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Abstract The ATLAS experiment at the Large Hadron Col-
lider (LHC) is operated at CERN and measures proton-proton
collisions at multi-TeV energies with a repetition frequency
of 40 MHz. Within the Phase-II upgrade of the LHC, the
readout electronics of the Liquid-Argon Calorimeters of AT-
LAS are being prepared for high luminosity operation ex-
pecting a pile-up of up to 200 simultaneous proton-proton
interactions. Moreover, the calorimeter signals of up to 25
subsequent collisions are overlapping, which increases the
difficulty of energy reconstruction by the calorimeter de-
tector. Real-time processing of digitized pulses sampled at
40 MHz is thus performed using Field Programmable Gate
Arrays (FPGAs).

To cope with the signal pile-up, new machine learning
approaches are explored: convolutional and recurrent neural
networks outperform the optimal signal filter currently used,
both in assignment of the reconstructed energy to the correct
proton bunch crossing and in energy resolution. Since the
implementation of the neural networks targets a FPGA, the
number of parameters and the mathematical operations need
to be well controlled. The trained neural network structures
are converted into FPGA firmware using automated VHDL
implementations and high-level synthesis tools.

Very good agreement between neural network imple-
mentations in FPGA and software based calculations is ob-
served. The FPGA resource usage, the latency, and the oper-
ation frequency are analysed. Latest performance results and
experience with prototype implementations are reported.
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1 Introduction

The ATLAS detector [1] is installed at the Large Hadron
Collider [2] (LHC) in order to detect the particles produced
in high-energy proton-proton collisions, and measure their
properties. The proton bunches collide every 25 ns corre-
sponding to a frequency of 40 MHz. During the future high-
luminosity phase of LHC (HL-LHC) the machine is expected
to produce instantaneous luminosities of 5−7×1034 cm−2s−1

starting with Run-4 in 2027. This corresponds to 140-200
simultaneous proton-proton interactions. The Liquid-Argon
(LAr) Calorimeters of ATLAS mainly measure the energy of
electromagnetic showers of photons, electrons and positrons
using their ionisation signal. The LAr Calorimeters are chal-
lenged by the large in-time pile-up and because up to 25 sig-
nal pulses created in subsequent LHC bunch crossings (BC)
can overlap leading to out-of-time pile-up. Moreover, a new
trigger scheme is foreseen [3] which allows the selection of
collision events in subsequent bunch crossings. Thus, an as-
signment of the reconstructed energy to the correct bunch
crossing with best possible energy resolution is necessary
for each of the 182,000 calorimeter cells. For the trigger data
path, a latency of about 150 ns is allocated to the reconstruc-
tion of the energy, based on a preliminary analysis of the full
data processing chain [3,4].

Within the Phase-II upgrade of the LAr Calorimeter elec-
tronics [4], processing of the LAr pulses sampled at 40 MHz
is foreseen using Field Programmable Gate Arrays (FPGAs).
In the current design options, 384 or 512 LAr calorimeter
cells shall be processed by one Intel Stratix-10 FPGA [5],
which corresponds to the data measured by three or four
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so-called Front-End Boards (FEBs), respectively. The full
system needs to capture the data of 1524 FEBs in total.

To meet the challenging task of real-time energy recon-
struction new machine learning methods are explored. The
application of Artificial Neural Networks (ANNs) on FP-
GAs, however, is constrained by the limited digital signal
processing (DSP) resources, logic and memory available in
the FPGA devices. This, in turn, limits the number and type
of mathematical operations that can be used by the machine
learning application. In addition, software tools for convert-
ing trained neural networks into FPGA firmware are needed.
In the following, first results and experience aiming at real-
time reconstruction of LAr calorimeter energies are presented.

2 LAr cell energy reconstruction by Artificial Neural
Networks

2.1 Simulation of LAr pulse sequences and legacy energy
reconstruction

The first step in the development of the FPGA-based ANNs
is the training of the networks on simulated data sequences.
The AREUS [6] tool is used to convert the series of en-
ergy deposits in the LAr Calorimeter cells into a sequence of
overlaid and digitized pulses taking into account analog and
digital electronics noise. The software also allows a simula-
tion of LHC bunch patterns, i.e. regular interruptions in the
series of proton-proton collisions. An example sequence for
one cell in the barrel section (EMB) of the electromagnetic
LAr calorimeter, which is selected for the study presented
here, is displayed in the top row of figure 1 for a mean num-
ber of pile-up events, 〈µ〉, of 140.

