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ABSTRACT 

Background: Virtual reality surgical simulators are being developed with the goal of providing a 

safe environment for trainees to practice specific surgical scenarios and allow for self-guided 

learning. Artificial intelligence technology, including artificial neural networks, offers the 

potential to manipulate large datasets from simulators to gain insight into the importance of 

specific performance metrics during simulated operative tasks. 

Hypothesis: Artificial neural networks are suitable for and capable of revealing and quantitating 

important metrics of performance for a virtual reality spinal surgery task. 

Objectives: First, to develop metrics of performance for a novel virtual reality anterior cervical 

discectomy simulation. Second, to employ artificial neural networks to classify participants’ 

expertise based on their performance in the simulated task. Third, to examine the ability of the 

neural network to outline the relative weights of specific metrics in the determination of expert 

performance in this virtual reality spinal procedure. 

Methods: Twenty-one participants performed a simulated anterior cervical discectomy on the 

novel virtual reality Sim-Ortho simulator. Participants were divided into 3 groups, including 9 

Post-Resident, 5 Senior, and 7 Junior participants. Data was recorded and manipulated to 

calculate metrics of performance for each participant. Neural networks were trained and tested 

and the relative importance of each metric was calculated. 

Results: A total of 369 metrics spanning four categories (safety, efficiency, motion, cognition) 

were generated. An artificial neural network was trained on 16 selected metrics, and tested 

achieving a training accuracy of 100% and a testing accuracy of 83.3%.  Network analysis 

identified safety metrics, including the number of contacts on spinal dura, as highly important. 
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Conclusion: Artificial neural networks classified 3 groups of participants based on expertise 

allowing insight into the relative importance of specific metrics of performance. This novel 

methodology aids in the understanding of which components of surgical performance 

predominantly contribute to expertise. 
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RÉSUMÉ 

Contexte: Les simulateurs chirurgicaux de réalité virtuelle sont en cours de développement dans 

le but de fournir aux stagiaires en chirurgie un environnement sûr leur permettant de mettre en 

pratique des scénarios chirurgicaux spécifiques et de permettre un apprentissage autonome. La 

technologie de l'intelligence artificielle, y compris les réseaux de neurones artificiels, offre la 

possibilité de manipuler de grands ensembles de données à partir de simulateurs pour mieux 

comprendre l'importance de mesures de performances spécifiques lors des opérations 

chirurgicales simulées. 

Hypothèse: Les réseaux de neurones artificiels sont adaptés et capables de mettre en évidence et 

de quantifier des mesures de performance importantes pour une opération de chirurgie 

rachidienne en réalité virtuelle. 

Objectifs: Premièrement, de développer des mesures de performance pour une simulation 

innovatrice de discectomie cervicale antérieure en réalité virtuelle. Deuxièmement, d’utiliser des 

réseaux de neurones artificiels afin de classer les compétences des participants en fonction de 

leurs performances dans la tâche simulée. Troisièmement, d’examiner la capacité du réseau de 

neurones à définir l’importance relative des mesures spécifiques dans la détermination de la 

performance d’un expert dans cette procédure rachidienne en réalité virtuelle. 

Méthodologie: Vingt et un participants ont réalisé une discectomie cervicale antérieure simulée 

sur le nouveau simulateur de réalité virtuelle Sim-Ortho. Les participants ont été divisés en 3 

groupes, comprenant 9 participants « Post-Resident », 5 participants « Senior » et 7 participants 

« Junior ». Cette étude s'est concentrée sur la portion discectomie de l’opération. Les données ont 

été enregistrées et traitées pour calculer des mesures de performance pour chaque participant. 
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Les réseaux de neurones ont été formés et testés; et l'importance relative de chacune des mesures 

de performance a été calculée. 

Résultats: Un total de 369 mesures de performance couvrant quatre catégories incluant la 

sécurité, l’efficacité, le mouvement et le cognitif ont été générées. Un réseau de neurones 

artificiels a été formé sur 16 mesures sélectionnées et testé avec une précision d’entraînement de 

100% et une précision des tests de 83,3%. L’analyse du réseau a révélé que les mesures de 

sécurité, y compris le nombre de contacts sur la dure-mère, étaient très importantes. 

Conclusion: Les réseaux de neurones artificiels ont classé 3 groupes de participants sur la base 

d'une expertise permettant de mieux comprendre l'importance relative de mesures de 

performance spécifiques. Cette méthodologie novatrice aide à comprendre quelles composantes 

de la performance chirurgicale contribuent principalement à l'expertise. 
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THESIS INTRODUCTION 

Virtual reality surgical simulation has become a rapidly evolving field of research in the 

last decade.1,2 This trend follows the desire for more objective and competency-based training 

methods for surgery.3 The complexity and implications of spine procedures makes spine training 

a paradigm of interest for novel simulation-based methods.2,4 The anterior cervical discectomy 

and fusion (ACDF) is one of the most commonly performed spine procedures, making it an ideal 

candidate for simulation-based training. The ACDF procedure requires proficiency in multiple 

areas including an understanding of the critical anatomical structures, along with gaining an 

appreciation of how different structures react to manipulations and instrument usage.5  

Virtual reality simulation typically relies on powerful computers that can record an 

enormous amount of data about how a surgeon is interacting with a simulated task. Studies in 

surgical simulation have developed methodologies to exploit these large datasets to develop 

validated metrics of performance which can be used by surgical educators to enhance 

performance.4,6 These metrics are generally developed in such a way that they can be understood 

and taught by surgical educators. As no direct supervision is required to calculate individual 

metrics, virtual reality simulation may pave the way for more objective methods of assessment 

and may offer room for more self-guided learning amongst surgical trainees. 

Combining this technology with artificial intelligence (AI), the surgical community may 

be able to gain further insight into specific components of surgical performance that can 

differentiate levels of expertise. Artificial intelligence is a broad term used to describe a set of 

algorithms that can make seemingly intelligent decisions.7,8  Machine learning, is a subset of 

artificial intelligence, where algorithms are able to identify and learn from hidden patterns in 

multivariate datasets, without the need for explicit programming.8 Artificial neural networks, are 
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a deeper subset of machine learning and inspired from neuronal connectivity in the brain.9 They 

are sets of interconnected nodes (referred to as neurons in this paper) which can communicate 

with each other through connections with different weights. These weights are essentially 

analogous to neuromodulatory signals that influence how neurons communicate with one 

another. When combined with virtual reality simulation, artificial neural networks can be 

designed to classify participants and discover specific metrics that differentiate surgical 

performance. This information can provide an objective assessment of surgical psychomotor 

performance providing insight into the components that underpin surgical expertise. 

Current literature contains few studies which employ artificial intelligence in surgical 

simulation.10-23 The vast majority which do, limit their analysis to the classification of different 

groups of surgeons, and fail to explore the underlying reasons for classification by investigating 

the relative importance of metrics of performance.15 

The hypothesis tested in this study is that artificial neural networks, a type of artificial 

intelligence, will be able to differentiate three group of varying expertise performing an anterior 

cervical discectomy in a virtual reality surgical simulator using metrics of performance relevant 

to safety, motion, efficiency, and cognition. This hypothesis incorporates three primary 

objectives: 

1. To develop metrics of performance for a novel virtual reality ACDF simulation. 

2. To employ artificial neural networks to classify participants’ expertise based on their 

performance in the simulated task. 

3. To examine the ability of our neural network to outline the relative weights of specific 

metrics in the determination of expert performance in this virtual reality spinal procedure. 
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This novel methodology has the potential to aid in the understanding of components of 

surgical expertise and contribute to the paradigm shift towards competency-based surgical 

training. In the context of surgical simulation, using artificial intelligence to understand and 

extract important components of expertise may help alter the purpose of simulators from a 

training tool allowing acquisition of skill to an educational tool able to communicate knowledge 

and information about one’s performance.1 
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BACKGROUND 

A Brief History of Surgical Training 

Surgical education and training have relied upon the apprenticeship model. However, as 

medical knowledge and our understanding of surgical practice evolved, so have training 

methods.24 A paradigm shift from the apprenticeship model, to one that is more competency 

based is presently taking place.1 To understand this shift, it is important to understand the origins 

of the original model of surgical training. 

