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ABSTRACT In this article, a whale optimization-based neural synchronization has been proposed for the
development of the key exchange protocol. At the time of exchange of sensitive information, intruders can
effortlessly perform sniffing, spoofing, phishing, or Man-In-The-Middle (MITM) attack to tamper the vital
information. Information needs to be secretly transmitted with high level of encryption by preserving the
authentication, confidentiality, and integrity factors. Such stated requirements urge the researchers to develop
a neural network-based fast and robust security protocol. A special neural network structure called Double
Layer Tree Parity Machine (DLTPM) is proposed for neural synchronization. Two DLTPMs accept the
common input and different weight vectors and update the weights using neural learning rules by exchanging
their output. In some steps, it results in complete synchronization, and the weights of the twoDLTMs become
identical. These identical weights serve as a secret key. There is, however, hardly any research in the field
of neural weight vector optimization using a nature-inspired algorithm for faster neural synchronization.
In this article, whale optimization-based DLTPM is proposed. For faster synchronization, this proposed
DLTPM model uses a whale algorithm optimized weight vector. This proposed DLTPM model is faster
and has better security. This proposed technique has been passed through a series of parametric tests. The
results have been compared with some recent techniques. The results of the proposed technique have shown
effective and has robust potential.

INDEX TERMS Neural synchronization, tree parity machine (TPM), session key, neural network, mutual
learning, double layer tree parity machine (DLTPM), whale optimization.

I. INTRODUCTION

A Diffie and Hellman key distribution algorithm [1] is the
public-key exchange algorithm. It helps two communication
systems to agree on the same encryption key by exchang-
ing a key between them through an insecure medium. In a
number of fields such as identification, authentication, data
encryption and security, the secret keys are used. Innova-
tive methods for the generation/exchange of cryptographic
keys for a secure and low-cost protocol therefore must be
required. An attacker E is perhaps unable to deduce the
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secret while he may be able to follow the structure of the
algorithm. Chen et al. [2]; Liu et al. [3]; Chen et al. [4];
Wang et al. [5], [6]; Xiao et al. [7]; Zhang and Cao [8];
Wang et al. [9]; Dong et al. [10] described that the neu-
ral network synchronization approach offers the chance to
solve enormous exchange problems. Rosen-Zvi et al. [11];
Lakshmanan et al. [12] ; Ni and Paul [13] recently showed
that neural cryptography has the capability of achieving key
exchange through neural synchronization of Artificial Neural
Networks (ANN).

This proposed technique uses an ANN called the Dou-
ble Layer Tree Parity Machine (DLTPM). By generating
common inputs and sharing the outputs of such networks,
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two DLTPM networks of the same configurations will syn-
chronize and keep the synaptic weight secret between them.
Two users of A and B will create a cryptographic key that
is difficult for the attacker to infer, even though the attacker
is aware of the algorithm structure and the communication
channel. Since the method of neural synchronization requires
less computational power, neural cryptography is suitable for
the rapid exchange of information amongst communicators.
The rest of this article is organized accordingly. Section II

deals with related works. Section III deals with the proposed
methodology. Section IV, and V deal with security analysis
and the results respectively. Conclusions and future scopes
are given in section VI and references are given at the end.

II. RELATED WORKS

Rosen-Zvi et al. [11] and Kanter et al. [14] described that
upon training two ANNs by a specific learning law, the same
states of their internal synaptic weight are successfully devel-
oped. Kinzel and Kanter [15] and Ruttor et al. [16] identi-
fied that if the weight of the network increases, the attack
probability decreases and the assailant’s computational cost
grows exponentially as the user effort becomes polynomial.
Sarkar and Mandal [17] and Sarkar et al. [18]–[21] proposed
schemes to enhance the security of the protocol by improving
the synaptic depths of TPM and henceforth counteracting
the attacks of the brute strength of the attacker. It is found
that the amount of security provided by TPM synchroniza-
tion can also be improved by inserting a large collection of
neurons and entries of each neuron into the hidden layers.
Allam et al. [22] identified a previously shared secret authen-
tication algorithm. As a result, the algorithm obtains a very
high degree of security without increasing synchronization
time. Ruttor [23] described that lower values of the hidden
unit have negative safety implications. Klimov et al. [24]
calculated whether or not two networks synchronize their
weights. A frequency analysis technique was proposed by
Dolecki and Kozera [25] that enables two TPM networks
to be evaluated with a defined value that is not related to
their differences in synaptic weights before the synchro-
nization steps are completed. Santhanalakshmi et al. [26];
Dolecki and Kozera [27] evaluated the efficiency of coor-
dinated usage of genetic algorithm and the Gaussian dis-
tribution respectively. As a consequence, the substitution
of random weights with optimum weights reduces the syn-
chronization period. The timing distribution of the two
TPM networks is adapted from the Poisson distribution by
Dolecki and Kozera [27]. Pu et al. [28] developed an algo-
rithm that blends ‘‘true random sequences’’ with a TPM
network that demonstrates more complex dynamic behaviors
that increase the efficiency of encryption and resistance to
attacks. According to their study, the synaptic weight val-
ues of the TPM networks are generated in a secure, stan-
dardized, and distributed. In the light of rules leading to
the creation of TPM synchronization, Mu and Liao [29]
and Mu et al. [30] describes the heuristic of minimum

