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Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likasgember, IEEE,and Dimitrios |. Fotiadis

Abstract—We present a method to solve initial and boundary of a feedforward neural network by replacing each spline
value problems using artificial neural networks. A trial solution  with the sum of piecewise linear activation functions that
of the differential equation is written as a sum of two parts. The correspond to the hidden units. This method considers local

first part satisfies the initial/boundary conditions and contains basis-functi di | . i d
no adjustable parameters. The second part is constructed so as asis-functions and in general requires many splines (an

not to affect the initial/lboundary conditions. This part involves consequently network parameters) in order to yield accurate
a feedforward neural network containing adjustable parameters solutions. Furthermore, it is not easy to extend these techniques
(the weights). Hence by construction the initial/boundary con- tg multidimensional domains.

ditions are satisfied and the network is trained to satisfy the In this article we view the problem from a different angle.

differential equation. The applicability of this approach ranges . . . .
from single ordinary differential equations (ODE'’s), to systems of We present a method for solving both ordinary differential

coupled ODE'’s and also to partial differential equations (PDE’s). €quations (ODE’s) and partial differential equations (PDE'’s)
In this article, we illustrate the method by solving a variety of (defined ororthogonal boxdomains) that relies on the function
model problems and present comparisons with solutions obtained gpproximation capabilities of feedforward neural networks
using the Galekrkin finite element method for several cases of oy reguits in the construction of a solution written in a
partial differential equations. With the advent of neuroprocessors . . . .
and digital signal processors the method becomes particularly differentiable, closed analytic form. This form employs a
interesting due to the expected essential gains in the executionfeedforward neural network as the basic approximation ele-
speed. ment, whose parameters (weights and biases) are adjusted to
Index Terms—Collocation method, finite elements, neural net- Minimize an appropriate error function. To train the network
works, neuroprocessors, ordinary differential equations, partial We employ optimization techniques, which in turn require
differential equations. the computation of the gradient of the error with respect to
the network parameters. In the proposed approach the model
function is expressed as the sum of two terms: the first
_ term satisfies the initial/boundary conditions and contains no
M ANY methods have been developed so far for solvinggiystable parameters. The second term involves a feedforward
_ differential equations. Some of them produce a solutiqkyral network to be trained so as to satisfy the differential
in the form of an array that contains the value of the solutiqfyyation. Since it is known that a multilayer perceptron with
at a selected group of pomts. O.thers use basis-functions {9 hidden layer can approximate any function to arbitrary
represent the solution in analytic form and transform thg.cyracy, it is reasonable to consider this type of network
original problem usually to a system of algebraic equationgchitecture as a candidate model for treating differential
Most of the previous work in solving differential eq“ation%quations.
using neural networks is restricted to the case of solvingTne employment of a neural architecture adds many attrac-
the systems of algebraic equations which result from thge features to the method:
discretization of the domain. The solution of a linear system of |
equations is mapped onto the architecture of a Hopfield neural
network. The minimization of the network’s energy function
provides the solution to the system of equations [2], [6], [5].
Another approach to the solution of ordinary differential
equations is based on the fact that certain types of splines,
for instanceB;-splines, can be derived by the superposition
of piecewise linear activation functions [3], [4]. The solution
of a differential equation usings; -splines as basis functions,
can be obtained by solving a system of linear or nonlinear
equations in order to determine the coefficients of splines.
Such a solution form is mapped directly on the architecture

I. INTRODUCTION

The solution via ANN's is aifferentiable, closed analytic
form easily used in any subsequent calculation. Most
other techniques offer a discrete solution (for exam-
ple predictor-corrector, or Runge—Kutta methods) or a
solution of limited differentiability (for example finite
elements).

The employment of neural networks provides a solution
with very good generalization properties. Comparative
results with the finite element method presented in this
work illustrate this point clearly.