In its early years, surgery and medicine were regarded as two separate disciplines. To 

many physicians and surgeons today, this is revealed through clues in the Hippocratic Oath 

which states: “I will not use the knife, and certainly not those suffering from stone, but I will 

cede to men practitioners of this activity”.25 As opposed to today, surgeons were not regarded as 

medical doctors, but were rather comprised of “barber-surgeons”, individuals skilled in manual 

crafts, but did not require a medical degree.24 In the early years of surgical training therefore, 

medical and surgical training developed along different paths. 

With the lack of highly selective medical training, the apprenticeship model was utilized 

to create a path for the training of surgeons. Since surgeons’ performance involved defined 

technical skills utilized by a multitude of different craftsmen, the apprenticeship model was 

considered appropriate. At its essence, this model relies on a trainee observing and learning from 

a master in the craft.24 Over time, the trainees are given the opportunity to practice under 

gradually decreasing supervision until they are deemed capable and skilled.24 In some craft-like 

and skill-dependent fields such as pottery or barberry, this model is highly useful. The trainees 

would learn over time, and the subject, whether it be a piece of clay for potters or a customer’s 

beard for barbers, was never truly in a state of “high risk”. A mistake by the trainee would only 
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result in an unhappy customer. In surgical training, the trainee observes an experienced surgeon 

(i.e. a master of their own craft), and is gradually given more and more responsibility during 

surgeries until they are deemed capable of practicing alone.24 However, surgery is a high-risk 

craft and unlike some other crafts, mistakes can cause serious harm to patients. In the surgical 

apprenticeship model, training relies on the subjective decisions of a master surgeon or series of 

surgeons who deems whether a trainee is capable of performing surgical procedures adequately. 

The combination of these two concerning issues has driven an evolution in the apprenticeship 

model over time. 

The original approach of the apprenticeship model relies on “see one, do one, teach one”, 

whereby the trainees are expected to observe their master and mimic their skill, and eventually 

teach these skills to other students. This model results in a lack of standardization amongst 

trainees.24 Each master acted as their own “training program” where individuals may choose to 

teach different methods and knowledge.26 This led to one of the most significant modifications to 

the apprenticeship model. In the hope of creating a more standardized method of surgical 

training in the United States, Dr. William Halstead proposed a model inspired by the German 

training philosophy.27 This model relied on “graduated responsibility”.27 This entailed that 

trainees would gain increasing responsibility over a defined series of years as they advanced 

through their training.27 This formed the foundations of the modern surgical training model by 

providing both standardization and structure to surgical training.24 

Although Halstead’s model was a modification to the original apprenticeship model, it is 

now facing a series of significant issues. Concerns of the usefulness of this model have been 

expressed related to the shift from the apprenticeship to a competency based model. There are 

several underlying reasons for this concern including a rise in patient expectations, evidence-
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based medicine and student numbers. A large part is attributed to the restriction in training hours 

for residents thereby reducing their practice and exposure.28,29 In the United States, work-hours 

have been restricted to 80 hours per week in hopes of reducing resident fatigue and burnout.30 

However, recent psychological studies revealed no significant effect on burnout.31 These new 

restrictions reduce trainee exposure to operative procedures.30 Surgical simulators are being 

developed in an attempt to mitigate this issue. 

 

Simulation in Surgery 

Compared to other high-risk industries such as aviation or the military, simulation is 

rather new to surgery.32 A simulation is any attempt to mimic or replicate a real life scenario, 

immersing users into a simulated scenario. Simulators are commonly used to train those who 

work in high-risk situations, as is the case for pilots.32 They are also utilized to expose trainees or 

experts to complicated situations and help in the assessment of actions and reactions, with the 

expectation that they will be more prepared for possible unlikely events.32 This is the case with 

NASA, where simulation is a vital part of exposing astronauts to conditions similar to those 

experienced in space before they have the opportunity to venture beyond the atmosphere.33 

Simulation platforms have a central goal: allowing room for failure.32,34 By replicating 

real surgical procedures, simulators can immerse trainees and allow them to perform complex 

surgical tasks without the risk of causing harm to patients. Through these systems trainees also 

have the opportunity to learn from their mistakes. They can visualise, experience and understand 

the risks and potential complications of their actions. Literature on simulation has shown that 

trainees appreciate the opportunity to experience the consequences of their actions in a safe 

environment.34 Some trainees have reported an increase in anxiety if they performed poorly in a 
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simulated scenario.34 To address this issue, it is important for trainees to not only be exposed to 

simulators, but also to obtain structured feedback, allowing them to reflect on their performance, 

while receiving guidance on how to improve. This task has proved challenging and remains a 

barrier for the wide adoption of simulation in surgical training.35 

Several types of surgical simulators are available on the market today. They can be 

broadly divided into two categories: physical (or benchtop) simulator, and virtual reality or 

augmented reality simulators. Physical simulators are any simulator with which the users can 

directly interact. These include manikins or laparoscopic boxes. The modern manikin was first 

introduced to anaesthesia training in the 1960s, followed by the first development of a high-

fidelity simulator in the early 1980s.32,36,37 These combined intricate designs that looked like a 

patient, but also contained computer chips able to re-create vital signs that could respond to 

disruption caused by the user.32 Virtual reality simulators on the other hand, were first introduced 

in the 1990s.32,38 These are entirely computer-based systems which allow the user to feel 

immersed in a particular surgical scenario. Users typically hold tool handles and look at a screen 

where they can see a simulated version of their instrument interacting with anatomical structures. 

Some of the first VR simulators were for relatively simple tasks, such as suturing, 

cholecystectomy and minimally-invasive surgery.32 As computers became more powerful at the 

beginning of the 21st century, more complex and more realistic VR simulations could be 

developed. One such example is the NeuroVR (originally known as the NeuroTouch).2 The 

NeuroTouch platform resulted in an interdisciplinary collaboration amongst Canadian 

researchers and industry, to produce the most advanced virtual reality simulator for 

neurosurgery.2 Using a finite-element method, the platform can create highly realistic 3D images 

able to deform and respond to physical manipulations. The system also incorporates advanced 
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haptic feedback, so that users can feel different tissue as they are performing a task on the 

simulator. However, only a very limited number of scenarios for spine surgery are available on 

the platform. 

As the development of virtual reality simulators began to grow, efforts to develop 

scenarios for spine surgery simulation have been limited.39 One reason for this is the fact that the 

spine is composed of multiple different anatomical components with different visual appearance 

and tissue densities. An effective virtual reality simulator for spine surgery would need to offer 

variable haptic feedback able to simulate both the softer and more malleable muscle, nerve and 

spinal tissue, as well as the more rigid vertebrae. In light of these challenges, attempts have been 

made to create a VR simulator without haptic feedback. One such example involved a VR 

simulator for orthopaedic surgery. However, due to the lack of haptic feedback, the primary aim 

of this simulator was shifted to pre-operative planning rather than surgical training.40 The 

ImmersiveTouch platform which incorporates haptic feedback, was later introduced with 3 spinal 

procedure scenarios: lumbar puncture, pedicle screw placement, and vertebroplasty.41 However, 

the spine procedures on this system are relatively simple, only requiring a single step or action to 

complete. A systematic review exploring VR spine surgery simulators from 2005 to 2016 

identified 19 studies relevant to the field.42 The majority studied relatively simple tasks such as 

pedicle screw placement or lumbar puncture on the ImmersiveTouch. Of the 19, only 2 sought to 

introduce a new simulator.43,44 However, both relied on augmented reality. Augmented reality is 

similar to VR in the sense that it requires computers to create a visual component of the 

simulation.42 Augmented reality works by superimposing visual components on top of a physical 

stimulus such as a mannequin.42 The advantage of this method is that it can bypass the challenge 

of simulating complex haptic feedback as the user is partly interacting with physical models.  
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There is a need for the development of advanced VR simulators incorporating haptic 

feedback for more complex spine surgery procedures. The anterior cervical discectomy is an 

ideal candidate as it requires users to interact with a variety of soft and rigid structures, in several 

steps, while using a multitude of instruments, each with their unique ability to deform anatomical 

structures. This procedure is the basis of a novel VR simulator by OSSimTechTM (Montreal, 

Quebec, Canada) a Canadian start-up. 