hamming distances. To test the security level of the final
TPM network structure, the hamming distance based heuris-
tic rule was used. Concerning improvements to initial TPM
network infrastructure, Gomez et al. [31] observed that the
synchronization period is reduced from 1.25 ms to less than
0.7 ms with an initial assignment of the weights between
15% to 20%. Niemiec [32] proposed a new concept for the
main quantity reconciliation process using TPM networks.
Dong andHuang [33] proposed a complex value-based neural
network for neural cryptography. Here all the inputs and
the outputs are complex value. But, this technique takes a
significant amount of time to complete the synchronization
process.

The issue of the current key exchange’s agreement can
be resolved using the proposed technique. This work pro-
poses changes to the TPM framework. The proposed DLTPM
approach uses two hidden layers. DLTPMs also take different
random weight vectors and share their outputs. For faster
synchronization of two DLTPMs, this article proposes opti-
mization of weight vector. This proposed methodology uses
a nature-inspired Whale optimization algorithm for weight
optimization to reduce the tuning time of two DLTPM net-
works for generating cryptographic keys for encryption pur-
poses. It results in complete synchronization after certain
steps by adjusting weights using traditional rules of learning.
In this way, two DLTPMs will generate a cryptographic key
that is difficult to guess for the attacker even when the algo-
rithm is known to the attacker. For the study of the proposed
method, various parametric tests are performed. Python is
used for the implementation of themethodology and R is used
for statistical analysis.

III. PROPOSED METHODOLOGY

A. OPTIMAL WEIGHT VECTOR GENERATION ALGORITHM

A whale based optimization [1], [34] is used on the weight
values of the DLTPM for faster synchronization. As the opti-
mal weights contribute to faster convergence, a greater weight
range can be taken into consideration to enhance the secu-
rity of existing TPM. Inspiration and foraging behaviors of
whales are considered in the whale optimization tehchnique.
Whales are the world’s largest mammals. Their intelligence
is due to the presence of spindle cells in brain. They do live in
groups, and they can develop their dialect. They have a spe-
cial hunting mechanism which is called bubble-net feeding
method. This foraging behavior is done by creating a special
bubble in a spiral shape. Humpback whales do know the best
location of their preys and are encircled. They do consider
the current best candidate solution is a best-obtained solution
and near to the optimal solution. Once the best candidate
solution has been assigned, the other agents try to update their
positions in close to the best search agent as shown in the
following equations 1 and 2.

R =
∣

∣Q.S∗ (itr) − S(itr)
∣

∣ (1)

S (itr + 1) = S∗ (itr) − P.R (2)
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where present iteration is represented by itr , coefficient vec-
tors are represented by P and Q, position vector of solution
and optimal solution is denoted by S and S∗ respectively.
P and Q are represented as P = 2x.y.x and Q = 2.y.
Here x and y are random vectors belonging to [0, 1]. x’s
components are decreasing linearly. Now the helix-shaped
movement of the humpback is designed and represented using
equation 3.

S (itr + 1) = R′.ez.m.cos (2πm) + S∗(itr) (3)

Here, R′ = |S∗ (itr) − S(itr)| is the difference between the
best and current solution, z is fixed value, m is a random
number in the interval [−1, +1]. In order to update the
positions of the whales, equation 4 is used.

S(itr + 1) =

{

S∗(itr) − P.R if n < 0.5

R′.ez.m.cos (2πm) + S∗(itr) if n ≥ 0.5
(4)

Here, n is an arbitrary number between 0 and 1. The
mathematical model of the exploration phase is given as
equation 5 and 6.

R = |Q.Srandom − S| (5)

S (itr + 1) = Srandom − P.R (6)

Here, the arbitrarily generated position vector is Srandom
which is selected from the current population. The fitness
of each whale has been evaluated using the following fitness
function given in equation 7.

f (S itri ) =

{

+κ or − κ if S itri < −κ or if S itri ≥ κ

weight2 if − κ ≤ S itri < κ
(7)

Here, κ is the weight range of DLTPM. The population
size and the maximum number of iterations considered in
this algorithm are 1000 and 100 respectively. The complete
process of optimal weight vector generation using whale
optimization is illustrated in algorithm 1.
Compared to the various metaheuristics’ algorithms, whale

optimization has the highest significance in terms of exploita-
tion capability, exploration capacity, ability to get rid of
local minima. When evaluated on unimodal functions, whale
optimization has a higher exploitation efficiency. It works
well on multimodal functions in exploration. Furthermore,
checking the optimization of whales on composite functions
can be seen as the ideal way to stabilise exploration and
exploitation. The optimization of whales has an important
exploration potential due to the use of the position updat-
ing process of whales. Whales must be arbitrarily shifted
around each other in the initial phase of the algorithm. The
whales easily update their locations in the next steps and
travel down a spiral-shaped path in the direction of the best
route that has been discovered so far. Although these two
steps are conducted separately and in half iteration each,
the optimization of whales prevents local optima and reaches
convergence speed across the iterations at the same time.