The required number of model parameters is far less
than any other solution technique and, therefore, compact
solution models are obtained with very low demand on
Manuscript received December 1, 1996; revised May 21, 1998. memory space.
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box boundaries. Moreover, work is in progress to treab as not to contribute to the BC’s, sindg(Z) must also
the case of irregular (arbitrarily shaped) boundaries. satisfy them. This term employs a neural network whose
« The method can be realized in hardware, using neuneights and biases are to be adjusted in order to deal with
processors, and hence offer the opportunity to tackle ihe minimization problem. Note at this point that the problem
real-time difficult differential equation problems arisinghas been reduced from the original constrained optimization

in many engineering applications. problem to an unconstrained one (which is much easier to
« The method can also be efficiently implemented on panandle) due to the choice of the form of the trial solution that
allel architectures. satisfies by construction the BC's.

In the next section we describe the general formulation In the next section we present a systematic way to construct
of the proposed approach and derive formulas for computifiég trial solution, i.e., the functional forms of both and F".
the gradient of the error function. Section Ill illustrates somé/e treat several common cases that one frequently encounters
classes of problems where the proposed method can be ipvarious scientific fields. As indicated by our experiments,
plied, and describes the appropriate form of the trial solutiofle approach based on the above formulation is very effective
Section IV presents numerical examples from the applicati@fd provides in reasonable computing time accurate solutions
of the technique to several test problems, and provides det&i§h impressive generalization (interpolation) properties.
concerning the implementation of the method and the accuracy
of the obtained solution. We also make a comparison of oAr Gradient Computation
results with those obtained by the finite element method for o efficient minimization of (3) can be considered as a

the examined PDE problems. Finally, Section VI containgqcedure of training the neural network, where the error
conclusions and directions for future research. corresponding to each input vectdris the valueG(;) which
has to become zero. Computation of this error value involves

Il. DESCRIPTION OF THEMETHOD not only the network output (as is the case in conventional
The proposed approach will be illustrated in terms of tHéaining.) bgt also the derivatiyes of thei output with respect to
following general differential equation definition: any of its inputs. Therefore, in computing the gradient of the

error with respect to the network weights, we need to compute

G(Z, (), VI(Z), V?U(T)) = 0, £eD (1) not only the gradient of the network but also the gradient of
. . - . the network derivatives with respect to its inputs.
sgpject to certain boundary condltLons (BC'’s) (for instance Consider a multilayer perceptron with input units, one
Dirichlet and/or Neumann), where' — (@12 2n) € higden layer withH sigmoid units and a linear output unit.
R, D < R" denotes the definition domain ar@l(z) is The extension to the case of more than one hidden layers
the SOIU“Q” o be c;omputed. . . . can be obtained accordingly. For a given input vectos

To obtain a solution to the above differential equation, th&1 ..-,ay) the output of the network i&V = N2 | ;o (z)
qollocation meth(_)d is ado.pted [1] which. assumes a Qisc[etiwﬁére 771 l S wiis + g, wiy denotes thezv:vtaigzht f;om
tion of the domainD and its boundan into a set pointsD the input unit{y‘ to the hidden unit, v; denotes the weight

andﬁ,_ respectively. The pr_oblem is then transformed into thf?om the hidden unit to the outputu; denotes the bias of
following system of equations: hidden uniti, ando(2) is the sigmoid transfer function. It is

Q(T;, U(T), VU(F,), V2U(T;)) = 0, vi; e D (2) straightforward to show that

subject to the constraints imposed by the BC's. O*N EH: vk o
=1

If ¥,(7,p) denotes a trial solution with adjustable parame- ok iy i (5)
ters p, the problem is transformed to

H;_i.n Z (G(fiv\Pt(fivmvV\Pt(fivmvv2qjt(fi7m))2 (3)
fieﬁ

whereo; = o(z;) ando*) denotes théth-order derivative of
the sigmoid. Moreover, it is readily verifiable that

subject to the constraints imposed by the BC's. oh e o N=S" 4P (6)

In the proposed approach, the trial soluti®m employs a Oz Ozy? Oy = ‘
feedforward neural network and the paramefgirrespond
to the weights and biases of the neural architecture. We cho
a form for the trial functionl,(#) such that by construction n
satisfies the BC'’s. This is achieved by writing it as a sum of P=] wi (7)
two terms k=1