The current readout electronics of the LAr Calorimeters
applies an optimal filter [7] (OF) to determine the energy in
each cell. By linear combination of up to five digitized pulse
samples electronic noise and signal pile-up are suppressed.
The coefficients of the OF are determined using the analog
pulse shape and the total noise auto-correlation. In order to
further identify true energy deposits and assign them to a
certain LHC bunch crossing (BC), a peak finder is applied
to the output sequence of the OF by selecting the maximum
value in each group of three consecutive BCs. The OF re-
sults are used to compare with the neural network solutions.

Supervised learning is applied during the network train-
ing. The true energies deposited serve as target values which
are also indicated in the top row of figure 1. The network
training utilizes the Keras [8] API to the TensorFlow [9]
platform.
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Fig. 1 Top: Sample sequence (black) of an EMB middle-layer cell lo-
cated at a pseudo-rapidity, η , of 0.5125 and an azimuthal angle, φ , of
of 0.0125 within the ATLAS coordinate system. The sequence is sim-
ulated by AREUS, together with the true transverse energy deposits
(yellow), at 〈µ〉= 140 as a function of the bunch crossing (BC) counter.
The true deposits are shifted by five BC to improve the plot visibility.
Middle: The Convolutional Neural Network (CNN) for pulse tagging
provides a hit probability (green) for each BC. Its training is based on
a binary input sequence (blue) with values of unity for energy deposits
3σ above noise threshold. Bottom: The transverse energy reconstruc-
tion CNN makes its predictions (green) based on the probability of the
tagging layer and the input samples.

2.2 Convolutional Neural Networks

Alternatively to the OF method, Convolutional Neural Net-
works (CNNs) [10] are developed. The networks analyse the
input data sequence in a sliding-window approach. Linear
combinations of data values in a given window of subse-
quent bunch-crossings, also called receptive field, are fed
into parallel layers of artificial neurons, called feature maps.
Different neuron activation functions are used. The maps are
combined to a multi-layer structure.

The underlying resource restrictions of the FPGA are
central when developing CNNs for the LAr energy recon-
struction. The large number of cells treated by one FPGA
allows at most a few hundred multiplier-accumulator units,
respectively parameters, per network. A two-layered net-
work architecture was found to yield the best performance.
The first ”tagging” network structure identifies significant
energy deposits above a threshold of 3σ of the electronic
noise, corresponding to 240 MeV. Together with the sample
sequence a detection probability is passed to a second struc-
ture which is trained to reconstruct the deposited energy in
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each calorimeter cell. An example of the architecture is pre-
sented in figure 2.
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Fig. 2 Architecture of an Artificial Neural Network (ANN) with four
convolutional layers. The dataflow goes from bottom to top. The input
sequence is first processed by the tagging part of the network in the
bottom part of the figure. After a concatenation layer, the tag output
and the input sequence are processed by the transverse energy recon-
struction part of the ANN. The total receptive field of this network
incorporates 13 bunch crossings.

An improvement was achieved by pre-training the tag-
ging part of the network before embedding it into the entire
architecture. Middle and bottom rows of figure 1 display the
processing steps for both the tagging and the energy recon-
struction parts.

The ability of the tagging CNN to detect true signals
and reject background is illustrated in figure 3 for a tagging
network with 2 convolutional layers (”2-Conv”) and kernel
sizes of 3 and 6. The signal efficiency and background re-
jection are compared to the performance of the OF algo-
rithm and a subsequent maximum finder. The receiver oper-
ating characteristic (ROC) curves indicate the performance
when varying the tag probability threshold, respectively the
threshold on the energy calculated by the OF. The OF achieves
a maximum signal efficiency of about 80%, while the tag-
ging CNN reaches efficiencies well above 90%.