Algorithm 1

Input: Set the parameters PopulationSize(sz). Parameter(x).
CoefficientVector(P,Q). MaximumIteration(Maxitr ).

Output: The best weight vector (whale) for neural synchro-
nization.
Initialisation : counter itr := 0.

1: for i = 1 to i <= sz do

{/*Initial population of weight vector*/}
2: Generate an initial population of weight (whale) S itri

randomly
3: Fitness function for each weight (whale) is evaluated

using f (S itri )
4: end for

5: Assign the best search agent S∗
i (itr)

6: repeat

7: Set itr = itr + 1
8: for i = 1 to i <= sz do

9: Update x, P, Q, m, n
10: if n < 0.5 then
11: if |P| < 1 then
12: Update the current search agent position S itri by

S (itr + 1) = S∗ -P.R

13: else

14: if |P| ≥ 1 then
15: Choose an arbitrary search agent Sr (itr)
16: Update the position of the current search

agent S itri by S(itr + 1) = Srandom − P.R

17: end if

18: end if

19: else

20: if n ≥ 0.5 then
21: Update the position of the currrent search agent

S itri by S(itr+1) = R′.ez.m.cos(2πm)+S∗(itr)
22: end if

23: Fitness function for each weight (whale) is eval-
uated by f (S itri )

24: end if

25: end for

26: Replace S∗ with a better solution (if found)
27: until itr > Maxitr
28: Produce the best solution vector S∗ as optimal weight for

DLTPM

It can also be said that whale optimization will improve
the speed of convergence during iterations, whereas most
optimization algorithms (such as PSO and GSA) do not
have operators to dedicate a particular iteration to explo-
ration or exploitation because they use only one format to
change the location of search agents. It is fair to assume
that whale optimization achieves convergence speed and pre-
vents local optima by iterations at the same time due to the
presence of two different phases (exploration and exploita-
tion). In each iteration, all explorations and exploitations are
achieved.
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FIGURE 1. Flow diagram of the DLTPM synchronization.

B. DOUBLE LAYER TREE PARITY MACHINES

SYNCHRONIZATION

The proposed neural network DLTPM is composed of M
no. of input neurons for each H no. of hidden neurons.
DLTPM has only one neuron in its output. DLTPM works
with binary input, αu,v ∈ {−1, +1}. The mapping between
input and output is described by the discrete weight value
between −κ and +κ , βu,v ∈ {−κ, −κ + 1, . . . ,+κ}.

Figure 1 displays the flow diagram of the DLTPM synchro-
nization and explains each step of it.
1) Step of initialization: Let us suppose Arindam(A) and

Marjit(B) initialize the same parameters of their tree
parity unit. Then the weights are generated randomly
and their weights are initialized.

2) The phase of estimation: The identical input vector is
obtained by Arindam and Marjit at each learning stage.
They calculate the tree paritymachines’ output and give
each other the result.

3) Step of upgrading: They then evaluate if the two
outputs are identical after they obtain another party’s
output. Arindam and Marjit will adjust the respective
weight vector according to basic learning laws. Other-
wise, the estimation process will be done.

4) Step of evaluation:Arindam andMarjit must determine
if maximum synchronization is achieved if the weights
are updating successfully. The protocol goes into the
next step if the complete synchronization is achieved.
Otherwise, the estimation process will be done.

5) Finishing process: Arindam and Marjit are producing
their keys by weight. They’re finishing the neural key
exchange process.

Table 1 lists the variables used in this DLTPM technique.
In DLTPM u-th hidden unit is described by the index u =

1, . . . ,H and that of v = 1, . . . ,M denotes input neuron
corresponding to the u-th hidden neuron of the DLTPM.

TABLE 1. Symbol Description of DLTPM.

