three or higher dimensional problems.

In the finite element case, interpolation is performed using
a rectangular grid of 23 23 equidistant points (test points).
It must be stressed that in the finite element case the solution
is not expressed in closed analytical form as in the neural
case, but additional interpolation computations are required
in order to find the value of the solution at an arbitrary
point in the domain. Figs. 14 and 15 display the deviation

for PDE problem 6 at the training
set and the interpolation set of points, respectively. Table I
reports the maximum deviation corresponding to the neural
and to the finite element method at the training and at the
interpolation set of points for PDE problems 5–7. It is obvious
that at the training points the solution of the finite element
method is very satisfactory and in some cases it is better
than that obtained using the neural method. It is also clear
that the accuracy at the interpolation points is orders of
magnitude lower as compared to that at the training points.

LAGARIS et al.: ANN’S FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 997

Fig. 13. Problem 6.: Accuracy of the computed solution at the test points.

Fig. 14. Problem 7: Accuracy of the FEM solution at the training points.

On the contrary, the neural method provides solutions of
excellent interpolation accuracy, since, as Table I indicates,
the deviations at the training and at the interpolation points
are comparable. It must also be stressed that the accuracy
of the finite element method decreases as the grid becomes
coarser, and that the neural approach considers a mesh of 10

10 points while in the finite element case a 1818 mesh
was employed.

Fig. 16 provides a plot of the logarithm of the interpolation
error with respect to the number of parameters for the neural
and the FEM case, respectively for the nonlinear problem 7.
The number of parameters in the-axis is normalized, and
in the neural case the actual number of parameters is 20,
while in the FEM case is 225. It is clear that the neural
method is superior and it is also obvious that the accuracy
of the neural method can be controlled by increasing the

number of hidden units. In what concerns execution time,
the plots of Fig. 17 suggest that in the neural approach time
increases linearly with the (normalized) number of parameters,
while in the FEM case, time scales almost quadratically.
It must be noted that our experiments have been carried
out on a Sun Ultra Sparc workstation with 512Mb of main
memory.

For a linear differential equation, accuracy control can be
obtained using the following iterative improvement procedure
[11]. Consider the differential equation (with Dirich-
let, Neumann, or mixed boundary conditions), whereis a
linear differential operator. If is a first aproximation to the
solution of the differential equation it satisfies exactly

(37)

where is the residual function. Then if one writes that

998 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 15. Problem 7: Accuracy of the FEM solution at the test points.

Fig. 16. Plot of logarithm of the maximum convergence error at the interpolation points as a function of the normalized number of parameters for
the neural and the FEM approach.

TABLE I
MAXIMUM DEVIATION FROM THE EXACT SOLUTION

FOR THE NEURAL AND THE FINITE-ELEMENT METHODS

where is a correction to , the original
problem can be rewritten (in the case where is

linear) as

(38)

with obeying null boundary conditions, since satisfies
the boundary conditions exactly. The above process may be
repeated more than once to obtain more accurate solutions to
the problem.

According to our modeling technique for the case of Dirich-
let BC’s is modeled as:

LAGARIS et al.: ANN’S FOR SOLVING ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 999

Fig. 17. Plot of the time to converge as a function of the normalized number of parameters for the neural and the FEM approach.

while and all successive corrections as ,
The improved approximate solution is now

. For MLP’s with one
hidden layer and a linear output, the sum of two (or more)
of them can be written as a single network of the same type
and having a number of hidden nodes equal to the sum of the
hidden nodes of the parent networks.

As stated in the introduction, one of the attractive features
of our approach is the possibility of effective parallel im-
plementation. In the proposed approach the employement of
neural networks makes the method attractive to parallelization.
It is well-known that in neural network training the following
types of parallelism have been identified: 1) Data parallelism,
where the data set (grid points) is split into subsets each
one assigned to a different processor and therefore the error
values corresponding to different grid points can be computed
simultaneously. 2) Spatial parallelism, i.e., the outputs of the
sigmoid units in the hidden layer are computed in parallel.
This kind of parallelism is better exploited in the case where
hardware implementations are used (neuroprocessors) and the
speedup obtained is proportional to the number of hidden units.
It is also possible to implement a combination of the above
kinds of parallelism.

In the case of finite elements parallelism arises mainly
in the solution of the linear system of equations. There are
also approaches that exploit parallelism in the tasks of mesh
generation and finite element construction. Parallelism in finite
elements can be exploited mainly at a coarse grain level using
general purpose multiprocessor architectures [12]. In general
it is much easier to exploit parallelism when using the neural
method, since neural networks constitute models with intrinsic

parallelization capabilities and various kinds of specialized
harware have been developed to exploit this property.

V. CONCLUSIONS AND FUTURE RESEARCH

A method has been presented for solving differential equa-
tions defined on orthogonal box boundaries that relies upon
the function approximation capabilities of feedforward neural
networks and provides accurate and differentiable solutions
in a closed analytic form. The success of the method can be
attributed to two factors. The first is the employment of neural
networks that are excellent function approximators and the
second is the form of the trial solution that satisfies by con-
struction the BC’s and therefore the constrained optimization
problem becomes a substantially simpler unconstrained one.

Unlike most previous approaches, the method is general and
can be applied to both ODE’s and PDE’s by constructing
the appropriate form of the trial solution. As indicated by
our experiments the method exhibits excellent generalization
performance since the deviation at the test points was in no
case greater than the maximum deviation at the training points.
This is in contrast with the finite element method where the
deviation at the testing points was significantly greater than
the deviation at the training points.

We note that the neural architecture employed was fixed in
all the experiments and we did not attempt to find optimal
configurations or to consider architectures containing more
than one hidden layers. A study of the effect of the neural
architecture on the quality of the solution constitutes one of
our research objectives.

