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ABSTRACT With the development of technology, the

learning and memory functions of artificial memristor sy-

napses are necessary for realizing artificial neural networks

and neural neuromorphic computing. Owing to their high

scalability performance, nanosheet materials have been widely

employed in cellular-level learning, but the behaviors of no-

ciceptor based on nanosheet materials have rarely been stu-

died. Here, we present a memristor with an Al/TiO2/Pt

structure. After electroforming, the memristor device showed

a gradual conductance regulation and could simulate synaptic

functions such as the potentiation and depression of synaptic

weights. We also designed a new scheme that verifies the pain

sensitization, desensitization, allodynia, and hyperalgesia be-

haviors of real nociceptors in the fabricated memristor.

Memristors with these behaviors can significantly improve the

quality of intelligent electronic devices. Data fitting showed

that the high resistance and low resistance states were con-

sistent with the hopping conduction mechanism. This work

promises the application of TiO2-based devices in next-gen-

eration neuromorphological systems.

Keywords: nanosheets, nociceptor, memristors, artificial sy-

napses, sensitization

INTRODUCTION
In-depth studies of intelligent electronic equipment have
revealed the disadvantages of traditional Von Neumann
architecture in data processing, power consumption, and
other areas. The separation of storage and computation in
traditional systems, which has hindered the development
of neuromorphological research [1,2], is expected to be
resolved by memristors. As a burgeoning technology,
memristors can equip neuromorphological systems with

excellent data-handling capacity, low power consump-
tion, high density, and convenient configuration; more-
over, they are similar to biological synapses [3–6]. In
previous studies, the memristor functional layer is com-
posed of oxide materials, which impose challenges such as
reducing the size of the device [7–12]. Recently, TiO2

films have demonstrated good electrical properties as well
as excellent thermal and chemical stability; moreover,
colloidal suspensions of TiO2 can be manufactured over
large areas [13]. However, memristors based on oxide
nanosheets are currently immature, and their underlying
physical mechanism has not yet been clarified. In this
work, memristor devices are fabricated from colloidal
suspensions of TiO2.
The applications of memristor have gradually diversi-

fied into various bionic devices. One research direction is
humanoid robots that imitate the human sensory system
[14,15]. Pain is an unpleasant bodily response to a
harmful stimulation. More specifically, strong noxious
stimulations activate the nociceptors in the body, which
transmit pain information to the central nervous system
[16]. Accordingly, nociceptors are among the most im-
portant receptor types. In the present study, a nociceptor
is artificially represented by a memristor. After a strong
stimulation, the artificial nociceptor is damaged and
shows sensitive behavior, followed by desensitization
behavior with the increase of stimulus interval. These
behaviors are described in detail later.
In this work, TiO2 films were fabricated using a low-

cost method based on simple spin coating. Unlike other
preparation methods such as physical-vapor, chemical-
vapor, and atomic-layer depositions, our preparation in-
volves no complex experimental steps. The device shows
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basic memristor characteristics under direct voltage, and
the resistance of the device can be modulated by an ex-
ternal stimulus (voltage pulses). Besides achieving some
basic synaptic plasticity, the devices exhibit nociceptor-
like responses that depend on the intensity, duration, and
frequency of the external stimuli [17]. In previous reports
of memristor-based artificial nociceptors, verification was
performed using a complex and cumbersome process
[18]. Here, we verify the nociceptor behavior using a new
and facile principle. Similar to the biological behavior, the
response sensitivity of our device increases with increas-
ing strength of the stimulus and decreases with increasing
stimulation interval (the latter behavior is synonymous
with desensitization). Our work demonstrates the po-
tential of TiO2 in bionic research and will encourage the
exploration of memristor-based complex learning and
memory functions.

EXPERIMENTAL SECTION

Preparation of TiO2 nanosheets

We first prepared layered potassium-lithium-titanate
(K0.8[Ti1.73Li0.27]O4) using a high-temperature solid-phase
growth method [19]. The mixture containing TiO2,
K2CO3, and Li2CO3 were placed in a Pt crucible and re-
acted at 1173 K for 20 h. The molar ratio of the mixture
was 10.4:2.4:0.8. The titanium microcrystals of K0.8[Ti1.73-
Li0.27]O4 were leached in hydrochloric acid and recycled
and converted into proton form. During the leaching
process, the crystals were immersed in 0.5 mol L

−3
hy-

drochloric acid solution at room temperature for two
days. Then, the hydrochloric acid solution was replaced
with a fresh hydrochloric acid solution. The protonated
product H1.07Ti1.73O4 was filtered, collected, washed, and
air-dried. To produce the single-layer titanium dioxide
dispersion, the protonated titanate polycrystals were
dipped into a tetramethyl ammonium hydroxide solution
((CH3)4NOH, TMAOH) at a concentration equivalent to
1:1 for the exchangeable protons in the initial titanate.
The solid-soluble ratio was 4 g L

−1
.