Consider there areH1,H2 numbers of hidden units in the first
and second hidden layers respectively. Each hidden unit of the
first layer calculates its output by performing the weighted
sum over the present state of inputs on that particular hidden
unit. Similarly, each hidden unit of the second layer calculates
its output by performing the weighted sum over the hidden
units of first layer on that particular hidden unit. The calcula-
tion for the first hidden layer is given by equation 8.

hu =
1

√
M

αu.βu

=
1

√
M

M
∑

v=1

αu,vβu,v (8)

signum(hu) define the output γu of the u-th hidden unit.
(in equation 9),

γu = signum(hu) (9)

If hu = 0 then γu is set to −1 to make the output in binary
form. If hu > 0 then γu is mapped to +1, which represents
that the hidden unit is active. If γu = −1 then it denotes that
the hidden unit is inactive (in equation 10).

signum(hu) =

{

−1 if hu ≤ 0

+1 if hu > 0
(10)

The product of the hidden neurons of the third layer denotes
the ultimate result of DLTPM. This is represented by ζ is
(in equation 11),

ζ =
∏H2

u=1
γu (11)

The value of ζ is mapped in the following way
(in equation 12),

ζ =

{

−1 if γu = −1, is odd

+1 if γu = −1, is even
(12)

ζ = γ1, if only one hidden unit (H = 1) is there. ζ value can
be the same for 2H−1 different (γ1, γ2,...,γH ) representations.
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If the output of two parties disagrees, ζA 6= ζB, then
no update is allowed on the weights. Otherwise, follow the
following rules:
TPM be trained from each other using Hebbian learning

rule [15] (in equation 13).

β+
u,v = fn(βu,v + αu,vζ2(γuζ )2(ζAζB)) (13)

In the Anti-Hebbian learning rule, both TPM is learned with
the reverse of their output [15] (in equation 14).

β+
u,v = fn(βu,v − αu,vζ2(γuζ )2(ζAζB)) (14)

If the set value of the output is not imperative for tuning given
that it is similar for all participating TPM then random-walk
learning rule, is used (in equation 15).

β+
u,v = fn(βu,v + αu,v2(γuζ )2(ζAζB)) (15)

If X = Y then 2 (X ,Y ) = 1 Otherwise, if X 6= Y then
2 (X ,Y ) = 0. Only weights are updated which are in hidden
units with γu = ζ . fn(β) is used for each learning rule (in
equation 16).

fn(β) =

{

signum(β)κ for |β| > κ

β otherwise
(16)

The likelihood distribution of the weight values in u-th hid-
den neuron of two DLTPM is represented by (2κ + 1)
(in equation 17).

pbua,b = P(βAu,v = a ∧ βBu,v = b) (17)

The standard order parameters [35] can be calculated as
functions of pbua,b shown in equation 18, 19, and 20.

QAu =
1

M
βAUβAU

=
∑κ

a=−κ

∑κ

b=−κ
a2 pbua,b (18)

QBu =
1

M
βBUβBU

=
∑κ

a=−κ

∑κ

b=−κ
b2 pbua,b (19)

QABu =
1

M
βAUβBU

=
∑κ

a=−κ

∑κ

b=−κ
ab pbua,b (20)

Tuning is represented by the normalized overlap [35] given
in equation 21.

ρABu =
βAu

√

βAu .βAu

βBu
√

βBu .βBu

=
RABu

√

QAu .Q
B
u

(21)

Calculate the entropy [36] using equation 22.

SABu = −M
∑κ

a=−κ

∑κ

b=−κ
pbua,b ln pbua,b (22)

The weight’s entropy in a single hidden neuron is represented
by equations 23 and 24.

SAu = −M
∑κ

a=−κ

(

∑κ

b=−κ
pbua,b

)

ln
(

∑κ

b=−κ
pbua,b

)

(23)

SBu = −M
∑κ

b=−κ

(

∑κ

a=−κ
pbua,b

)

ln
(

∑κ

a=−κ
pbua,b

)

(24)

Using equations 22, 23, and 24 the common information [36]
of A’s and B’s represented using equation 25.

InAB =
∑H

u=1

(

SAu + SBu − SABu

)

(25)

The likelihood to observe γuαu,v = +1 or γuαu,v = −1
are not equal, but depend on the related weight βu,v
(in equation 26).

P
(

γuαu,v = 1
)

=
1

2



1 + erf





βu,v
√

MQu − β2
u,v







 (26)

γuαu,v = signum(βu,v) occurs more frequently than γuαu,v =
−signum(βu,v), the stationary likelihood distribution of the
weights for t → ∞, is computed using equation 19 for
the transition likelihood [16]. This is represented using
equation 27.

P
(

βu,v = β
)

= p0
∏|β|

i=1

1 + erf

(

i−1√
MQu−(i−1)2

)

1 − erf

(

i√
MQu−i2

) (27)

Here the normalization constant p0 is given by equation 28.

p0 =









∑κ

β=−κ

∏|β|

i=1

1 + erf

(

i−1√
MQu−(i−1)2

)

1 − erf

(

i√
MQu−i2

)









−1

(28)

ForM → ∞, the parameter of the error functions will not be
considered so that the weights remain consistent as shown in
equation 29.

√

Qu(t = 0) =
√

κ(κ + 1)

3
(29)

Otherwise, if M is finite, the likelihood distribution rep-
resented using order parameter Qu will be as shown in
equation 30.