Yhere

V() = A@@) + P(& N (& 7)) (4 andA =2, A -

Equation (6) indicates that the derivative of the network
where N(Z, p) is a single-output feedforward neural networkvith respect to any of its inputs is equivalent to a feedforward
with parameterg andn input units fed with the input vecta. neural networkV,(z) with one hidden layer, having the same

The termA(%) contains no adjustable parameters and satigalues for the weightsy;; and thresholds:; and with each
fies the boundary conditions. The second téfnis constructed weight v; being replaced withy; P;. Moreover, the transfer
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function of each hidden unit is replaced with thgh-order For theinitial value problem:W(0) = A and(d/dz)¥(0) =
derivative of the sigmoid. A’, the trial solution can be cast as
Therefore, the gradient a¥, with respect to the parameters

— / 2
of the original network can be easily obtained as Vi(r) = A+ Alw+2"N(z,p). (15)
IN. For thetwo point DirichletBC: ¥(0) = A and V(1) = B,
g =P A 8 . . . .

By, 1 (8) the trial solution is written as
?;V — o Pro D ©) Uy (z) = A(1 — 2) + Bz + (1 — )N (x, ). (16)

U

In the above two cases of second-order ODE'’s the error

y g :xjviBO_Z(A+l) +vi>\jw?j 1 ( H W (A) function to be minimized is given by the following equation:

Wij k=1,k+;

aoy  #1= 3 (TG s )

Once the derivative of the error with respect to the network 17)
parameters has been defined it is then straightforward to-,, systems of¢ first-order ODE's
employ almost any minimization technique. For example it

is possible to use either the steepest descent (i.e., the back- a¥; = fi(z, Uy, Uy, Ug) (18)
propagation algorithm or any of its variants), or the conjugate dx T

gradient method or other techniques proposed in the literatusgth w,;(0) = A;,(i = 1,---,K) we consider one neural
In our experiments we have employed the quasi-Newton BFG8twork for each trial solutionv,, (i = 1,---, K) which is

method [9] (independently proposed at 1970 by Broyetesd)  written as
that is quadratically convergent and has demonstrated excellent .
performance. It must also be noted, that the derivatives of each Ui (2) = 4 + aNi(e, pi) (19)

network (or gradient network) with respect to the parametesgd we minimize the following error quantity:
for a given grid point may be obtained simultaneously in the )

case where parallel hardware is available. Moreover, in tl%e{ AWy, (x;)
case of backpropagation, the on-line or batch mode of wei Pl = Z Z { = Ji(wi, Wy, Wy, W) o

updates may be employed. (20)

[ll. I LLUSTRATION OF THE METHOD B. Solution of Single PDE'’s

We treat here two—dimensional problems only. However, it
A. Solution of Single ODE's and Systems of Coupled ODE'; s straightforward to extend the method to more dimensions.

To illustrate the method, we consider thiest-order ODE  For example, consider theoisson equation
d¥(x) 9%V (z,y) 82\11( y)

= [ w) (12) o o =@ (21)

with = € [0,1] and the IC¥(0) = A. x € [0,1],y € [0,1] with Dirichlet BC: ¥(0,y) =

A trial solution is written as fo(y), ¥(1,y) = fi(y), ¥(z,0) = go(x) and ¥(z,1) =
W,(x) = A+ oN(z. 7) (12) g1(x). The trial solution is written as

Uz, y) = Alz,y) + (1 — 2)y(1 — y)N(z, 9, 22
where N(z, ) is the output of a feedforward neural network (@) (9) +( W —yN@y.p (22
with one input unit forz and weightsg. Note thatW,(z) Wwhere A(z,y) is chosen so as to satisfy the BC, namely
satisfies the IC by construction. The error quantity to be

/ aranty Alz,y) = (1= 2)fo(y) +2f1()

minimized is given by
. + (1= y){g0(x) = [(1 = )g0(0) + g0 (1)]}
Bl = Z{NW7 @&mm} (13) +y{on(@) - [(1 - 2)91(0) + 2 (D]} (23)

Formixed boundary conditiorsf the form¥(0, ) = fo(y),
where thez;’s are points in [0, 1]. Sincel¥,(z)/dx = Y(l,y) = fi(y), ¥(x,0) = go(z), and (0¥ (z,1)/dy) =
N(z,p) + xdN(z,p)/dz, it is straightforward to compute the g1 () (i.e., Dirichlet on part of the boundary anNeumann
gradient of the error with respect to the parameténssing €lsewhere), the trial solution is written as
(5)—(10). The same holds for all subsequent model problems.