In the following, two CNNs named ”3-Conv” and ”4-
Conv” will be presented. While their tagging part has the
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Fig. 3 Signal efficiency and background rejection ROC curves of the
two presented Artificial Neural Networks (yellow, purple) and their
tagging part (green), compared to the Optimal Filtering (OF) with
a maximum finder (red). Signal refers to deposits with E true

T above
240 MeV (3σ above noise threshold), background those below. Effi-
ciencies are calculated for an EMB Middle LAr cell (η = 0.5125 and
φ = 0.0125) simulated with AREUS assuming 〈µ〉 = 140. Approach-
ing the upper right corner of the plot indicates signal efficiencies of
100% and a background rejection of 100% and would therefore be op-
timal. For better visibility, the results are shown only in the range above
75%. Filled bands represent the statistical uncertainty.

same configuration, the energy reconstruction consists of
one, respectively two, convolutional layers, as listed in ta-
ble 1. Layers, kernel sizes, dilation rate and the number of
feature maps per layer were chosen such that the perfor-
mance regarding signal detection and energy reconstruction
under conditions like the occurrence of signals in quick suc-
cession and realistic LHC bunch train patterns was best. Di-
lation, i.e. a regular removal of dense connections between
network nodes, would allow an enlargement of the recep-
tive field without increase in number of network parameters.
However, not applying dilation was found optimal during
hyper-parameter optimisation. The resource restrictions are
well satisfied for both networks.

A sigmoid function is used as activation function for the
tagging layers because it obtained best results for the binary
tag classification. A Rectified Linear Unit (ReLU) activation
function was chosen for the energy network motivated by
the ReLU property that negative input values are set to zero
and only positive values are forwarded. The ROC curves for
both complete CNN networks are shown in figure 3, again
compared to the OF and to the tagging network only. The
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maximum efficiencies are only slightly reduced when the
energy calculation is included and both CNNs clearly out-
perform the OF algorithm.

Table 1 CNN configurations with one and two energy reconstruction
layers and identical tagging layer.

”3-Conv” ”4-Conv”
Tagging Energy Re- Tagging Energy Re-

construction construction

Layer index 1 2 3 1 2 3 4

Kernel 3 6 21 3 6 4 3Size

Dilation 1 1 1 1 1 1 1Rate

Feature 5 1 1 5 1 3 1Maps

Activation sigmoid ReLU sigmoid ReLUFunction

Number of 51 43 51 37Parameters

Receptive 28 13Field

2.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) algorithms are designed
for the inference of time series and extraction of the underly-
ing parameters. They are natural candidates for the inference
of deposited energies from time-ordered digitized LAr sig-
nals. Two RNN architectures are considered: Vanilla-RNN [11]
and Long Short-Term Memory (LSTM) [12].

LSTM based algorithms: LSTM based networks demonstrate
upmost management of information through long sequences,
allowing the constraint of long-lived dependencies in data.
LSTM cells are composed of four internal neural networks,
three learn to open and close access to the data flow through
time, the last acting directly on the data to extract the desired
features at a given time. However, their complexity scales
rapidly with the dimension of the internal networks, while
the application of intelligent algorithms in the LAr calorime-
ter read-out system sets tight limits on the network size. In
order to limit the parameter count to a few hundred, only
one layer of LSTM cells, with 10 internal dimensions, is al-
lowed. A decoder, consisting of a network with a single neu-
ron and ReLU activation, is placed at the exit of the LSTM
to concatenate the output in a single energy measurement.

Two LSTM based networks for real-time energy mea-
surements are presented. The single-cell design derives from

a many-to-many RNN evaluation, and is illustrated in fig-
ure 4. At each bunch crossing, a LSTM cell analyses the
LAr signal amplitude and the output of the previous cell to
predict an energy. The same operation with the same LSTM
object is repeated until the end of data. To allow the RNN to
accumulate enough information a delay of five bunch cross-
ings is imposed in the training process. This delay also avoids
the RNN to learn from yet to happen collisions in the train-
ing phase. The second design uses a sliding-window algo-
rithm and is illustrated in figure 5. At each bunch crossing a
LSTM network is instantiated. This network is trained as a
many-to-one RNN targeting an energy prediction with five
ADC samples as input. The target energy corresponds to po-
tential pulses starting on the second BC, allowing the net-
work to read one BC before the deposit, and four on the
pulse. This is found to be the best compromise between the
correction for past events, the energy inference on the pulse,
and short sequences meeting FPGA constraints. The sliding-
window algorithm applies the network to subsequent bunch
crossings allowing a prediction in real time. The final dense
operation corresponds to the single neuron decoder which
reads the LSTM output and calculates the energy.

RNN cell

ADC(n)

Dense

ET(n− 4)

RNN cell

ADC(n+ 1)

Dense

ET(n− 3)

RNN cell

ADC(n+ 4)

Dense

ET(n)

RNN cell

ADC(n+ 5)

Dense

ET(n+ 1)

... ... ...