Qu =
∑κ

β=−κ
β2P

(

βu,v = β
)

(30)

Intensifying it in terms of M−1/2 results in equation 31.

Qu =
κ(κ + 1)

3
+

8κ4 + 16κ3 − 10κ2 − 18κ + 9

15
√
3πκ(κ + 1)

1
√
M

+O

(

κ4

M

)

(31)
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In the case of 1 ≪ κ ≪
√
M , the asymptotic performance of

the order parameter is represented using equation 32.

Qu ∼
κ(κ + 1)

3

(

1 +
8

5
√
3π

κ
√
M

)

(32)

First-order approximation of Qu is given by equation 33.

Qu =
κ(κ + 1)

3
−

8κ4 + 16κ3 − 10κ2 − 18κ + 9

15
√
3πκ(κ + 1)

1
√
M

+O

(

κ4

M

)

(33)

This systematically converges to equation 34.

Qu ∼
κ(κ + 1)

3

(

1 −
8

5
√
3π

κ
√
M

)

(34)

If ζA = ζB, but γ Au 6= γ Bu , the weight of one hidden neuron
is changed. The weights execute an anisotropic diffusion in
case of attractive steps that takes to equation 35.

pbu+a,b =
1

2

(

pbua+1,b+1 + pbua−1,b−1

)

(35)

Repulsive steps, as an alternative, are equal to normal diffu-
sion steps (in equation 36)

pbu+a,b =
1

4

(

pbua+1,b + pbua−1,b + pbua,b+1 + pbua,b−1

)

(36)

on the same lattice. △ρsattr (ρ) and △ρsrepu(ρ) are random
variables. △ρsattr and △ρsrepu are the step size for attractive
and repulsive respectively as shown in equations 37 and 38.

△ρsattr =
3

κ (κ + 1)
(1−

∑+κ

v=−κ
(2v+ 2) pbκ,v + pbκ,κ )

(37)

△ρsrepu = −
3

κ (κ + 1)

(

∑+κ

v=−κ

v

2

(

pbκ,j − pb−κ,v

)

)

(38)

At the initial state of the synchronization, it has its highest
effect (in equation 39),

△ρsattr (ρ = 0) =
12κ

(κ + 1) (2κ + 1)2
∼

3

κ2
(39)

Weights are uncorrelated as shown in equation 40.

pba,b (ρ = 0) =
1

(2κ + 1)2
(40)

Highest consequence (in equation 41)

△ρsrepu (ρ = 1) =
3

(κ + 1) (2κ + 1)
∼ −

3

2κ2
(41)

is achieved for complete harmonized weights
(in equation 42).

pba,b(ρ = 1) =

{

(2κ + 1)−1 for a = b

0 for a 6= b
(42)

The weights are updated if ζA = ζB. ǫu is the generalization
error. In common overlap for H hidden neurons, ǫu = ǫ,
the likelihood is represented using equation 43.

Pbid = Pb
(

ζA = ζB
)

=
H/2
∑

u=0

(

H

2u

)

(1 − ǫ)H−2u ǫ2u (43)

For synchronization of DLTPM with H > 1, the likelihood
of attractive as well as repulsive are represented using by
equations 44 and 45.

PbBattr =
1

2Pbid

(

H−1
2

)

∑

u=0

(

H − 1

2u

)

(1 − ǫ)H−2u ǫ2u (44)

PbBrepu =
1

Pbid

H/2
∑

u=1

(

H − 1

2u− 1

)

(1 − ǫ)H−2u ǫ2u (45)

For H = 3, this leads to equations 46 and 47.

PbBattr =
1

2

(1 − ǫ)3 + (1 − ǫ)ǫ2

(1 − ǫ)3 + 3(1 − ǫ)ǫ2
(46)

PbBrepu =
2(1 − ǫ)ǫ2

(1 − ǫ)3 + 3(1 − ǫ)ǫ2
(47)

Harmonization time Tmr,s for the two randomwalk beginning
at position s and distance r , Rfr,s is the time of the first
reflection. Tmr,s is given by equation 48.

Tmr,s = Rfr,s +
r−1
∑

v=1

Rfv,1 (48)

Replacing equation 41 with equation 48 leads to equation 49.
〈

Tmr,s
〉

= 〈m− r + 1〉 s− s2 +
1

2
(r − 1)(2m− r) (49)

Tuning time Tm for arbitrarily selected beginning positions of
the 2 random walks represented using equations 50 and 51.

〈Tm〉 =
2

m2

m−1
∑

r=1

m−r
∑

s=1

〈

Tmr,s
〉

=
(m− 1)2

3
+

(m− 1)

3m
(50)

〈

Tm2
〉

=
2

m2

m−1
∑

r=1

m−r
∑

s=1

〈

Tm2
r,s

〉

=
(17m5 − 51m4 + 65m3 − 45m2 + 8m+ 6)

90m
(51)

The mean attractive steps needed to achieve a harmonized
state increases nearly proportional to m2 (equation 52).