 

 A New Virtual Reality Simulator for Spine Surgery  

The Sim-Ortho simulator is a novel virtual reality simulator co-developed by 

OSSimTechTM (Montreal, Quebec, Canada) and the AO Foundation (Bienne, Switzerland). The 

platform is based on a gaming-engine, and incorporates 3 modes of mimicking real surgical 

scenarios: visual, auditory and haptic. The simulator replicates intra-operative environments in a 

realistic manner by creating a highly realistic 3D interface.28 The auditory component is 

accomplished by simulating the sounds typical in the operating room as well as the sound of the 

various instruments when interacting with anatomical structures. The haptic components provide 

a variety of forces and resistance dependent on the tissue interacted with. This advanced 

technology also allows for diversity in the feel of tissues. For example, the intervertebral disc is 

relatively soft and flexible as opposed to the C4 and C5 vertebra which are harder and more 

rigid. Overall, it is the combination of these three sensory components that make the Sim-Ortho 

platform a useful system to assess the potential impact of virtual reality spinal surgical 

simulation.  

The computer-nature of virtual reality simulators offers the potential to track many 

aspects of how an individual interacts with a specific simulated scenario. Previous simulation 
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studies in neurosurgical tasks have utilized methods to deal with such large datasets by creating a 

series of tiers of psychomotor performance metrics based on performance benchmarks.4,6,45 

However, current methods of analysing surgical simulation data remain limited. A large number 

of studies employed traditional statistical methods (such as t-tests or ANOVAs) to determine 

significant differences in individual metrics between groups of varying surgical expertise.46,47 

These methods consider each metric of performance independently. Surgical expertise, on the 

other hand, is generally regarded as an interrelated combination of measures (or metrics). Hence, 

a novel method of data analysis, powered by artificial intelligence is deemed well suited for 

dealing with large datasets extracted from surgical simulators.  

 

Artificial Intelligence: What is it? How can we use it? 

Artificial intelligence (AI) is simply a branch of computer science which revolves around 

giving computers and machines the ability to perform tasks intelligently. As illustrated in Figure 

1, artificial intelligence can be subdivided into three main categories: Deep Learning, Machine 

Learning and Language Processing (Chatbots). The largest branch of artificial intelligence is 

machine learning. This technology allows computers to find hidden patterns in very large 

datasets, learn from these patterns, and essentially make decisions without the need for explicit 

programming. Many subsets of algorithms fit under the umbrella of machine learning. On one 

end, there are simple algorithms such as support vector machines, k-nearest neighbours, and 

decision trees, all of which have relatively similar methods of approaching large datasets. On the 

other end, there are more complex algorithms known as artificial neural networks. Artificial 

neural networks are inspired from the neuronal connectivity in the brain, as they are composed of 

interconnected nodes (analogous to neurons). These neurons are interconnected in such a manner 
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to regulate the impact of each input in the decision-making process to produce an output. This 

logic is analogous to the neuromodulatory signals in the brain, whereby during learning, certain 

neurons may be downregulated whereas others may be upregulated. Deep learning is a branch 

which has drawn the largest attention in recent years with significant advancements in design and 

mathematical underlying.48,49 Two Canadians and a French scientist, Yoshua Bengio, Geoffrey 

Hinton, and Yann LeCun are often regarded as the founding fathers of deep learning and were 

recently awarded the Turing Prize, the highest distinction in computer science, for their work in 

the field.48,50 Deep learning is the newest of the three branches and hence remains the least 

understood. Its applications in surgery remain limited. In addition, deep learning generally faces 

a “black box” problem as it is extremely difficult to understand how these algorithms make 

decisions.51,52 As medicine and surgery are highly evidence-based practices, medical 

professionals may remain sceptical of deep learning programs which cannot reveal exactly how 

they made a particular decision. Another branch of artificial intelligence is known as natural 

language processing, or chatbots. Simply, these are able to comprehend speech and respond 

appropriately. Its applications in surgery are rather limited at the moment but several groups 

have attempted to use this technology in other fields of medicine. Some examples include a 

Canadian start-up, WinterLight Labs, which uses natural language processing to identify speech 

patterns which may be indicative of dementia in patients.53 Another American start-up uses the 

technology as an automated medical scribe during physician-patient interactions, thereby 

significantly improving the amount of time physicians can spend with patients rather than with 

their computer.54  
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Figure 1: Three subsets of the artificial intelligence. Artificial intelligence can be broken 

down into: Deep Learning, Machine Learning and Chatbots. Machine learning can be further 

broken down into the simpler algorithms such as support vector machines, or the more complex 

artificial neural networks. 

 

The work presented herein employs machine learning. There are two primary methods to 

employ machine learning: supervised and unsupervised. Supervised machine learning is the most 

common, and involves providing labelled data to the algorithm from which it can learn.55 This 

means that during training, the algorithm is aware of which group each data point belongs to. It 

then uses this information to form a general rule that is able to differentiate two or multiple 

groups. For example, in the context of surgical training, a supervised approach to differentiate 

levels of expertise in a surgical task would involve initially providing a large dataset, where each 

datapoint is labelled as either belonging to a novice or an expert individual. The algorithm learns 

from this pre-defined grouping and is then able to classify a new surgeon as either a novice or 

expert based on what it learned previously. This is the approach employed in this study. The 
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unsupervised approach requires no labels, although a much larger dataset is generally required. 

In this method, the algorithm is fed a large dataset without prior knowledge of which group each 

datapoint belongs to. It can then automatically decide how to group datapoints according to 

hidden patterns in the data. In the context of surgical training, this could be accomplished by 

providing an algorithm with a large amount of data from a variety of different surgeons from 

multiple institutions. The algorithm would have no knowledge about which surgeon each 

datapoint belongs to. It would then independently identify groups in the data, based on how 

similar certain groups of surgeons performed in a scenario. Such methodology may offer insight 

on the existence of multiple differentiable groups of expert surgeons. However, this requires very 

large datasets and is therefore not employed in this study. 

There are several advantages of using machine learning to analyse data from virtual 

reality surgical simulators. First, machine learning allows for the automated classification of 

individuals into two or more groups of predefined expertise levels. Second, machine learning 

allows for analysis of the relationship between different metrics of performance rather than 

simply assessing metrics individually. Hence, this provides a more holistic overview of expertise 

as opposed to more traditional statistical methods of differentiating expertise. Finally, machine 

learning can rank the importance of different metrics in differentiating expertise. For example, 

although a set of 10 metrics may be essential to differentiate expertise in a particular surgical 

task, one or two metrics may have a significantly larger influence on the algorithm’s decision-

making process. As such, this may inspire the development of future surgical training platform 

and programs. Overall, the advantages of artificial intelligence in surgical simulation has not 

gone unnoticed in the medical community.  
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Artificial Neural Networks to Assess Surgical Competency 

As collaboration amongst medical professionals and computer scientists has grown over 

recent years, many applications of artificial intelligence have been proposed from clinical-

decision support systems, to assistance in diagnosis.56,57 A field which has remained 

underdeveloped for artificial intelligence is that of surgical and medical training. A recent 

systematic review identified only 69 articles across eight databases where machine learning was 

employed to assess physician competency.58 Half of these were published in the last six years. A 

more focused systematic review was also performed along with members of the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre where 12 articles were found to be 

relevant to the use of artificial intelligence to differentiate expertise in virtual reality surgical 

simulation. The candidate third author in this review which has been submitted to the Journal of 

Surgical Education. From the combination of both reviews, the majority of studies employed 

support vector machines, a simpler type of machine learning algorithm. The particular advantage 

of such an algorithm is that it is easier to understand how these algorithms make their decision. 

Only ten studies used artificial neural networks. Interestingly, the use of neural networks to 

assess competency in medicine seems to expand far beyond surgery, with numerous studies 

comparing the effectiveness of neural network-powered tools for radiologists to identify 

lesions.59-64 Little attempt has been made to use artificial neural networks to assess surgical 

performance. In 2010, Richstone et al employed artificial neural networks to assess surgical skill 

by tracking the eye movement of surgeons during simulated and live surgeries.15 Although the 

results established an important proof of concept for the use of artificial neural networks to 

assess surgical skill, this was accomplished with metrics that cannot easily be taught to trainees. 