Fig. 4 Single-cell application of Long Short-Term Memory (LSTM)
based recurrent networks. The LSTM cell and its dense decoder are
computed at every bunch crossing (BC). They analyse the present sig-
nal amplitude and output of the past cell, accumulating long range in-
formation through a recurrent application. By design, the network pre-
dicts the deposited transverse energy with a delay of six BC.

Vanilla-RNN based algorithm: The Vanilla-RNN cell is the
most compact RNN architecture. It is composed of a sin-
gle internal neural network trained both to forward the rele-
vant information in time, and to infer the energy at a given
bunch-crossing. In order to fulfill constraints from the LAr
calorimeter system, the size of the Vanilla-RNN internal net-
work is reduced as much as possible. Only 8 internal dimen-
sions are allowed. To avoid the usage of look-up-tables in the
FPGA, a ReLU activation is used. As for LSTM networks,
a single neuron decoder with ReLU activation function con-
catenates the output in a single energy measurements. In to-
tal, the network comprises only 89 parameters.

With limited internal capabilities, Vanilla-RNN networks
are not capable of managing the information over long pe-
riods of time. Therefore, only a sliding window application
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Fig. 5 Sliding window application of LSTM based recurrent networks.
At each instant, the signal amplitude of the four past and present bunch
crossings are input into an LSTM layer. The last cell output is con-
catenated with a dense operation consisting of a single neuron, and
providing the transverse energy prediction.

is considered. It is defined in the same way as for LSTM
networks.

Discussion: The final structure and parameter choices of the
three RNN networks are shown in table 2. For the same
number of parameters, the single-cell and sliding-window
applications are expected to provide different insights into
the features of the data. In particular, the sliding-window al-
gorithm focuses only on a few inputs around the BC of inter-
est: four on the pulse and one in the past. It is thus expected
to be more robust when regressing the energy value of iso-
lated data pulses. On the other hand, the single-cell design
concatenates the present data with all past measurements.
While this could limit the robustness of the measurement in
consecutive but isolated pulses, it better alleviates remnants
of past events. Out-of-time pile-up and recurrent LHC bunch
patterns are typically expected to impact measurements in
tens of subsequent bunch crossings. High performance in
these cases requires a correction of long-lived patterns that
can only be achieved with efficient management of the in-
formation through time. The single-cell design is particu-
larly robust in situations where subsequent pulses overlap
as described in section 2.4. On the other hand, the Vanilla-

RNN network demonstrates performance competitive with
LSTM networks. This, added to its compact design, makes
the Vanilla-RNN network the most suited among the RNN
based algorithms for treating individual channels of the AT-
LAS LAr calorimeter system.

Table 2 Configurable key parameters of the single-cell and sliding-
window algorithms.

Single-cell Sliding-window
LSTM LSTM Vanilla-RNN

Time inference
Receptive

∞ 5 5Field

Samples 5 4 4after deposit

RNN layer

Dimension 10 10 8

Activation tanh tanh ReLU

Recurrent sigmoid sigmoid N/AActivation

Dense layer Dimension 1 1 1

Activation ReLU ReLU ReLU

Number of 491 491 89Parameters

2.4 Results

Performance of the aforementioned ANN methods and the
OF mith maximum finder are estimated in an AREUS sim-
ulation of energy deposits in one selected calorimeter cell
at (η = 0.5125, φ = 0.0125) in the middle layer of the bar-
rel (labelled EMB Middle) and for long bunch crossing se-
quences. An average pile-up 〈µ〉 = 140 is assumed. Fur-
thermore, only energy deposits 3σ above the noise thresh-
old (corresponding to E true