〈Tm〉 ∼
1

3m2
∼

4

3κ2
(52)

This result is fixed with the scaling performance
〈tmsynch〉 ∝ κ2 found for TPM harmonization.

The standard deviation of Tm is shown in equation 53.

SDTm=

√

(7m6 − 11m5−15m4+55m3 − 72m2+46m−10)

90m2

(53)

16440 VOLUME 9, 2021



A. Sarkar et al.: Artificial Neural Synchronization Using Nature Inspired Whale Optimization

Here, system size m = 2κ + 1. SDTm is proportional
asymptotically to 〈Tm〉 (equation 54).

SDTm ∼
√

7

10
〈Tm〉 (54)

IV. SECURITY ANALYSIS

A. GEOMETRIC ATTACK

In this proposed technique a geometric attack is considered
on DLTPM. The likelihood of γ Eu 6= γ Au is represented using
the prediction error [37] using equation 55,

εpu =
1

2

[

1 − erf

(

ρu
√

2(1 − ρ2
u

|hu|√
Qu

)]

(55)

of the perceptron. When the u-th hidden neuron does not
agree and rest of all hidden units has a condition of γ Ev 6= γ Av ,
then the likelihood of a modification using the geometric
attack is shown using equation 56.

P+
k =

∫ ∞

0

(

2
√
2πQ

)H (∫ ∞

hu

1 − ǫP(h)

1 − ǫ
e
− h2

2Q dh

)H−k

×
(∫ ∞

hu

ǫP(h)

ǫ
e
− h2

2Q dh

)k−1
ǫP(hu)

ǫ
e
− h2u

2Q dhu (56)

For identical order parameters Q = QEv and R = RAEj
and various outputs γ Av 6= γ Ev . Then the likelihood for a
modification of γ Eu 6= γ Au is shown using equation 57.

P+
k =

∫ ∞

0

(

2
√
2πQ

)H (∫ ∞

hu

1 − ǫP(h)

1 − ǫ
e
− h2

2Q dh

)H−k

×
(∫ ∞

hu

ǫP(h)

ǫ
e
− h2

2Q dh

)k−1
ǫP(hu)

ǫ
e
− h2

2Q dhu (57)

Using the same equation the likelihood for an incorrect
modification of γ Eu = γ Au is shown with the help of
equation 58.

P−
k =

∫ ∞

0

(

2
√
2πQ

)K (∫ ∞

hi

1 − ǫP(h)

1 − ǫ
e
− h2

2Q dh

)K−k−1‘

×
(∫ ∞

hi

ǫP(h)

ǫ
e
− h2

2Q dh

)k
1 − ǫP(hu)

1 − ǫ
e
− h2u

2Q dhu (58)

γ Eu 6= γ Au condition is satisfied and in total there is an even
number of hidden units that satisfied this condition then no
geometric modification is done. Equation 59 represents this.

PEr,1 =
∑H/2

u=1

(

H − 1

2u− 1

)

(1 − ǫ)H−2u ǫ2u (59)

Second part of PEr can be represented using equation 60.

PEr,2 =
∑H/2

u=1

(

H − 1

2u− 1

)

P−
2u−1 (1 − ǫ)H−2u+1 ǫ2u−1 (60)

Third part of PEr can be represented using equation 61.

PEr,3 =
∑(H−1)/2

u=1

(

H−1

2u

)

(

1−P+
2u+1

)

(1 − ǫ)−2u−1 ǫ2u+1

(61)

If H > 1 then the probability value of attractive steps and
repulsive steps in the u-th hidden unit are represented using
equations 62 and 63.

PEa =
1

2

(

1 −
3
∑

v=1

PEr,v

)

(62)

PEr =
∑3

v=1
PEr,v (63)

Attractive steps are performed when H = 1. If H = 3
probability value can be calculated using equation 56, that
forms equation 64 and 65.

PEa =
1

2

(

1 + 2Pg
)

(1 − ǫ)2 ǫ

+
1

2
(1 − ǫ)3 +

1

2
(1 − ǫ)2 +

1

6
ǫ3 (64)

PEr = 2
(

1 − Pg
)

(1 − ǫ)2 ǫ + 2 (1 − ǫ) ǫ2 +
2

3
ǫ3 (65)

B. SECRET KEY SPACE ANALYSIS

Consider n number of cascading encryption/decryption tech-
nique is used to encrypt/decrypt the plaintext with the help
of neural synchronized session key. Then a session key of
length [(number of cascaded encryption technique in bits) +
(three bits combinations of encryption/ decryption technique
index) + (length of n number of encryption/decryption keys
in bits) + (length of n number of session keys in bits)]
i.e. [ 8 + (3 × n) + (128 × n) + (128 × n) ] bits to
[ 8 + (3 × n) + (256 × n) + (256 × n)] number of bits.
So,