The same procedure can be applied to seeond-order Y+(x,¥) = B(z,y) +z(1 — 2)y | N(z,y,p)

ODE N(a, 1, §)

dU(z) dv - N 1,p) - =57
a2 f<x,\lf, %) (14) 4 (22)
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4.5

3.5

g
(4]

Solution

Fig. 1. Exact solutions of ODE problems 1 and 2.

and B(z,y) is again chosen so as to satisfy the BC's: are implemented therein, the quasi-NewBRGS[9] method
seemed to perform better in these problems and hence we used
B(z.y) =(1—z)foly) + xf1(y) + go(x) it in all of our experiments. A simple criterion for the gradient
— [(1 = 2)g0(0) + zgo(1)] norm was used for termination. In order to illustrate the

characteristics of the solutions provided by the neural method,
we provide figures displaying the corresponding deviation

Note that the second term of the trial solution does not aﬁe%giéxz‘o?(ﬁginﬁ thaen;e\;\‘/t ?:;?lts g[Lae;rr]m?)ir?tzm(ttz)stth?)tin\?/s?r%f
the boundary conditions since it vanishes at the part of tﬁ] 9 y P P

e
boundary where Dirichlet BC’'s are imposed and its gradien

+y{gi(e) = [(1 = 2)g2(0) + zg1 (1)]}.  (25)

e domain of each equation. The latter kind of figures are of

. major importance since they show the interpolation capabilities
component normal to the boundary vanishes at the part of t . ’ .

) . of the neural solutions which seem to be superior compared
boundary where Neumann BC’s are imposed.

N té’ other solutions. Moreover, in the case of ODE’s we also
In all the above PDE problems the error to be minimize . . . L : .
consider points outside the training interval in order to obtain

is given by an estimate of the extrapolation performance of the obtained
solution.
P (xi,yi) | VU (xi, i) :
(26) A. ODE’s and Systems of ODE’s
where (z;,y;) are points in [0, 1]x [0, 1]. 1) Problem 1:
IV. EXAMPLES dv 1+ 322 5 o 14327
] ) . — TtV U=z"4+2z2+4+zx T3
In this section we report on the solution of a number of dx l+z+x 1+z+z

model problems. In all cases we used a multilayer perceptron (27)
having one hidden layer with ten hidden units and one lin-

ear output unit. The sigmoid activation of each hidden uniith W(0) = 1 and x € [0,1]. The analytic solution is

is o(z) = 1/(1 + ¢®). For each test problem the exact,(z) = ¢=*/2/(1+xz+3)+2? and is displayed in Fig. 1(a).
analytic solution¥,(#) was known in advance. ThereforeAccording to (12) the trial neural form of the solution is taken
we test the accuracy of the obtained solutions by computitg be V,(x) = 1 + N («, 7). The network was trained using
the deviation AU(Z) = W (¥) — V,(Z). To perform the a grid of ten equidistant points in [0, 1]. Fig. 2 displays the
error minimization we employed the Merlin/MCL 3.0 [7],deviationA¥(z) from the exact solution corresponding at the
[8] optimization package. From the several algorithms thgtid points (diamonds) and the deviation at many other points
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Fig. 2. Problem 1: Accuracy of the computed solution.
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Fig. 3. Problem 2: Accuracy of the computed solution.
in [0, 1] as well as outside that interval (dashed line). It i2) Problem 2
clear that the solution is of high accuracy, although training
was performed using a small number of points. Moreover, the
extrapolation error remains low for points near the equation
domain.

dv

da:+_

-

U = ¢ /%) cos(x)
5

(28)