This study had significant limits related to the usefulness of neural networks for formative 
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assessment in surgery. The complexity of eye movement renders it difficult to specifically infer 

how the network made its classification decisions. In 2015, Yost et al conducted a study 

involving 7 US surgical training centres and employed artificial neural networks for an 

assessment of performance.65 However, instead of using simulation, these networks were based 

on the results of questionnaires assessing behavioural style and motivators. The focus of this 

study was on the psycho-social components which may be able to differentiate expertise in 

surgeons. As professional surgical practice is a holistic profession, there is no doubt that 

psychosocial metrics are important to assess. However, this study only provided a partial picture 

of factors that can differentiate expertise. An important next step would be to employ artificial 

neural networks to assess technical skills during simulated surgical procedures. The utilization of 

artificial neural networks to assess and quantitate psychomotor skills may be an important 

adjunct to surgical education since the skills identified can be employed in a training paradigm. 

Interestingly, artificial neural networks have been used to not only classify performance 

in medicine and surgery (e.g. novice vs. expert), but also to gain insight into the underlying 

factors that led to classification. A recent study employed this technology in an attempt to 

understand which components are most important in the differentiation of medical students and 

specialists in clinical diagnostic simulations.66,67 This was accomplished by studying ANNs in 

greater depth. Not only are the networks able to differentiate performance, but the authors 

attempted to crack open the network to gain insight on its decision-making process. This effort to 

render the network more transparent is vital for the use of artificial neural networks in medical 

education.68 As both parties are able to gain insight into the specific components which may have 

led to their classification, this creates a sense of trust and ensures a successful connection 

between trainers and trainees in the learning process. 
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The study presented herein builds from previous work on artificial neural networks to 

assess surgical competency by not only addressing technical surgical skill in virtual reality 

simulation but also employing a transparent approach to help lay the foundations for real-life 

educational applications. 
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RATIONALE FOR STUDY 

This project aims to offer a novel approach to learn about surgical performance by 

employing artificial intelligence and simulation for a spinal task. Primarily, it aims to expand on 

the surgical community’s understanding of factors that differentiate performance in a cervical 

spine discectomy using virtual reality simulation.  
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ABSTRACT 

Background: Virtual reality surgical simulators provide a safe environment for trainees to 

practice specific surgical scenarios and allow for self-guided learning. Artificial intelligence 

technology, including artificial neural networks, offers the potential to manipulate large datasets 

from simulators to gain insight into the importance of specific performance metrics during 

simulated operative tasks. 

Objective: This study aims to distinguish performance in a virtual reality simulated anterior 

cervical discectomy scenario, uncover novel performance metrics, and gain insight into the 

relative importance of each metric using artificial neural networks. 

Methods: Twenty-one participants performed a simulated anterior cervical discectomy on the 

novel virtual reality Sim-Ortho simulator. Participants were divided into 3 groups, including 9 

Post-Resident (consulting spine surgeons and spine fellows), 5 Senior (PGY 4-5 orthopaedic 

residents and PGY 4-6 neurosurgery residents), and 7 Junior (PGY 1-3 residents in neurosurgery 

and orthopaedic surgery) participants. This study focussed on the discectomy portion of the task. 

Data was recorded and manipulated to calculate metrics of performance for each participant. 

Neural networks were trained and tested and the relative importance of each metric was 

calculated. 

Results: A total of 369 metrics spanning four categories (safety, efficiency, motion, cognitive) 

were generated. An artificial neural network was trained on 16 selected metrics, and tested 

achieving a training accuracy of 100% and a testing accuracy of 83.3%.  Network analysis 

identified safety metrics, including the number of contacts on spinal dura, as highly important. 

Conclusion: Artificial neural networks classified 3 groups of participants based on expertise 

allowing insight into the relative importance of specific metrics of performance. This novel 
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methodology aids in the understanding of which components of surgical performance 

predominantly contribute to expertise.  
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INTRODUCTION 

Virtual reality surgical simulation is an evolving field of research which has the potential 

to complement more objective and competency-based surgical training methods.1-3 The 

incidence, complexity and implications of the anterior cervical discectomy and fusion (ACDF) 

makes this procedure a good candidate for simulation-based training.5,69 The ACDF procedure 

requires proficiency in multiple areas including an understanding of the critical anatomical 

structures, along with gaining an appreciation of how different structures react to manipulations 

and instrument usage.5 Virtual reality simulators record an enormous amount of data concerning 

psychomotor performance during a simulated task. Studies in surgical simulation have developed 

methodologies to exploit these large datasets to develop validated metrics of performance which 

can be used by surgical educators to enhance performance.4,6  

Artificial intelligence is a broad term used to describe a set of algorithms that can make 

seemingly intelligent decisions.7,8 Machine learning is a subset of artificial intelligence, where 

algorithms are able to identify and learn from hidden patterns in multivariate datasets, without 

the need for explicit programming.8 Artificial neural networks, are a deeper subset of machine 

learning, inspired from the brain’s neuronal connectivity.9 They are sets of interconnected nodes 

(referred to as neurons in this paper) which can communicate with each other through 

connections of different weights. These weights are essentially analogous to neuromodulatory 

signals that influence how neurons communicate. When combined with virtual reality 

simulation, artificial neural networks can be designed to classify participants and discover 

specific metrics that differentiate surgical performance. This information can provide an 

objective assessment of surgical psychomotor performance providing insight into the 

components that underpin surgical expertise.  
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Artificial intelligence has been utilized to assess surgical expertise during virtual reality 

performance but the majority of these studies limit their analysis to the classification of different 

participant groups.10 These systems fail to explore the underlying reasons for classification by 

investigating the relative importance of the individual metrics of performance.15 

The three objectives of this study were: 1) To develop metrics of performance for a novel 

virtual reality ACDF simulation. 2) To employ artificial neural networks to classify participants’ 

expertise based on their performance in the simulated task. 3) To examine the ability of our 

neural network to outline the relative weights of specific metrics in the determination of expert 

performance in this virtual reality spinal procedure. This novel methodology has the potential to 

aid in the understanding of components of surgical expertise and contribute to the paradigm shift 

towards competency-based surgical training. To our knowledge, this is the first study to employ 

artificial neural networks to gain insight into the relative weights of teachable performance 

metrics in a virtual reality surgical simulation. 

 

METHODS 

Participants 

Twenty-seven participants were recruited to perform a virtual reality ACDF utilizing the 

Sim-Ortho platform. No participants had previous experience with this ACDF scenario on the 

Sim-Ortho platform. This simulator is only optimized for right-handed users which excluded 

three left-handed participants. One fellow and two neurosurgeons were also excluded as their 

practice was not primarily spinal focused. The demographics of the 21 remaining participants are 

outlined in Table 1. The participants were divided into three groups: Post-Resident group (4 

spine surgeons and 5 spine fellows), Senior group (3 PGY 4-6 neurosurgery and 2 PGY 4-5 
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orthopaedics residents), and Junior group (3 PGY 1-3 neurosurgery and 4 PGY 1-3 orthopaedics 

residents). All participants signed consent forms approved by the McGill University Ethics 

Review Board. 

 

Virtual Reality Surgical Simulator 

The virtual reality simulator employed is the Sim-Ortho platform (Figure 2A) co-

developed by OSSimTechTM (Montreal, Quebec, Canada) and the AO Foundation (Bienne, 

Switzerland).28 The platform offers a variety of tool handles (Figure 2B), each used to simulate 

different surgical instruments utilized by participants for the simulated procedure (Figure 2C). 

The platform relies on voxel-based gaming graphics to create a hyper-realistic 3D intra-operative 

environment mimicking real surgical procedures (Figure 2D). The participant wears 3D glasses 

experiencing visual and auditory feedback when employing instruments (Figure 2E), while the 

haptic feedback allows multiple tissue manipulations by the instruments utilized. 