[ 8 + (3 × n) + (128 × n) + (128 × n)]

8

=
[

1 +
(3 × n)

8
+ 16n+ 16n

]

= 32n to

[ 8 + (3 × n) + (256 × n) + (256 × n)]

8

=
[

1 +
(3 × n)

8
+ 32n+ 32n

]

= 64n numbers of characters.
Therefore, the total number of keys = 25664n. Attacker

checks with half of the possible keys on an average, the time
needed at 1 decryption/ µs = 0.5×25664n µs = 0.5×28×64n

µs = 0.5 × 2512n µs = 2(512n−1) µs.
Consider any single encryption using the neural key of

size 512 bits which is hypothetically approved and needed
to be analyzed in the context of the time taken to crack
a ciphertext with the help of the fastest supercomputers
available at present. In this neural technique to crack a
ciphertext, the number of permutation combinations on the
neural key is 2512 = 1.340780 × 10154 trials for a size
of 512 bits only. IBM Summit at Oak Ridge, U.S. invented
the fastest supercomputer in the world with 148.6 PFLOPS
i.e. means 148.6 × 1015 floating-point computing/second.
Certainly, it can be considered that each trial may require
1, 000 FLOPS to undergo its operations. Hence, the total test
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TABLE 2. Time Taken for Brute Force Attack.

TABLE 3. Comparison of p_Value Between Proposed DLTPM and the
Existing CVTPM.

needed per second is 148.6× 1012. No. of seconds in a year
= 365 × 24 × 60 × 60 = 31, 536, 000 sec. Total number of
years for Brute Force attack: (1.340780 × 10154)/(148.6 ×
1012×31, 536, 000) = 2.86109×10132years. Table 2 shows
how much time is involved for the brute force attack using
IBM Summit Supercomputer at Oak Ridge with a speed
of 148.6 PFLOPS.

V. RESULTS AND ANALYSIS

For results and simulation purposes, the Intel Core i7 10th
Generation processor, 2.6 GHz, 16 GB RAM is used. In the
proposed transmission technique, true randomness is assured
by qualifying the fifteen tests found in the NIST statis-
tical tests [38] suite. For such a proposed approach with
elevated robustness, these tests are very useful. The accep-
tance or rejection of the input vector is determined by a
probability value (p-Value). Table 3 contains the results of
NIST statistical tests [38] on the generated random input
vector. The p-Value comparison between the proposed and
the existing CVTPM(Complex Valued TPM) system is also
present in this table [33]. From the table, it was shown that
the p-Value of the proposed technique surpassed CVTPM in
the NIST statistical test.

The result of the frequency test indicates a ratio of 0 and 1
in the generated random sequence. Here, the value of the

TABLE 4. Comparison of p_Value of NIST Frequency Test.

FIGURE 2. Shows how the probabilities differ with H1 − H2 − M − κ

values.

frequency test is 0.572896 which is quite average [39] and
better than the result of frequency test 0.1329 in [40], and
0.632558 in [41] 0.629806 in [42]. A comparison of p_Value
of NIST frequency test is given in Table 4.

The results of different H1−H2−M − κ simulations are
shown in Table 5. The number of minimum and maximum
synchronization steps shows several minimum and maxi-
mum steps to synchronize the weights of the two networks.
The column for the average steps represents the sum of
all the simulations performed. The minimum and maximum
time synchronization columns shall signify the minimum and
maximum time in seconds needed to synchronize the weights
of the two networks. Effective synchronization of the attacker
column E reveals how many times the attacking network
has been imitating the actions of the other two networks
for complete simulations. Finally, the percentage of effective
synchronization of the attacker column E (%) successfully
indicates the percentage of total simulations shown in the
previous column.
As shown in Table 5, the combinations (8-8-16-8) and

(8-8-8-128), respectively, are the best results for defense
against the attacking network. E did not mimic the actions
of A and B’s DLTPM in any of the 500,000 simulations. The
best combination of values for the trio was determined from
Table 6 (8-8-16-8).
This is evaluated from Table 5 that the success probability

of the attacking network depends on the H1 − H2 −M − κ

combination. With all possible combinations, their respective
probabilities have been established. Using the Octave GNU
scatter3 function, a scatter diagram was drawn to do this.
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TABLE 5. Results After 500,000 Simulations With Different Values of
H1 − H2 − M − κ .

TABLE 6. Results After 1000,000 Simulations for the (8-8-16-8) and
(8-8-8-128) Combinations.