T > 240MeV) are retained in what
follows. Figure 6 shows a comparison of the energy resolu-
tion between the legacy OF and five ANN algorithms. The
CNN and RNN networks outperform the OF both in terms of
bias in the mean and of resolution. The smallest range that
contains 98% of the entries is also shown to exhibit non-
Gaussian behaviour present in far tails of the resolution, and
particularly at low energies. The OF tends to underestimate
low deposited energies while the ANNs largely recover this
effect. The single-cell implementation of the LSTM network
has the best performance although it has the same num-
ber of parameters as the sliding-window implementation.
Even though the Vanilla-RNN has fewer parameters than
the LSTM, its performance is similar in the sliding-window
implementation. The CNN networks both have a compa-
rable number of parameters. Nevertheless, the 3-Conv ar-
chitecture outperforms the 4-Conv architecture. Overall, the
LSTM networks reach a better performance than the CNNs
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and Vanilla-RNN. However, the LSTM implementations re-
quire 5 times more parameters than the compact CNNs and
the Vanilla-RNN.
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Fig. 6 Transverse energy reconstruction performance for the optimal
filtering and the various ANN algorithms. The performance is assessed
by comparing the true transverse energy deposited in an EMB Middle
LAr cell (η = 0.5125 and φ = 0.0125) to the ANN prediction after
simulating the sampled pulse with AREUS assuming 〈µ〉= 140. Only
energies 3σ above the noise threshold are considered. The mean, the
median, the standard deviation, and the smallest range that contains
98% of the events are shown.

One of the challenges of the energy reconstruction al-
gorithms is the capacity to correctly predict two subsequent
deposited energies with overlapping pulses. Figures 7, 8, 9
and 10 show the energy resolution as a function of the time-
gap between two deposited energies. Only deposited ener-
gies above 240 MeV are considered. This ensures that the
pulse amplitude is large enough to distort the pulse shape of
the subsequent event. With a time-gap smaller than 20 bunch
crossings the computed energy is underestimated by the OF
algorithm and the resolution is significantly degraded. ANN
algorithms are robust against pulse shape distortion by over-
lapping events and allow for an improved energy reconstruc-
tion also at small time gaps. LSTM based algorithms in the
single-cell application are particularly stable along the time
gap as they can access as many BC in the past as found nec-
essary in the training phase. With 28 receptive fields for the
3-Conv, and 13 for the 4-Conv, CNN algorithms have sim-
ilar performance as function of the gap. On the other hand,
the sliding-window Vanilla-RNN is only using one bunch-
crossing prior the deposit. Therefore, it is the least capable
of correcting for overlapping pulses at short gaps.
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Fig. 7 Resolution of the transverse energy reconstruction as a function
of the gap, i.e. the distance in units of bunch crossings (BC), between
two consecutive energy deposits for the optimal filtering (OF) algo-
rithm and a subsequent maximum finder.
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Fig. 8 Resolution of the transverse energy reconstruction as a func-
tion of the gap, i.e. the distance in units of bunch crossings (BC), be-
tween two consecutive energy deposits for the Long Short-Term Mem-
ory single-cell algorithm.

3 Network application on FPGA

3.1 Conversion of CNN to VHDL

For CNNs a direct implementation in VHDL was chosen be-
cause the network structure maps well to the multiplication-
accumulation units of the DSPs available on the FPGA. A
modular firmware design adapts to the specific architecture
by configuration constants, which are read from a file during
the synthesis or compilation stage. A Python script generates
the configuration file from the Keras model files. The script
also performs the transition from floating point to fixed point
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Fig. 9 Resolution of the transverse energy reconstruction as a function
of the gap, i.e. the distance in units of bunch crossings (BC), between
two consecutive energy deposits for the Vanilla-RNN sliding-window
algorithm.
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Fig. 10 Resolution of the transverse energy reconstruction as a func-
tion of the gap, i.e. the distance in units of bunch crossings (BC), be-
tween two consecutive energy deposits for the Convolutional Neural
Network algorithm.

representation with a configurable total and fractional bit
width. A bit width of 18 is chosen because it matches the
DSP precision of the Stratix-10 FPGA. Of those 18 bits, 10
bits are used for the decimal part of the fixed-point represen-
tation. For the sigmoid activation function two implementa-
tions are available. A piece-wise linear approximation saves
resources, while a look-up table (LUT) with discrete integer
values allows a higher precision.

The VHDL implementation is designed in a modular
way. A dedicated component realises the connections be-
tween one feature map and all feature maps of the previous
layer. In this way a multi-layer CNN can be constructed, and

each layer is configured independently. To make use of the
high processing frequency of the FPGA, time division mul-
tiplexing is used to allow one CNN instance to process the
data of multiple channels. Intermediate pipelining stages are
added to the design to control the relative signal transition
time between two processing steps. This, in turn, allows a
high maximum frequency at which the CNN core can be ex-
ecuted. Moreover, processing of the input sequence is started
when the first sample of each sequence arrives. This is cas-
caded through all layers of the network in a continuous way
and minimizes the latency until the final result is available.