 

Simulated Surgical Scenario  

The scenario simulated in this study was an anterior cervical discectomy and fusion 

(ACDF). The simulation was divided into four steps: cutting the disc annulus to gain disc access, 

cervical discectomy with excision of disc annulus and nucleus, removal of posterior osteophytes 

and excision of the posterior longitudinal ligament. The neck incision and bone fusion were 

automatically completed by the simulator. Prior to the start of the scenario, participants were 

asked to provide information concerning their knowledge of the ACDF procedure on a 5-point 

Likert scale. All participants were provided written instruction for all steps and made 
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knowledgeable concerning all instruments available to complete the procedure. No time limit 

was imposed and the simulated task was performed in an environment devoid of distractions. 

Once satisfied with their performance in a given step, participants moved on to the next 

step and were not allowed to return to a previous step. For standardization purposes, each step 

was accompanied by a restricted list of simulated instruments. The scenario began with a pre-

open surgical cavity revealing the simulated patient’s spine. The first step involved performing a 

2cm transverse box incision exposing the disc annulus (between C4 and C5) using a No.15 

scalpel. The participants then performed the cervical discectomy. For the discectomy, 

participants could choose between a simulated bone curette, a 2mm 45˚ pituitary rongeur or a 

disc rongeur. Any combination of these three instruments could be utilized for the discectomy. A 

3mm diamond burr was then used to remove the posterior osteophytes from the inferior C4 and 

superior C5 vertebrae. In the fourth step, a nerve hook was employed to lift the posterior 

longitudinal ligament and a 1mm 45˚ Kerrison was used to remove it.  

The focus of this manuscript is the discectomy step. This component of the ACDF was 

chosen due to its complex nature requiring participants to choose between three different 

instruments to adequately perform the discectomy. This allowed for a comprehensive evaluation 

of both psychomotor performance and cognitive decision making. 

 

Raw Data Acquisition 

The study methodology is illustrated in Figure 3. The simulator recorded a series of data 

pertaining to participant use of individual instruments throughout the procedure. This resulting 

information was divided into 66 variables for each tool, including time, position and angles of 

the simulated instruments, forces applied on specific anatomical structures and volume of any 
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anatomical structure removed. The raw data from every participant was analysed in Matlab 

(Version R2018b, The MathWorks Inc., Natick, Massachusetts, United States). 

  

Metric Generation 

Metrics of performance were developed by combining available raw data to develop a 

smaller and more understandable set of metrics. For example, velocity can be assessed by 

combining position and time. Metrics were generated in three ways: 1) Consultation with expert 

spine surgeons to identify the components of the discectomy surgery they believed important in 

performing a safe procedure. The engineers involved with the development of the Sim-Ortho 

platform also consulted with spine surgeons to decide which raw data could be adequately 

provided on the platform. 2) Metrics were derived from published work involving lumbar 

discectomy.70 3) Novel metrics were created by the authors based on different components of 

surgical skill. 

  

Metric Selection 

Although the metric generation step reduces the amount of data by calculating a narrow 

set of metrics, many of these metrics may not be useful to distinguish different levels of expertise 

between participants. Feeding a large number of irrelevant metrics to a neural network would 

introduce noise, thereby affecting the network’s performance. Hence, metric selection is 

employed to identify and filter out the non-differentiating metrics. 

In this study, we perform metric selection through stepwise regression with the built-in 

stepwisefit function in Matlab (Version R2018b, The MathWorks Inc., Natick, Massachusetts, 

United States).71 The full set of metrics as well as the group labels for each set (Post-Resident, 
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Senior or Junior) are fed to the function. Upon completion, the function returns the optimal set of 

metrics. Each metric was then normalized by calculating the z-score. 

 

Artificial Neural Network 

With the aim to create a system able to assess the complex components of surgical 

performance, an artificial neural network was trained. A number of different artificial neural 

network algorithms were tested with preliminary data to select the optimal algorithm. The 

Bayesian Regularization Backpropagation which consists of multi-layered perceptron displayed 

optimal performance with preliminary data and was therefore employed for the study.  

The data consisting of 21 participants with the final metrics was split into two sets where 

70% was used for training (15 participants: 6 Post-Residents, 4 Seniors, 5 Juniors) and 30% for 

testing (6 participants: 3 Post-Residents, 1 Senior, 2 Juniors). The training group was used to 

train the neural network (Figure 4) in a supervised manner and the remaining data was used to 

test the model. This means that the algorithm is provided labels for each set of metrics, such that 

it knows which set of metrics belongs to which groups (e.g. Post-Resident, Senior, Junior).8 The 

training and testing process is more explicitly explained in Figure 5. Following training, the 

remaining data was used to test the accuracy of the model. The neural network was then 

optimized. 

 

Neural Network Optimization 

The neural network was designed with 16 neurons in the hidden layer, corresponding to 

the number of input neurons. Preliminary tests revealed optimized network performance with 

this number. Following evidence of optimized performance from previous literature, a tan 
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sigmoid transfer function was employed for the hidden layer and output layer.72 In addition, three 

primary parameters were manually altered to prevent saturation of the model performance. The 

Marquardt adjustment parameter () as well as its decrease (_dec) and increase factors (_inc) 

was altered in an iterative manner where the final values were 0.01, 0.95 and 10, respectively. 

These values influence the learning rate of the algorithm in order to ensure that a global 

minimum error is consistently reached.73 

 

Metric Importance Calculation 

The neural network classifies individuals by assigning a weight to each metric, as well as 

the hidden neurons. Interestingly, the magnitude of each metric and neuron alters the sensitivity 

of each metric on the algorithm’s decision making process. The Connection Weights Algorithm 

(further explained in Supplemental Information) was employed to determine the relative 

importance of each metric of performance for each group (Post-Resident, Senior, Junior).74 A 

detailed explanation and rationale for the Connection Weights Algorithm are discussed in the 

Supplemental Information.  

In a simple model without hidden layers, a larger weight means that the metric will have 

a higher impact on the final decision. However, in more complex models such as neural 

networks which incorporate hidden neurons and where each metric can theoretically have over 

100 interconnected weights, specific methodologies have been developed to extract their 

importance. One of these is the Connection Weights Algorithm (Equation 1) which literature has 

shown to be superior compared to other methods.74 This method calculates the sum of the 

product of the weights of each metric to hidden neuron (weights w) and hidden neuron to output 



 40 

(weights v). The relative importance of each metric used by our model was calculated following 

this equation. 

𝐶𝑊𝑃𝑥 =  ∑ 𝑤𝑥𝑦𝑣𝑦𝑧𝑚
𝑦=1  

Equation 1: Connection weight product (CWP) indicates the relation importance of inputs 

for an artificial neural network’s decision making process. 

 

Generally, a relative importance can be calculated for each combination of inputs 

(metrics of performance) and outputs (groups), as each input may have a different importance for 

Juniors, Seniors or Post-Residents. In addition, the magnitude of the relative importance allows 

metrics to be ranked. The sign of the Connection Weight Product (CWP) indicates whether the 

input should be most positive or more negative to increase the likelihood of a specific 

classification. For example, if the CWP of an input is positive for the Post-Resident group, a 

more positive value for the corresponding input increases the probability of Post-Resident 

classification. However, if the CWP of an input is negative for the same group, a more negative 

value for the corresponding input increases the probability of Post-Resident classification. 

Importantly, as all inputs have been normalized by z-score calculations, a more positive input 

indicates a metric above the mean and a more negative input indicates a metric below the mean. 

 

RESULTS 

Metrics of Performance 

Performance metrics developed for the discectomy components of the simulated ACDF 

were divided into four categories: safety, efficiency, motion and cognitive and are outlined in 
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Table 2. A total of 369 metrics were calculated for each participant. Following removal of 

metrics that contained a value of zero for all participants, 333 remained. Following metric 

selection with the stepwisefit function, 13 significant metrics were selected, and they are 

described in Table 3. Some of these metrics are specific to certain instruments used for the 

discectomy. The authors deemed it important for the model to consider the tool choice of 

participants as this would influence one’s metric score for this particular instrument. Hence, 

three binary metrics were added, one for each tool (bone curette, pituitary rongeur and disc 

rongeur) where a value of 1 corresponds to the use of an instrument and 0 corresponds to no use 

of the respective instrument, for a total of 16 metrics. 

 

Surgical Performance Classification 

The dataset was divided into a training set (15 participants, 16 metrics) and testing set (6 

participants, 16 metrics). The artificial neural network was then optimized (Marquardt 

adjustment parameter ()=0.01,  decrease ratio=0.95,  increase ratio=10) and trained over 

10,000 iterations. A training accuracy of 100% and a testing accuracy of 83.3% were achieved. 