991
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Fig. 4. Problem 3 with initial conditions: Accuracy of the computed solution.
4) Problem 4: Consider the system of two coupled first-

with ¥(0) = 0 andz € [0,2]. The analytic solution is
U, (z) = ¢~ */3sin(z) and is presented in Fig. 1(b). Theorder ODE’s
trial neural form is¥,(x) = «N(x, ) according to (12). As JT
before we used a grid of ten equidistant points in [0, 2] to d—l = cos(z) + U2 + Uy — (14 2% +sin’(z))  (30)
X
3\
oy =2z — (1 + 2?) sin(z) + ¥, Uy (31)

perform the training. In analogy with the previous case, Fig. 3
displays the deviatioh U () at the grid points (diamonds) and
at many other points inside and outside the training interval dx

with = € [0,3] and ¥;(0) = 0 and ¥3(0) = 1. The analytic
solutions arel,; (z) = sin(z) and ¥,o(x) = 1 + 22 and are
displayed at Fig. 6(a) and (b), respectively. Following (19) the
trial neural solutions ar&,, (z) = Ny (z,p1) and ¥, (z) =
1 4+ zNs(x,p>) where the networksV; and N, have the

same architecture as in the previous cases. Results concerning

(29)
the accuracy of the obtained solutions at the grid points
(diamonds and crosses) and at many other points (dashed line)

are presented in Fig. 7(a) and (b) for the functidhs and

(dashed line).
3) Problem 3: Given the differential equation

U1 du 1 5
W 3%—’—\1/:—36(”:/0)(308.1'
consider theinitial value problem: ¥(0) = 0 and (d/dx)
¥(0) = 1 with = € [0,2]. The exact solution isk(z) = v ivel
e~(@/9 sin(x) and the trial neural form ish,(z) = o + = t2r SoPECUVEY.
22N (x,p) [from (15)].
Consider also theboundary valueproblem: w(0) = 0 B. PDE’s
and ¥(1) = sin(1)e=(/% 2 € [0,1]. The exact solution is We consider boundary value problems with Dirichlet and
the same as above, but the appropriate trial neural formNeumann BC'’s. All subsequent problems were defined on
Uy(z) = wsin(1)e” /3 4 (1 — 2)N(z, ) [from (16)]. the domain [0, 1]x [0, 1] and in order to perform training
Again, as before, we used a grid of ten equidistant poinig consider a mesh of 100 points obtained by considering
and the plots of the deviation from the exact solution aten equidistant points of the domain [0, 1] of each variable.

displayed at Figs. 4 and 5 for the initial value and boundang analogy with the previous cases the neural architecture
value problem, respectively. The interpretation of the figuregas considered to be a MLP with two inputs (accepting the
coordinates: andy of each point), ten sigmoid hidden units,

is the same as in the previous cases.
From all the above cases it is clear that the method cand one linear output unit.
handle effectively all kinds of ODE’s and provide analytic 1) Problem 5:
V2U(z,y) = e " (z — 2+ 1> + 6y) (32)

solutions that retain the accuracy throughout the whole domain
and not only at the training points.
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Fig. 5. Problem 3 with boundary conditions: Accuracy of the computed solution.
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Fig. 6. Exact solutions of the system of coupled ODE'’s (problem 4).

with =, € [0,1] and the Dirichlet BC's:¥(0,y) = %3,
U(l,y) = (1 +%*e ! and ¥(z,0) = ze %, ¥(z,1) =
e~*(z + 1). The analytic solution iV, (x,y) = e~ (z + ¥*)

and is displayed in Fig. 8. Using (22) the trial neural form must

be written ¥, (x,y) = A(z,y) + (1 — 2)y(1 — y)N(z,y,p)
and A(z,y) is obtained by direct substitution in the general
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Fig. 7. Problem 4: Accuracy of the computed solutions.