For all layers, the input values need to be multiplied by
their respective weights. These multiplications are best per-
formed by DSPs on the FPGA, which are dedicated for high
speed arithmetic operations. In the case of the Stratix-10
FPGA, they have a special structure with two multiplication-
accumulation units in one DSP. To make optimal use of the
available DSPs, the serialised streams of data that are input
to the FPGA, are rearranged into pairs of two in order to ex-
ploit both streams per processor. The DSPs are chained up
according to the kernel size to process and accumulate the
input from different time steps. The results are synchronised
and summed with the first calculation path afterwards. With
this approach, the DSPs can be utilized most efficiently.

Figure 11 compares the output of the VHDL implemen-
tation, simulated with Quartus 20.4 [13] and Questa Sim
10.7c [14], with the Keras CNN output. The small differ-
ences observed are on the one hand caused by discretization
and the chosen bit precision, and on the other hand by the
LUT-based realisation of the activation function.

3.2 Conversion of RNN to HLS

For RNN algorithms an implementation in Intel High Level
Synthesis (HLS) [13] is chosen to allow additional flexibility
in the design. The networks are based on two different func-
tions, the first being the implementation of a single RNN
cell, the second one handling the recursive aspect of the net-
work architecture.

The LSTM or Vanilla-RNN cells are coded as template
functions. The template is used to pass on the weights and
the internal architecture of the cell. The weights and archi-
tecture parameters are automatically generated by Python
scripts from the Keras model. The precision of the fixed-
point value is a configurable parameter. The activation func-
tions and the recurrent activation functions other than the
ReLU are implemented as LUT. The LUTs are generated
with Python scripts. A configurable parameter allows using
full precision mathematical functions instead of LUTs.

Two variants of the recursive functions are implemented
to support the single-cell and the sliding-window architec-
tures. The single-cell function uses one instance of the LSTM
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cell implementation and allows linking the output of this cell
at a given BC to its input at the subsequent BC. A continuous
output flow is achieved with data entering through recursive
calls of the logic, however requiring an input frequency no
larger than the cell computation time. In the sliding-window,
the function invokes for each window five instances of ei-
ther the LSTM cell or the Vanilla-RNN cell, one for each
BC. The output of each cell serves as an input to the next.
The algorithm requires one such chain of five RNN cells
for each BC in order to predict the deposited energy. To be
able to process data in real time without using multiple RNN
chains for multiple BC, a fully pipelined design is needed.
The implemented design ensures that the Initiation Interval
(number of clock cycles between two inputs in HLS) is equal
to one. Every loop is fully unrolled: each of the loop itera-
tions has its own logic resources. The memory needed is
implemented as registers to optimize the latency.

A comparison of the energy computation in software,
as given by Keras, and in firmware simulation with Quar-
tus 21.1 and Questa Sim 10.7c is shown in figure 11. The
fixed point values are chosen to ensure a resolution of the
order of 1%. For the sliding-window LSTM 18 bits are used
including 13 bits for the decimal points. For the single-cell
22 bits are used including 14 bits for the decimal part. For
the sliding-window Vanilla-RNN, data paths in the cell and
RNN weights use different representations. Data paths use
19 bits with 16 bits for the decimal part. Weights are im-
plemented using 16 bits out of which 13 are for the decimal
part. The LUT implementation is optimized using logic to
account for symmetries in the sigmoid and tanh functions.
The LUT size is reduced by a factor 4 compared to the naive
linear range. Their granularity is also optimized and 1024
words are found sufficient.

3.3 FPGA implementation results

In a first stage, the neural networks were implemented for
a single data input channel in order to compare their basic
properties. Performance results of these implementations on
a Stratix-10 FPGA are shown in table 3, comparing maxi-
mum execution frequency, Fmax, latency, and resource usage
in terms of number of DSPs and Adaptive Logic Modules
(ALM). The maximum achievable processing frequency for
all implementations is in the range of 480 - 600 MHz. In this
way up to fifteen-fold multiplexing of the input data, which
is received at the LHC bunch crossing frequency of 40 MHz,
is possible. In the baseline scenario imposed by the ATLAS
trigger system, 150 ns can be allocated to the energy re-
construction with the optimal filtering algorithm. Only the
CNN algorithms currently meet the latency constraints of
the baseline scenario. However, scenarios with relaxed la-
tency constraints are considered and could allow the usage
of RNN algorithms.
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Fig. 11 Relative deviation of the firmware implementations from the
software results for the different transverse energy reconstruction Arti-
ficial Neural Networks (ANN). Only bunch crossings with predictions
different from zero and true transverse energies larger than 240 MeV
are considered. Inputs to the ANNs are sampled pulses obtained from
the simulation of an EMB Middle LAr cell (η = 0.5125 and φ =
0.0125) with AREUS assuming 〈µ〉= 140.