A breakdown of the networks training and testing performance are displayed in confusion 

matrices in Figure 6A and 6B, respectively. 

 

Metric Importance 

The decision-making process of the artificial neural network is more sensitive to 

alterations in certain metrics of performance for each group. Using the Connection Weights 

Algorithm, the relative importance of each metric of performance was calculated. The ranked 

metrics for the Post-Resident, Senior and Junior groups are displayed Tables 4, 5 and 6, 



 42 

respectively.  Figure 7 illustrates a visual comparison of the Connection Weight Products and 

Figure 8 displays the relative importance of each metric. Interestingly, the number of contacts 

with the spinal dura is in the top three most important metrics for all three groups. Following the 

signs of the connection weight product for this metric (Post-Resident CWP: -3.01; Senior CWP: 

4.83; Junior CWP = -2.71), a decrease in the contacts with the spinal dura increases the 

likelihood of being classified in the Post-Resident group, while an increase in the number of 

contacts on the spinal dura increases the likelihood of classification in the Senior group. The 

maximum amount of force applied on the left posterior longitudinal ligament (Post-Resident 

CWP = 1.91; Senior CWP = 4.17; Junior CWP = -5.24) is also highly ranked across all groups. 

A larger force application increases the likelihood of Post-Resident or Senior classification, 

while a lower force application increases the likelihood of Junior group classification. 

 

DISCUSSION 

Participant Classification with Artificial Neural Networks 

The artificial neural network used in this study was able to classify the training group 

correctly with 100% accuracy and was 83.3% accurate in classifying the testing group. This 

suggests that the model has the ability to differentiate participants in the preselected testing 

groups. The Bayesian Regularization Backpropagation algorithm employed is particularly 

advantageous as it creates robust models which are less likely to overfit.75 Overfitting occurs 

when a network decision-making is too closely fit to its training data and does not generalize to 

new participants.55 

 

Patterns in Relative Metric Importance 
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An important study finding is the ability of the network to rank the importance of a 

specific metric in the final assessment of expertise in a virtual reality procedure. Generating this 

data allows surgical educators to address a number of new questions. Should surgical educational 

paradigms predominantly focus on making sure that specific metrics that contribute extensively 

to expertise take precedence in any surgical training system? The analysis of the neural network 

uncovered some general patterns in some performance metrics. For example, our network would 

preferentially classify a new participant in the Senior group as opposed to the Post-Resident or 

Junior groups if they had large numbers of instrument contacts with the dura. The Senior group 

contacted the dura more frequently than either the Junior or the Post-Resident group with the 

Post-Resident group having the least number of dural contacts. One explanation for these 

findings may be lack of ACDF experience in the Junior group caused more hesitation when 

approaching the dura or other structures with instruments, thus explaining their low number of 

dural contacts. The Post-Resident group, possibly associated with their greater appreciation for 

this safety component of ACDF procedures, appears to have modulated their behaviour after 

completing residency resulting in decreased instrument dural contact when compared to the 

Seniors group. A different pattern was observed with the maximum force applied to the left 

posterior longitudinal ligament. For this metric the network associates higher forces with the 

Senior and Post-Resident groups. Maximum force application for the Post-Resident group lies in 

an intermediate range compared to the Senior and Junior groups. This could also be due to the 

Post-Resident group altering their behaviour since residency resulting in decreased instrument 

force application in the posterior longitudinal ligament region associated with safety concerns 

associated with high force application in this area. The results of this study appear to be 

consistent with previous finding from our research group and with a virtual reality tumour 
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resection model where both safety and efficiency were found to be hallmarks of expert 

performance.76 

The authors do not believe that virtual reality surgical training combined with neural 

networks replaces present methods of training for an anterior cervical discectomy. However, the 

information from this study may provide surgical educators with new perspectives on critical 

aspects of expert performance during cervical discectomies, as well as providing newer metrics 

for self-guided learning through an artificial intelligence-powered feedback platform. 

 

Application of Neural Network in Education 

Education for complex tasks has become a growing application of interest for artificial 

neural networks.77 Attention is focused on the development of tools that employ neural networks 

to breakdown and better understand the factors that differentiate learner performance. Unlike 

traditional teaching methods which may weigh all components of a task relatively equally, the 

neural networks allow for each component (or metric of performance) of a task to be weighed 

individually, offering a more holistic understanding of expertise. However, some questions 

remain unanswered. Should the training of the junior residents performing the ACDF scenario on 

this simulator be focused on training to the Senior level of performance, or that of the Post-

Resident group? Should significant time be spent on training all metrics, including those which 

are less important (i.e. less likely to influence a participant being classified into a particular 

group as defined by the neural network), or should training follow best practice in adult learning 

theory such as cognitive load theory and focus only on a small set of critical metrics (those most 

likely to influence participant classification as defined by the neural network) at any given 

time?78 Besides the safety metrics discussed, other metrics vary in importance between groups. 
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The average pitch of the bone curette while in contact with the disc nucleus is a metric of high 

importance (ranked 2nd) for both Junior and Senior groups. However, this metric is ranked as 

one of the lowest of importance for the Post-Resident group (ranked 15th). This poses a similar 

question, should educators focus on the teaching of junior residents about the proper angles of 

their instruments even though it is ranked low in the Post-Resident group? The fact that this 

metric is important for the intermediate group (Seniors) however, may indicate that angles of the 

bone curette is a part of the arch of learning to mastery level for safe instrument use. A recent 

paper in surgical simulation supports PGY-specific benchmarks.79 However, this study only 

assessed time metrics on a simpler Fundamentals of Laparoscopic Surgery simulator and may 

not be directly applicable to more complex metrics in a virtual reality environment. More 

research is needed to address this important issue. 

In the future, the network presented in this study will be employed to develop an 

automated and more personalized feedback platform for virtual reality surgical training. Once 

this platform is in place, we will be able to determine whether feedback on the selected metrics 

has the ability to determine and truly improve performance. 

 

LIMITATIONS 

The Sim-Ortho virtual reality surgical simulator incorporates an advanced gaming 

engine, but fails to represent the continually changing operating room environment. First, the 

Sim-Ortho platform’s ACDF involves 4 distinct components and this study was only focused on 

the cervical discectomy component. This was done to develop and assess the potential of 

artificial neural networks before applying them to other components of the ACDF procedure. 

Ongoing studies are now investigating the other 3 components of the ACDF procedure which 
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will allow a more comprehensive assessment of the components of expert performance. Second, 

the simulator is one-handed which does not allow for the quantification of bimanual skills which 

have been shown to be important in differentiating expertise level in previous studies and an 

important component of a proposed model for virtual reality surgical performance.80,81 The 

simulator is also only applicable for right-handed users limiting the ability to assess left-handed 

participants. Left and right handed ergonomics have been shown to be different in virtual reality 

trials.20 Third, multiple variables were controlled to simplify the interpretation of participants’ 

surgical performance, including the specific instruments to be used in each component of the 

scenario. Fourth, the study involved a small a priori defined sample size from a single institution. 

Hence, it is difficult to confidently extend our results to larger populations. Prospective testing of 

the neural network with a large sample size from multiple institutions is required to assess its 

accuracy and generalizability. We believe that these further studies will improve the ability of 

the network to correctly predict an individual’s surgical psychomotor skills and then be useful in 

training that individual to a defined level of expertise. Lastly, the Sim-Ortho platform is not 

physics-based, unlike other simulators such as the NeuroVR.2 Hence, the simulated tissue may 

not respond to deformations as accurately. 

 

CONCLUSION 

This study achieved all three of our objectives: to develop performance metrics, to 

employ artificial neural networks to classify participants’ expertise, and to outline the relative 

weights of specific metrics. A new virtual reality simulator, based on a gaming engine, was 

employed to develop novel performance metrics for an ACDF procedure. A robust artificial 

neural network was designed to classify three groups of participants based on expertise. Insight 
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into the relative importance of specific metrics of performance was outlined. The novel 

methodology and results presented have the potential to aid in the understanding of components 

of surgical expertise and contribute to the paradigm shift towards competency-based training for 

surgery. 
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THESIS CONCLUSIONS 

Summary 

The thesis describes the use of artificial intelligence employing artificial neural networks 

to differentiate three levels of expertise amongst a sample of surgeons and residents performing a 

cervical discectomy on a virtual reality simulator. The three thesis objectives were achieved. 