Solution
1 —

0.5+

Fig. 8. Exact solution of PDE problem 5.

form given by (23) equation domain. It clear that the solution is very accurate and
5 - the accuracy remains high at all points of the domain.
Alz,y) =1 -z)y” +2(l+y)e 2) Problem 6:
_ -z _ -1
+ (1 =y)z(e <) V3U(z,y) = (2 — 72y?) sin(rx) (33)

+y[(l+2)e™™ — (1 —z —2ze™ )]
with z,y € [0,1] and with mixed BC's: ¥(0,y) =
Fig. 9 presents the deviatiodhV(x,y) of the obtained 0,V(1,y) =0 and ¥(x,0) = 0,(8/3y)¥(x, 1) = 2sin(nz).
solution at the 100 grid points that were selected for trainifithe analytic solution isW,(x,y) = #*sin(rx) and is
while Fig. 10 displays the deviation at 900 other points of theresented in Fig. 11. The trial neural form is specified
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Fig. 9. Problem 5: Accuracy of the computed solution at the training points.
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Fig. 10. Problem 5: Accuracy of the computed solution at the test points.

according to (24) 6. No plots of the accuracy are presented since they are almost
the same with those of problem 6.

\Ijt(xvy) :B(xvy) + .7}(1 - l’)y N(x,y,ﬁ)
C. Comparison with Finite Elements

The above PDE problems were also solved with the finite
element method which has been widely acknowledged as one

(34) of the most effective approaches to the solution of differential

where B(x, y) is obtained by direct substitution in (25). Theeq:ig'\jlms I[Ilof]' '[::e us_egt (galerkén f'n':e elemﬁntt metr?od
accuracy of the neural solution is depicted in Figs. 12 and ﬁd | ) Ci.s /or e weighted residualg; to vanish at eac
for training and test points, respectively. nhodal position:

ON(z,1,p)

_N(%l;@_ ay

3) Problem 7: This is an example of aonlinear PDE R — / Gla,y) det(J) dé dn = 0 (36)
o D
2 —
V(@ y) + Y(w,y) Ay (z,y) whered is given by (1) andJ is the Jacobian of the isopara-
= sin(rx)(2 — 7%y? 4 2¢° sin(nz)) (35) metric mapping,¢,n the coordinates of the computational

domain andz,y the coordinates of the physical domain.
with the same mixed BC'’s as in the previous problem. ThHghis requirement along with the imposed boundary conditions
exact solution is agaif, (z,y) = y?sin(zz) and the param- constitute a set of nonlinear algebraic equati¢fs = 0).
eterization of the trial neural form is the same as in probleithe inner products involved in the finite element formulation
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Fig. 11. Exact solution of PDE problems 6 and 7.
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Fig. 12. Problem 6: Accuracy of the computed solution at the training points.

are computed using the nine-node Gaussian quadrature. Thim the finite element case, interpolation is performed using
system of equations is solved for the nodal coefficients afrectangular grid of 2% 23 equidistant points (test points).
the basis function expansion using the Newton’s methddmust be stressed that in the finite element case the solution
forming the Jacobian of the system explicitly (for both lineais not expressed in closed analytical form as in the neural
and nonlinear differential operators). The initial gueﬁ@) case, but additional interpolation computations are required
is chosen at random. For linear problems convergenceirsorder to find the value of the solution at an arbitrary
achieved in one iteration and for nonlinear problems in ommint in the domain. Figs. 14 and 15 display the deviation
to five iterations. |W(z,y) — VY,(z,y)| for PDE problem 6 at the training
All PDE problems 5-7 are solved on a rectangular domaget and the interpolation set of points, respectively. Table |
of 18 x 18 elements resulting in a linear system with 136€eports the maximum deviation corresponding to the neural
unknowns. This is in contrast with the neural approach whi@nd to the finite element method at the training and at the
assumes a small number of parameters (30 for ODE’s andid@rpolation set of points for PDE problems 5—7. It is obvious
for PDE’s), but requires more sophisticated minimization algthat at the training points the solution of the finite element
rithms. As the number of employed elements increases therfiethod is very satisfactory and in some cases it is better
nite element approach requires an excessive number of pardman that obtained using the neural method. It is also clear
eters. This fact may lead to higher memory requirements p#inat the accuracy at the interpolation points is orders of
ticularly in the case of three or higher dimensional problemmagnitude lower as compared to that at the training points.
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Fig. 13. Problem 6.: Accuracy of the computed solution at the test points.
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Fig. 14. Problem 7: Accuracy of the FEM solution at the training points.