Table 3 Performance of the VHDL implementation of CNNs and the
HLS implementation of RNNs compiled with Quartus 20.4 [13] for
a Stratix-10 FPGA (reference 1SG280HU1F50E2VG) and single data
input channel.

3-Conv 4-Conv Vanilla LSTM LSTM
CNN CNN RNN (single) (sliding)

(sliding)

Frequency

Fmax [MHz] 493 480 641 560 517

Latency

clkcore cycles 62 58 206 220 363

Resource
Usage

#DSPs 46 42 34 176 738
0.8% 0.7% 0.6% 3.1% 12.8%

#ALMs 5684 5702 13115 18079 69892
0.6% 0.6% 1.4% 1.9% 7.5%

The large number of readout channels to be treated by
one FPGA requires time-domain multiplexing of the data
processing. The CNNs and the Vanilla-RNN networks are
therefore also implemented in multiplexed versions. Their
performance is presented in table 4. Only the firmware de-
signs for which the core clock frequency reaches the re-
quired value for the corresponding multiplexing factor are
shown, i.e. 600 MHz for fifteen-fold multiplexing of the Va-
nilla-RNN and 240 MHz for six-fold multiplexing of the CNNs.
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Table 4 Multiplexing performance of the VHDL implementation of
CNNs and the HLS implementation of RNNs compiled with Quartus
20.4 [13] for a Stratix-10 FPGA (reference 1SG280HU1F50E2VG).

3-Conv 4-Conv Vanilla
CNN CNN RNN

Multiplicity 6 6 15

Frequency

Fmax [MHz] 344 334 640

Latency

clkcore cycles 81 62 120

Max. Channels 390 352 576

Resource Usage

#DSPs 46 42 152
0.8% 0.7% 2.6%

#ALMs 14235 15627 5782
1.5% 1.7% 0.6%

The multiplexed VHDL firmware design keeps the number
of DSP units at the same value as the single-channel ver-
sion and requires more ALMs. On the other hand, the HLS
is re-optimized for the multiplexed design, allowing notably
a significant reduction of the latency. The multiplexed HLS
also increases the usage of DPS units compared to its single-
channel counter part, but keeps the logic resource usage at a
low level.

From the estimated resource usage the maximum num-
ber of channels is calculated which can be processed by
one Stratix-10 FPGA of the selected type. Assuming that
100% of the FPGA resources can be dedicated to ANN al-
gorithms, the CNN with three convolutional layers and the
Vanilla-RNN network reach a value above 384, which cor-
responds to the design option where data are received from
three Front-End Boards of the ATLAS LAr Calorimeters.
Furthermore, the Vanilla-RNN could handle the 512 chan-
nels in the scenario where data are received from four Front-
End Boards.

While the priority for optimizing the ANNs shown here
was to decrease the resource usage in the FPGAs, the imple-
mentations in VHDL (for CNNs) and in HLS (for RNNs)
focus on different aspects. The VHDL implementation tar-
gets mainly low latency for fast execution. The HLS im-
plementation targets high frequency to allow higher multi-
plexing. This is clearly seen in table 4. By further exploiting
the design tools from the VHDL and HLS implementations,
the CNN and RNN realisations are expected to reach even
smaller resource usage, shorter latency and higher clocking
frequency. The best compromise between these three param-
eters is yet to be reached.

4 Conclusion

Artificial Neural Networks of CNN and RNN types targeting
an FPGA implementation have been successfully trained to
reconstruct LAr calorimeter cell energies. The ANNs out-
perform the OF algorithm and still meet the tight FPGA
resource constraints. Short latency and high execution fre-
quency of the implemented networks are adapted to the re-
quirements of the LAr real-time processing. In future, the
processing cores shall be integrated into the full data pro-
cessing chain within the FPGA. An optimisation of the ANNs
and the development of an automated conversion to FPGA
firmware using VHDL and HLS tools will be further pur-
sued.
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