First, 369 metrics of performance related to safety, motion, efficiency, and cognitive decision-

making were successfully developed for the simulated scenario. Second, an artificial neural 

network was designed and trained to achieve 83.3% classification accuracy with three groups of 

participants: Post-Residents (consulting spine surgeons and spine fellows), Seniors (PGY 4-5 

orthopaedic residents and PGY 4-6 neurosurgery residents), and Juniors (PGY 1-3 residents in 

neurosurgery and orthopaedic surgery). Third, the neural network was examined to reveal the 

importance of specific metrics of performance.  

Although further real-life testing with a large dataset of residents and surgeons from 

multiple institutions is required to validate the potential of the neural network for training, two 

primary applications of the network exist: summative and formative assessment of surgical 

trainees. Summative assessment involves making a single determination of one’s skills. By 

providing a new individual’s classification into one of three groups, the network may perform 

well in a summative assessment role. Formative assessment on the other hand is a longitudinal 

process where the goal is to improve one’s skills. The network may also be useful for this sort of 

assessment by providing information on the importance and performance of individual metrics. 

The research presented also raises questions about the manner in which surgical trainees 

should be trained. The network revealed interesting patterns in some important metrics as has 

been presented in the discussions component of the submitted paper. The issue of whether to 
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train residents in the Junior group to the metrics performance of the Senior group or to train 

directly to the Post-Resident group needs to be further studied. These studies will not only help 

understand the underpinning factors associated with surgical expertise but may allow surgical 

expertise to be gained earlier in residency training thus adding to the educational armamentarium 

of surgical competency. 

It is also important to consider the social and ethical implications of employing artificial 

intelligence in surgical education. Surgical trainers and trainees must be able to both understand 

and trust artificial intelligence systems involved in the evaluation process. The AI paradigms 

developed will need to be integrated into the ongoing apprenticeship model to be successful. The 

paradigm shift that will be associated with the development of new artificial intelligence models 

will need to occur over time with the understanding that these systems will need to be rigorously 

tested. The author believes that various artificial intelligence systems may play an important role 

in complementing the current methods of teaching. For example, an automated AI-powered 

platform for surgical simulation could be used to teach basic technical skills to residents in 

environments where access to surgical trainers is limited. Alternatively, these could be used by 

experienced surgeons who wish to regain familiarity with less common surgeries. Psychomotor 

skills are only part of a holistic set of skills required to be a competent surgeon, but it is a part 

where effective teaching methods are lacking. This study advocates for the surgical community 

to regard AI as “Augmented Intelligence” rather than “Artificial Intelligence”, as the system will 

aid, and augment the knowledge and understanding of surgical educators, rather than replace 

them.  
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In summary, it is evident that the neural networks offer a new method of understanding 

surgical expertise, while at the same time engaging the surgical education community to question 

the current model of teaching. 

 

Future Directions 

As previously mentioned, the study involves a small sample size with participants from a 

single institution. Hence, the trained network may not be representative of a much larger 

population of spine surgeons and residents. Although this network is an important first step for 

the use of artificial intelligence in surgical training, further testing of the neural network with a 

larger sample size from multiple institutions is required to assess its generalizability. 

Additionally, this study solely focusses on the discectomy component of the ACDF. 

Future studies will aim to develop artificial neural networks to reveal important performance 

metrics for the other steps of the procedure, including cutting of the disc, removal of the 

osteophytes with the burr, removal of the posterior longitudinal ligament with the nerve hook 

and Kerrison. 

The network developed in this study needs further development to play a role in the 

teaching of the technical skills involved in the cervical discectomy component of the ACDF 

procedure. Further investigation is required to develop an automated teaching platform powered 

by the network developed in this study. Working alongside members of the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre, the author has designed a framework for 

the development of an automated feedback platform for virtual reality neurosurgical simulation 

powered by artificial intelligence. The candidate is first author on this manuscript which is 

currently under the review of the PLoS One editorial board. As such, future work will focus on 
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applying this framework to the neural network presented herein followed by a validation study to 

test its effectiveness in improving surgical performance. 
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APPENDIX 

TABLES 

Table 1. Demographics information for three groups of participants performing the virtual 

reality surgical task. 

 
Post-Resident (9) Senior (5) Junior (7) 

Age (years) 

    Mean, SD 44.2 ±13.2 30.6 ±2.3 27.4 ±1.4 

Sex 

    Male 9 4 5 

    Female 0 1 2 

Level of Training 

    Neurosurgery Resident 

        PGY 1-3 - - 3 

        PGY 4-6 - 3 - 

    Orthopaedic Resident 

        PGY 1-3 - - 4 

        PGY 4-5 - 2 - 

    Spine Fellows 5 - - 

    Spine Surgeons 

        Neurosurgeons 2 - - 

        Orthopaedic Surgeons 2 - - 

Surgical knowledge of an ACDF (self-rated, Likert scale, 1 to 5) 

    Median (range) 5 (4-5) 3 (3-4) 3 (1-3) 
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Table 2. Metrics of performance for virtual reality simulation of anterior cervical 

discectomy scenario. 

Metric Category Metric List 

Safety 

Number of voxels (volume) removed from an anatomical structure 

 

Average force applied on anatomical structure 

 

Maximum force applied on anatomical structure 

Motion 

Velocity of instrument while in contact with the disc nucleus and disc 

annulus 

 

Acceleration of instrument while in contact with the disc nucleus and 

disc annulus 

 

Angles of instruments while in contact with disc nucleus and disc 

annulus 

 

Angular velocity of instruments while in contact with disc nucleus 

and disc annulus 

Efficiency 

Number of instrument contacts on an anatomical structure 

 

Number of instances a volume or an anatomical structure is removed 

with an instrument 

 

Amount of time an instrument spends in contact with an anatomical 

structure 

 

Total path travelled by an instrument while in contact with an 

anatomical structure 

Cognitive Instrument choice 
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Table 3: Selected metrics of performance for simulated discectomy. 

Category Label Description 

Safety 

Contacts_Dura Number of contacts with the spinal dura 

during discectomy 

VolumeRemoved_PLL_Right Volume of right posterior longitudinal 

ligament removed 

ForceMax_PLL_Left Maximum force applied on the left posterior 

longitudinal ligament 

ForceMax_DiscAnnulus_BoneCur

ette 

Maximum force applied on the disc annulus 

by the bone curette  

ForceMax_LVA_PitRongeur Maximum force applied on the left vertebral 

artery region by the pituitary rongeur 

Motion 

VelocityMean_DiscAnnulus_PitR

ongeur 

Average velocity of the pituitary rongeur 

while in contact with the disc annulus 

AccelerationNumZ_DiscAnnulus_

PitRongeur 

Number of accelerations of the pituitary 

rongeur along the anterior-posterior axis 

while in contact with the disc annulus 

AccelerationMaxY_DiscNucleus_

BoneCurette 

Maximum acceleration of the bone curette 

along the anterior-posterior axis while in 

contact with the disc nucleus 

PitchMean_DiscNucleus_BoneCu

rette 

Average pitch of the bone curette while in 

contact with the disc nucleus. Pitch is the 

rotation of the curette in up and down 

(scooping) motion. 

Efficiency 

ContactNumber_C5 Number of contacts on the C5 vertebra over 

the entire procedure 

CuttingNumber_C5_BoneCurette Number of contacts on the C5 vertebra 

using the bone curette 

ContactTime_LVA Amount of time spent in contact with the 

left vertebral artery region 

TTPLperStrokeY_DiscNucleus_D

iscRongeur 

Total length of individual strokes along the 

medial-lateral axis with disc rongeur while 

in contact with the disc nucleus 
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Table 4: Metrics of performance ranked by their relative importance for the Post-Resident 

group. 