On the contrary, the neural method provides solutions nfimber of hidden units. In what concerns execution time,
excellent interpolation accuracy, since, as Table | indicatdébe plots of Fig. 17 suggest that in the neural approach time
the deviations at the training and at the interpolation poiniacreases linearly with the (normalized) number of parameters,
are comparable. It must also be stressed that the accuréyle in the FEM case, time scales almost quadratically.
of the finite element method decreases as the grid becorHe&ust be noted that our experiments have been carried
coarser, and that the neural approach considers a mesh of4h0n @ Sun Ultra Sparc workstation with 512Mb of main
x 10 points while in the finite element case a 2818 mesh memory. ) i ,
was employed. qu a Ime_ar dlfferentla! eq_uatlo_n, accuracy control can be
Fig. 16 provides a plot of the logarithm of the interpolatiofbtamed using the following iterative improvement procedure

ith t o th ber of ters for th 11]. Consider the differential equati@g#¥ = f (with Dirich-
error with respect to the number of parameters for the neu , Neumann, or mixed boundary conditions), whétds a

and the FEM case, respectively for the nonlinear problem f,o.. gitterential operator. I, is a first aproximation to the
The number of parameters in theaxis is normalized, and sqytion of the differential equation it satisfies exactly

in the neural case the actual number of parameters is 20

while in the FEM case is 225 It is clear that the neural GV, - f=R
method is superior and it is also obvious that the accuracy

of the neural method can be controlled by increasing tlwehere Ris the residual function. Then if one writes that

37)
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Fig. 15. Problem 7: Accuracy of the FEM solution at the test points.
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Fig. 16. Plot of logarithm of the maximum convergence error at the interpolation points as a function of the normalized number of parameters for
the neural and the FEM approach.

TABLE | linear) as
MAxIMUM DEVIATION FROM THE EXACT SOLUTION
FOR THE NEURAL AND THE FINITE-ELEMENT METHODS GUs = —R (38)
Neural Method Finite Element

Problem No. [ Training set | Interpolation set | Training set | Interpolation set with ¥, obeying null boundary conditions, sinde, satisfies

5 5% 107 5x 107 Ix10°F 15%10°° - '

5 516" X155 T T0°T X0 the boundary conditions exactly. The above process may be

7 1.5x10°° 15x10° 6x 107 4x10° repeated more than once to obtain more accurate solutions to

the problem.

¥ = ¥, + W, whereW, is a correction tol, the original

According to our modeling technique for the case of Dirich-
problemG¥ = f can be rewritten (in the case whefgis

let BC's ¥y is modeled as¥;(z) = B(z) + Z(z)N1(z),
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Fig. 17. Plot of the time to converge as a function of the normalized number of parameters for the neural and the FEM approach.

while ¥, and all successive corrections &s = 7 (z)No(z), parallelization capabilities and various kinds of specialized
The improved approximate solution is nol&(xz) = ¥, (x) + harware have been developed to exploit this property.
Ws(x) = B(z) + Z(2)[N1(x) + Na(z)]. For MLP’s with one

hidden layer and a linear output, the sum of two (or more)

of them can be written as a single network of the same type

and having a number of hidden nodes equal to the sum of the V. CONCLUSIONS AND FUTURE RESEARCH