The proposed approach starts with values like H1 − H2 −
M − κ and the probability of the attacker’s success in any
combination. By using a different combination ofH1−H2−
M − κ values, we then draw a 3D dispersion diagram. The
scale of each point plotted here is 16. The probabilities
describe the likelihood value of each color dot (see Figure 2).
To enhance visualization, the Z-axis ( κ ) scale to a log-
arithmic one. The xlabel , ylabel and zlabel are
assigned to their corresponding values H1 − H2 − M − κ

respectively. Figure 2 shows how the probabilities differ with
a different combination ofH1−H2−M−κ values. Each point

FIGURE 3. 128-bit session key generation with variable DLTPM
architecture and fixed synaptic depth.

color displays the attacking network’s probability of success.
Good is a small likelihood (Blue), while bad is a high prob-
ability (Red). The value of hidden neuron influences prob-
ability greatly, shown in figure 2. A high value of M and a
very small value of ( κ ) has an adverse impact. Therefore,
a fairly low value of M is suggested for proposing values of
H1 −H2 −M − κ , but M value must be higher than hidden
neuron value. ( κ ) value shouldn’t be too low. It means that
a successful passive assault is quite unlikely.
Figure 3 shows that several DLTPM configurations

(in terms of different neurons in different layers) can be used
to generate a 128-bit session key with a fixed weight range
(κ) = 5. Weight value acts as a key to the session. Among
the three learning rules, Hebbian rules outperform two other
rules when the network size is small.

FIGURE 4. Generation of 256-bit session key using different weight
Range to and fixed number of neurons in input and hidden layer.

In the following Figure 4, the graph shows a trend towards
increase in the synchronization steps as the range for weight
range κ increases for a fixed number of neurons in input and
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FIGURE 5. Generation of 512-bit session key using fixed κ = 5 and
different number of neurons in input and hidden layer.

FIGURE 6. Weight distribution in Hebbian learning rule with weight range
κ = 5.

hidden layers in all three learning rules for generation of a
session key of 256-bit. For small κ values Hebbian takes
less synchronization steps than other two learning rules in
the range of 2-4-2-5 to 2-4-2-15 but as the κ value increases
Hebbian rule takes more steps to synchronize than other
two learning rules. Here, Anti-Hebbian rules take less time
than Hebbian and Random Walk learning rules in the range
of 2-4-2-20 to 2-4-2-30. Random Walk outperforms from

FIGURE 7. Weight distribution in random walk learning rule with weight
range κ = 5.

TABLE 7. Comparison of Synchronization Time for Fixed Network Size
and Variable Learning Rules and Synaptic Depth in Proposed DLTPM and
Existing CVTPM Method.

2-4-2-35 and beyond that. Themost vital findings is that if the
synaptic depth i.e. weight range κ is increased, the complexity
of a successful attack grows exponentially, but there is only a
polynomial increase of the effort needed to generate a key. So,
increasing the κ value security of the system can be increased.

Figure 5 shows the synchronization time needed for differ-
ent DLTPM configurations with a fixed weight range κ = 5.
It shows the comparisons of synchronization time to generate
the 512-bit session key using fixed κ = 5 and different
number of neurons in input and hidden layers. Among the
three learning rules, here also it is observed that Random
Walk rules outperform the other two rules for large size of
network.
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Figure 6 shows the weight distribution in Hebbian learning
rule with weight range κ = 5.

In Random Walk, the weights are well distributed as
the Hebbian and Anti-Hebbian rules shown in Figure 7.
So, a network with a size greater than 256, Random Walk
makes synchronization faster, but for this range Hebbian and
Anti-Hebbian take a lot more synchronization steps.
Table 7 provides a comparison of synchronization time

for fixed network size and variable learning rules and κ in
the proposed DLTPM and the existing CVTPM methods.
Table 7 shows a trend towards an increase in synchronization
steps as the range of weights κ rises in all three learning rules.
For small κ values, Hebbian takes fewer synchronization
steps than the other two learning rules, but as the κ value
increases then more steps are taken to synchronize than the
others. Here, the Anti-Hebbian requires less time than the
other two learning rules for mid κ values. Random Walk
outperforms for high κ values.

VI. CONCLUSION AND FUTURE SCOPE

For the cryptographic public-key exchange protocol, this arti-
cle proposes the synchronization of Double Hidden Layer
Neural Networks using nature-inspired whale optimization.
For the generation of different key lengths using the neural
synchronization process, various combinations ofH1,H2,M
and κ with variable network sizes are considered. The arti-
cle analyses the optimization of the weight vector of two
DLTPMs using whale optimization algorithms for faster syn-
chronization. DLTPM’s security and synchronization time
is also examined. It has been shown that geometric attacks
have a lower rate of success. It has been found that DLTPM
security is higher than the current TPM with the same set
of parameters. Finally, in order to verify the experimental
findings, a variety of outcomes and evaluations are carried
out. A more detailed risk evaluation is expected for future
studies to be carried out. In addition, for the optimization of
weights for faster neural synchronization purposes, various
nature-inspired optimization algorithms will be considered.
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