Rank Category Metric Connection 
Weight 
Product 

Relative 
Importance 

(%) 

1 Safety Contacts_Dura -3.01 17.18 

2 Safety ForceMax_DiscAnnulus_BoneCurette 2.56 14.60 

3 Cognitive ToolChoice_BoneCurette 1.92 10.97 

4 Safety ForceMax_PLL_Left 1.91 10.93 

5 Efficiency TTPLperStrokeY_DiscNucleus_DiscRongeur 1.14 6.51 

6 Efficiency ContactTime_LVA 1.02 5.84 

7 Cognitive ToolChoice_PituitaryRongeur 0.89 5.11 

8 Motion VelocityMean_DiscAnnulus_PitRongeur 0.87 4.98 

9 Efficiency ContactNumber_C5 -0.81 4.63 

10 Motion AccelerationNumZ_DiscAnnulus_PitRongeur 0.78 4.43 

11 Cognitive ToolChoice_DiscRongeur 0.71 4.03 

12 Efficiency CuttingNumber_C5_BoneCurette -0.66 3.79 

13 Motion AccelerationMaxY_DiscNucleus_BoneCurette -0.38 2.16 

14 Safety VolumeRemoved_PLL_Right -0.35 1.98 

15 Motion PitchMean_DiscNucleus_BoneCurette 0.34 1.96 

16 Safety ForceMax_LVA_PitRongeur 0.16 0.89 
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Table 5: Metrics of performance ranked by their relative importance for the Senior group. 

Rank Category Metric Connection 
Weight 
Product 

Relative 
Importance 

(%) 

1 Safety Contacts_Dura 4.83 15.90 

2 Motion PitchMean_DiscNucleus_BoneCurette -4.65 15.31 

3 Safety ForceMax_PLL_Left 4.17 13.74 

4 Efficiency TTPLperStrokeY_DiscNucleus_DiscRongeur -3.16 10.39 

5 Cognitive ToolChoice_BoneCurette -3.03 9.97 

6 Safety ForceMax_DiscAnnulus_BoneCurette -2.68 8.82 

7 Cognitive ToolChoice_PituitaryRongeur -2.06 6.77 

8 Efficiency ContactTime_LVA -1.90 6.25 

9 Efficiency CuttingNumber_C5_BoneCurette -1.42 4.68 

10 Motion AccelerationNumZ_DiscAnnulus_PitRongeur -1.23 4.04 

11 Efficiency ContactNumber_C5 -0.42 1.39 

12 Motion AccelerationMaxY_DiscNucleus_BoneCurette -0.28 0.93 

13 Cognitive ToolChoice_DiscRongeur 0.26 0.86 

14 Safety ForceMax_LVA_PitRongeur 0.14 0.46 

15 Safety VolumeRemoved_PLL_Right -0.13 0.42 

16 Motion VelocityMean_DiscAnnulus_PitRongeur -0.02 0.07 
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Table 6: Metrics of performance ranked by their relative importance for the Junior group. 

Rank Category Metric Connection 
Weight 
Product 

Relative 
Importance 

(%) 

1 Safety ForceMax_PLL_Left -5.24 21.55 

2 Motion PitchMean_DiscNucleus_BoneCurette 5.14 21.13 

3 Safety Contacts_Dura -2.71 11.14 

4 Efficiency TTPLperStrokeY_DiscNucleus_DiscRongeur 1.75 7.18 

5 Cognitive ToolChoice_PituitaryRongeur 1.56 6.41 

6 Cognitive ToolChoice_BoneCurette 1.33 5.46 

7 Efficiency ContactNumber_C5 1.31 5.40 

8 Cognitive ToolChoice_DiscRongeur -1.06 4.36 

9 Motion AccelerationMaxY_DiscNucleus_BoneCurette -0.89 3.65 

10 Efficiency CuttingNumber_C5_BoneCurette 0.80 3.29 

11 Safety VolumeRemoved_PLL_Right -0.60 2.47 

12 Efficiency ContactTime_LVA 0.54 2.19 

13 Safety ForceMax_LVA_PitRongeur -0.48 1.98 

14 Safety ForceMax_DiscAnnulus_BoneCurette 0.34 1.41 

15 Motion VelocityMean_DiscAnnulus_PitRongeur -0.33 1.35 

16 Motion AccelerationNumZ_DiscAnnulus_PitRongeur -0.25 1.02 
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FIGURES

 

Figure 2: The virtual reality platform used to simulate an anterior cervical discectomy. (A) 

The Sim-Ortho platform, co-developed by OSSimTechTM and the AO Foundation is designed to 

simulate a number of surgical procedures. (B) A variety of instruments are available 

accompanied by a variety of different handles to simulate the feel of each instrument. (C) The 

participant holds the instrument in their dominant hand, receiving haptic feedback when 

interacting with anatomical structures. (D) The platform is built on a gaming engine providing 

very realistic 3D graphics. (E) The participant wears 3D glasses while interacting with the 

platform. 
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Figure 3: Methodology for the use of neural networks to assess expertise in a virtual reality 

surgical simulator. Users begin by performing the surgical task on the virtual reality platform. 

Raw data acquisition occurs as the platform creates large datasets for each instrument employed. 

All instrument datasets are combined into a single dataset. The large dataset can be used to 

generate metrics of performance for each participant. The new set of metrics can then undergo 

metric selection to narrow down a group of metrics able to differentiate levels of surgical 

expertise. The final metrics are then fed to the neural network for training and testing. 
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Figure 4: Simplified illustration of multi-layered perceptron used by the artificial neural 

network. Metrics of performance are inputs of the neural network represented by x. Each and 

every input is connected to a number of neurons in the hidden (middle) layer of the network, 

represented by y. The connection between each input and each neuron is supported by a weight 

(w) where a large magnitude of the weight means that the hidden neuron will be more sensitive 

to alterations in this specific input (x). Each neuron of the hidden layer is then connected to the 

three possible outputs, Post-Resident, Senior and Junior, represented by z1, z2 and z3, 

respectively. Similarly to the input layer, each neuron of the hidden layer is assigned a weight (v) 

to influence the output neurons. The output neuron with the value closest to 1 will be the neural 

network’s final decision. 
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Figure 5: Training and testing of artificial neural network. (A) The final set of metrics of 

performance from 21 participants is split into a training and testing set. (B) The training set is 

used to build an initial neural network. (C) The network predicts a group for each participant, 

and this prediction is compared to the true grouping of each respective participant. (D) A training 

accuracy is calculated based on how well the network output resembles the true training set 

grouping. This is based on calculating a cost function for the network, where a high cost 

represents poor performance. (E) If the neural network performed poorly, its hyperparameters are 

tuned according to a set of predefined rules in an attempt to reduce cost. This process repeats 

until the network’s cost reaches a minimum. (F) Following the iterative training process, the final 

trained network can now be exported and tested. The testing set, containing previously unseen 
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data, is fed to the network. (G) The network predicts a group for each participant in the testing 

set, and this prediction is compared to the true grouping of each respective participant. (H) The 

testing accuracy is calculated based on how well the network’s output resembles the true testing 

test grouping. Unlike training, this process is only done once. 
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Figure 6: Confusion matrices of the artificial neural network. (A) The training group 

correctly classified all participants into their respective groups reaching a 100% accuracy. (B) 

The testing group correctly classified 5 of the 6 participants reaching an accuracy of 83.3%. One 

participant belonging to the Post-Resident group was incorrectly classified in the Senior group. 
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Figure 7: Connection weight products of each group for metrics of performance for the 

virtual reality surgical simulation. The magnitude of the connection weight product represents 

the relative importance of the corresponding metric in the neural network’s decision to classify 

as participant in the corresponding group: Post-Resident (blue), Senior (red) and Junior (yellow). 

The sign of the connection weight product indicates whether a metric’s z-score value should be 

positive (if sign if positive) or negative (if sign is negative) to increase the likelihood of 

classification in the corresponding group. 
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Figure 8: Relative importance of each metric of performance in the classification of 

participants between three groups. The relative metric importance corresponds to the 

magnitude of the connection weight product for each metric of performance and its 

corresponding group: Post-Resident (blue), Senior (red) and Junior (yellow). A higher 

importance indicates that fluctuations in the respective metric have a larger influence on the 
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neural network’s decision to classify a participant in the respective group. The metrics are ranked 

from left to right according to descending importance for the Post-Resident group. 
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