1000 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Another issue that needs to be examined is related with the
sampling of the grid points that are used for training. In the
above experiments the grid was constructed in a simple way by
considering equidistant points. It is expected that better results
will be obtained in the case where the grid density will vary
during training according to the corresponding error values.
This means that it is possible to consider more training points
at regions where the error values are higher.

It must also be stressed that the proposed method can easily
be used for dealing with domains of higher dimensions (three
or more). As the dimensionality increases, the number of
training points becomes large. This fact becomes a serious
problem for methods that consider local functions around
each grid point since the required number of parameters
becomes excessively large and, therefore, both memory and
computation time requirements become extremely high. In the
case of the neural method, the number of training parameters
remains almost fixed as the problem dimensionality increases.
The only effect on the computation time stems from the
fact that each training pass requires the presentation of more
points, i.e., the training set becomes larger. This problem can
be tackled by considering either parallel implementations, or
implementations on a neuroprocessor that can be embedded
in a conventional machine and provide considerably better
execution times. Such an implementation on neural hardware
is one of our near future objectives, since it will permit the
treatment of many difficult real-world problems.

Another important direction of research concerns differ-
ential equation problems defined on irregular boundaries.
Such problems are very interesting and arise in many real
engineering applications. Work is in progress to treat this kind
of problems using a trial solution form employing a multilayer
perceptron and a radial basis function network, where the latter
is responsible for the satisfaction of the boundary conditions,
while the former is used for minimizing the training error at
the grid ponts. Initial experimental results are very promising.

Moreover, we have already applied our approach to other
types of problems of similar nature, as for example eigenvalue
problems for differential operators. More specifically, we
have considered eigenvalue problems arising in the field of
quantum mechanics (solution of the Schrondinger equation)
and obtained very accurate results [13].

REFERENCES

[1] D. Kincaid and W. Cheney,Numerical Analysis. Monterey, CA:
Brooks/Cole, 1991.

[2] H. Lee and I. Kang, “Neural algorithms for solving differential equa-
tions,” J. Comput. Phys., vol. 91, pp. 110–117, 1990.

[3] A. J. Meade, Jr., and A. A. Fernandez, “The numerical solution of linear
ordinary differential equations by feedforward neural networks,”Math.
Comput. Modeling, vol. 19, no. 12, pp. 1–25, 1994.

[4] , “Solution of nonlinear ordinary differential equations by feed-
forward neural networks,”Math. Comput. Modeling, vol. 20, no. 9, pp.
19–44, 1994.

[5] L. Wang and J. M. Mendel, “Structured trainable networks for matrix
algebra,”IEEE Int. Joint Conf. Neural Networks, vol. 2, pp. 125–128,
1990.

[6] R. Yentis and M. E. Zaghoul, “VLSI implementation of locally con-
nected neural network for solving partial differential equations,”IEEE
Trans. Circuits Syst. I, vol. 43, no. 8, pp. 687–690, 1996.

[7] D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “Merlin
3.0, A multidimensional optimization environment,”Comput. Phys.
Commun., vol. 109, pp. 250–275, 1998.

[8] , “The Merlin control language for strategic optimization,”Com-
put. Phys. Commun., vol. 109, pp. 250–275, 1998.

[9] R. Fletcher,Practical Methods of Optimization, 2nd ed. New York:
Wiley, 1987.

[10] O. C. Zienkiewicz and R. L. Taylor,The Finite Element Method, 4th
ed., vol. 1. New York: McGraw-Hill, 1989.

[11] W. L. Briggs, A Multigrid Tutorial. Philadelphia, PA: SIAM, 1987.
[12] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel

finite element computation of 3-D flows,”IEEE Comput., vol. 26, no.
10, pp. 27–36, 1993.

[13] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural network
methods in quantum mechanics,”Comput. Phys. Commun., vol. 104,
pp. 1–14, 1997.

Isaac Elias Lagaris received the B.Sc. degree in
physics from the University of Ioannina, Greece, in
1975. He received the M.Sc. degree in 1977 and
the Ph.D. degree in 1981, both from the Physics
Department of the University of Illinois, Urbana-
Champaign.

He was a Lecturer in the Physics Department of
the University of Ioannina for a number of years and
since 1994 he has been an Associate Professor in the
Department of Computer Science. His research in-
terests include modeling and simulation of classical

and quantum systems, high-performance computing, optimization, and neural
networks.

Aristidis Likas (S’91–M’96) was born in Athens,
Greece, in 1968. He received the Diploma degree
in electrical engineering and the Ph.D. degree in
electrical and computer engineering, both from the
National Technical University of Athens.

Since 1996, he has been with the Department of
Computer Science, University of Ioannina, Greece,
where he is currently a Lecturer. His research inter-
ests include neural networks, optimization, pattern
recognition, and parallel processing.

Dimitrios I. Fotiadis received the Diploma degree
in chemical engineering from the National Technical
University of Athens, Greece, in 1985 and the Ph.D.
degree in chemical engineering from the University
of Minnesota, Duluth, in 1990.

He is currently a Lecturer at the Department of
Computer Science at the University of Ioannina,
Greece. He worked As Visiting Scientist in the
Department of Chemical Engineering at the Massa-
chusetts Institute of Technology, Cambridge, and as
Visiting Researcher in RWTH, Aachen, Germany.

He also worked as Research Assistant at the Minnesota Supercomputer
Institute and as Managing Director of Egnatia Epirus Foundation, Greece.
He has many years of industrial and research experience in high-performance
computing, computational medicine, and biomedical engineering. His current
research interests include computational medicine and biomedical technology
with emphasis on methods and instruments used for diagnosis and therapeutic
reasons of various diseases.