hidden nodes of the parent networks. A method has been presented for solving differential equa-
As stated in the introduction, one of the attractive featurgigns defined on orthogonal box boundaries that relies upon
of our approach is the possibility of effective parallel imthe function approximation capabilities of feedforward neural
plementation. In the proposed approach the employementr@ghworks and provides accurate and differentiable solutions
neural networks makes the method attractive to parallelization.a closed analytic form. The success of the method can be
It is well-known that in neural network training the followingattributed to two factors. The first is the employment of neural
types of parallelism have been identified: 1) Data parallelismetworks that are excellent function approximators and the
where the data set (grid points) is split into subsets eagBcond is the form of the trial solution that satisfies by con-
one assigned to a different processor and therefore the egguction the BC’s and therefore the constrained optimization
values corresponding to different grid points can be computggbblem becomes a substantially simpler unconstrained one.
simultaneously. 2) Spatial parallelism, i.e., the outputs of the Unlike most previous approaches, the method is general and
sigmoid units in the hidden layer are computed in parallelan be applied to both ODE’s and PDE’'s by constructing
This kind of parallelism is better exploited in the case whette appropriate form of the trial solution. As indicated by
hardware implementations are used (neuroprocessors) anddireexperiments the method exhibits excellent generalization
speedup obtained is proportional to the number of hidden uniggrformance since the deviation at the test points was in no
It is also possible to implement a combination of the abowmse greater than the maximum deviation at the training points.
kinds of parallelism. This is in contrast with the finite element method where the
In the case of finite elements parallelism arises mainljeviation at the testing points was significantly greater than
in the solution of the linear system of equations. There atiee deviation at the training points.
also approaches that exploit parallelism in the tasks of meshwe note that the neural architecture employed was fixed in
generation and finite element construction. Parallelism in finigdl the experiments and we did not attempt to find optimal
elements can be exploited mainly at a coarse grain level usitanfigurations or to consider architectures containing more
general purpose multiprocessor architectures [12]. In genett@n one hidden layers. A study of the effect of the neural
it is much easier to exploit parallelism when using the neurafchitecture on the quality of the solution constitutes one of
method, since neural networks constitute models with intrinsieir research objectives.
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Another issue that needs to be examined is related with the] R. Yentis and M.
sampling of the grid points that are used for training. In the
above experiments the grid was constructed in a simple way hy;
considering equidistant points. It is expected that better results
will be obtained in the case where the grid density will vary, 8]
during training according to the corresponding error values.
This means that it is possible to consider more training pointt]
at regions where the error values are higher.

Wiley, 1987.
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E. Zaghoul, “VLSI implementation of locally con-

nected neural network for solving partial differential equatiodlEEE
Trans. Circuits Syst.,Ivol. 43, no. 8, pp. 687—690, 1996.

D. G. Papageorgiou, |. N. Demetropoulos, and I. E. Lagaris, “Merlin
3.0, A multidimensional optimization environmentComput. Phys.
Commun,. vol. 109, pp. 250-275, 1998.

, “The Merlin control language for strategic optimizatioGom-
put. Phys. Communvol. 109, pp. 250-275, 1998.

R. Fletcher,Practical Methods of Optimizatior2nd ed. New York:

[10] O. C. Zienkiewicz and R. L. TaylorThe Finite Element Methodith

It must also be stressed that the proposed method can easily ed., vol. 1. New York: McGraw-Hill, 1989.

be used for dealing with domains of higher dimensions (thr
or more). As the dimensionality increases, the number

] W. L. Briggs, A Multigrid Tutorial.
] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel
finite element computation of 3-D flows|EEE Comput. vol. 26, no.

Philadelphia, PA: SIAM, 1987.

training points becomes large. This fact becomes a serious 10, pp. 27-36, 1993.

problem for methods that consider local functions arourl
each grid point since the required number of parameters pp 1-14, 1997.
becomes excessively large and, therefore, both memory and
computation time requirements become extremely high. In the
case of the neural method, the number of training parameters
remains almost fixed as the problem dimensionality increas
The only effect on the computation time stems from t
fact that each training pass requires the presentation of m
points, i.e., the training set becomes larger. This problem ¢
be tackled by considering either parallel implementations,
implementations on a neuroprocessor that can be embed
in a conventional machine and provide considerably bet
execution times. Such an implementation on neural hardw
is one of our near future objectives, since it will permit thend quantum systems,
treatment of many difficult real-world problems. networks.

Another important direction of research concerns differ-
ential equation problems defined on irregular boundaries.
Such problems are very interesting and arise in many r
engineering applications. Work is in progress to treat this kir
of problems using a trial solution form employing a multilaye
perceptron and a radial basis function network, where the lat
is responsible for the satisfaction of the boundary conditior
while the former is used for minimizing the training error a
the grid ponts. Initial experimental results are very promisin

Moreover, we have already applied our approach to ot
types of problems of similar nature, as for example eigenvalue
problems for differential operators. More specifically, we
have considered eigenvalue problems arising in the field of
guantum mechanics (solution of the Schrondinger equation)
and obtained very accurate results [13].
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