Fabrication of the Al/TiO2/Pt device

The memristor was fabricated via physical adsorption and
magnetron sputtering. First, the colloidal suspension of
TiO2 was coated on cleaned Pt and dried in the air. After
this operation was repeated five times, Al layer with a
thickness of 60 nm was deposited on the sample via radio
frequency (RF) magnetron sputtering (at an RF power of
10 W at 3 Pa in an Ar atmosphere of 25 SCCM). Fig. S1
shows a cross-sectional view of the device.

Characterization

The current-voltage (I-V) characteristics of the fabricated
memristor were measured at room temperature using a
Keithley 2400 source meter. The pulse sequences were
generated using an Agilent 33250A signal generator and
the output waveform was collected by an LeCroy Wa-
veRunner 62Xi oscilloscope.

RESULTS AND DISCUSSION
Fig. 1a, b show an atomic force microscopy (AFM) image
and a transmission electron microscopy (TEM) image of
the TiO2 nanosheets, respectively. The Al/TiO2/Pt mem-
ristive devices exhibit typical bipolar-type switching
characteristics (Fig. 1c; the inset shows the structure of
the device). Before the resistance switching was stabilized,
the device was electroformed under a high negative bias,
causing soft breakdown of the materials and producing
many vacancy defects (Fig. S2) [20–22]. Partial positive
and negative I–V curves of the memristor are shown in
Fig. S3. The high-resistance (HRS) and low-resistance
(LRS) states were obtained after 100 repeated tests
(Fig. 1d).
Biologically speaking, the different reactions of sy-

napses to different external stimuli are considered to play
a crucial part in information extraction [23]. Because the
response of our device to voltage pulses is needed for
realizing synaptic function [24], we investigated the
conductance response to impulse voltages with different
parameters (amplitude, interval, and width). Fig. 2a
shows the conductance response of the device to pulses
with fixed width (500 ns) and interval (500 ns) and
varying amplitude (1–4 V in the positive range, and −1 to
−4 V in the negative range). The device conductance
obviously changed under the high-amplitude pulses but
exhibited small changes under the low-amplitude pulses.
The effects of varying pulse interval and width are pre-
sented in Fig. 2b, c, respectively (keeping the other two
parameters constant in each case). Significant variations
in the conductance were induced at longer durations and
shorter intervals. These results clarify that the con-
ductance of the designed device can be regulated by the
voltage pulse, which is consistent with previous reports,
thereby demonstrating the utility of memristors in neural
morphological-information storage and processing sys-
tems [23,25,26].
The neurons in neuromorphic systems are connected

through synapses, whose weights are adjusted to realize
learning and memory. We clearly observed the po-
tentiation/depression of synaptic weights under a pulse
sequence of 20 set pulses and 20 reset pulses (Fig. 3a).
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Combined with the I–V curve, we found that the con-
ductance or resistance of the device can be regulated by
electrical signals, similar to the change of synaptic weight.
This proves that our device has the potential to simulate
the synaptic function, learning, and memory behaviors
[27–31]. The synapse consists of presynaptic membrane,
synaptic space, and postsynaptic membrane. Here, the
upper electrode Al is considered as presynaptic mem-
brane, and the lower electrode Pt is considered as post-
synaptic membrane (Fig. 3b). The applied voltage or
pulse is used to simulate the electrical signals that are

transmitted between neurons, and the conductance
changes are equivalent to the synaptic weight changes in
real neurons. The results show that the device can suc-
cessfully simulate typical synaptic plasticity: spike-timing-
dependent plasticity (STDP) and paired-pulse facilitation
(PPF). In biological synapses, the STDP explains the de-
pendency between the synaptic weights and the time lag
between the spike arrivals of the presynaptic and post-
synaptic neurons [25]. Fig. S4 shows the pulse schemes
for simulating STDP behavior, in which Δt = tpre − tpost is
the time of spike stimulation at the postsynaptic mem-

Figure 2 (a) Conductance change of the device under pulse voltage signals with different amplitudes, fixed width (500 ns), and fixed interval (500 ns).
(b) Conductance change of the device under pulse voltage signals with different intervals, fixed amplitude (± 2 V), and fixed width (500 ns).
(c) Conductance change of the device under pulse voltage signals with different pulse widths, fixed amplitude (± 2 V), and fixed interval (500 ns).

Figure 1 Structure and electrical performance of the fabricated memristor. (a) AFM image and (b) TEM image of the TiO2 nanosheets. (c) I-V curve
and structure of the device (inset). (d) Variations of maximum and minimum resistances obtained during a 100-iteration cycle test.
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brane relative to that at the presynaptic membrane.
Fig. 3c shows the experimental results of STDP. When Δt
> 0 (Δt < 0), the presynaptic membrane received the spike
stimulation earlier (later) than the postsynaptic mem-
brane, so the synaptic weight increased (decreased) [32–
34]. Moreover, the magnitude of the synaptic weight
change (ΔW = (Gt − G0)/G0) reduced with increasing Δt.
Here, Gt and G0 are the conductance extracted from the
green and orange 0.2 V pulses in Fig. S4, respectively. The
experimental results were fitted to the following equa-
tions:

W A t= × e ,   > 0, (1)t

+
/ +

W A t= × e ,   < 0, (2)t /

where A and τ refer to the scaling factor and time con-
stant of the STDP . From the fitting results, A+, A−, τ+,
and τ− were obtained as 1.38, −1.50, 92 ns, and −99 ns,
respectively.
A typical short-term plasticity is PPF, which plays an

important role in information transmission [35]. The PPF
phenomenon refers to the strong dependence of the de-
vice response on the stimulation interval (Δt) between a
pair of input stimuli. The synaptic weight gradually in-

creases as the interval Δt decreases [36,37]. Under the
pulse-waveform scheme shown at the bottom of Fig. 3b,
the test results (Fig. 3d) were fitted to the equation of PPF
= (G2 − G1)/G1 × 100% = A1exp(−t/τ1) + A2exp(−t/τ2),
where G1 and G2 are the conductance read from the front
and rear low pulses, respectively [38]. The two fitting
times τ1 (1.22 ns) and τ2 (131 ns) represent the fast and
slow decaying items, respectively. Both STDP and PPF
behaviors of our device are highly consistent with biolo-
gical synapses.
Other typical synaptic phenomena are the long-term

and short-term plasticities (LTP and STP, respectively),
known as short-term memory (STM) and long-term
memory (LTM) in the psychology literatures [23,39,40].
Biologically, STM holds the information that is quickly
processed and encoded by the human brain; it persists for
a few seconds to dozens of minutes. In contrast, LTM
holds the information that is extensively and deeply
processed; it persists for several days, weeks, or years.
When held over one’s lifetime, LTM is called permanent
memory [37]. Repetitive stimulus triggers a transforma-
tion from STM to LTM [41]. Here, we verify the change
in memory state by varying the numbers of pulses with

Figure 3 Basic synaptic plasticity. (a) The potentiation and depression characteristics of the synaptic weight exposed to a pulse train of 20 set pulses
(amplitude = −2 V, interval = 500 ns, width = 500 ns) followed by 20 reset pulses (amplitude = 3 V, interval = 500 ns, width = 500 ns). (b) (Upper)
synapse-like nature of the device structure and (lower) the pulse-waveform set for testing PPF. (c) STDP simulation results, showing the relationship
between synaptic weight (ΔW) and Δt. (d) PPF characteristics of the device and their best-fit curve.
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fixed amplitude (−2 V), width (500 ns), and interval
(500 ns). After each pulse-train stimulation, the data
maintenance (current change over time) was recorded at
a reading voltage of 0.1 V. The results for different
numbers of pulses are plotted in Fig. S5a–f. The synaptic
weights were fitted using the following forgetting func-
tion [42]:

I I A= + × e . (3)
t

t

e
/

Increasing the number of pulses increased both re-
laxation time τ and final stable weight Ie (Fig. S5g, h). To
further prove that the memory state converts from STM
to LTM, we read the maintained data half an hour after
removing the stimulation (Fig. S5f). When fewer than 300
stimuli were applied, the synaptic weight decayed to zero.
When the number of pulses exceeded 300, the memory
lingered but the weight attenuated over time. These re-
sults strongly prove that the device’s state converted from
STM to LTM [43].
As mentioned above, the nociceptor is among the most

important receptors in the body as it discriminates
harmful stimuli and transmits pain signals to the central
nervous system, thus avoiding potential damage [44–46].
In this study, we successfully reproduced the typical be-
havior of nociceptors by programming a memristor de-
vice with sensitization, desensitization, allodynia, and
hyperalgesia. Table S1 is the benchmark table of noci-
ceptor by memristor in recent research studies [31,47–
50]. Sensitization, which facilitates avoidance of harmful
stimulations, refers to the process of strengthening the
reflex response. More specifically, a weak stimulus usually
initiates a weak response but can initiate a much stronger
response after an injurious stimulus [51]. For example, a
human bitten by a snake will harbor a fear of snakes for
ten years thereafter or longer. To reproduce this behavior,
we designed the simulation scheme illustrated in Fig. 4a.
The entire process was divided into three steps. We first
applied a weak stimulus (Step 1), then a strong harmful
stimulus (Step 2), and finally, a weak stimulus of the same
magnitude as the first stimulus (Step 3). The interval
between each step is 500 ns. The responses in each step
were monitored for pulses with different amplitudes,
pulse widths, and intervals to simulate external stimuli.
Fig. 4b–d show the response currents at each step after
exposure to high voltage (−2 V), small interval (100 ns),
and long pulse width (500 ns), respectively. The response
becomes larger after the strong stimulation (Step 2). In
this process, the size of conductive filaments formed by
oxygen vacancy increases gradually, which leads to a
larger response under the same stimulus [28,52]. We then

changed the amplitude, interval, and pulse width of the
strong simulation in Step 2; the results are plotted in
Fig. 4e–g, respectively. Strengthening the stimulation in
Step 2 enlarged the response current of the device and
enhanced the degree of sensitization (Fig. 5a–c) [53].
Here, the pain sensitivity Y was defined as Y = (A1 − A2)/
A1 × 100%, where A1 and A2 are the current responses in
Step 2 and Step 3 of the stimulus trains, respectively. The
data of Fig. 5a–c were fitted to the following exponential
equation:

Y K Y= e + , (4)
A A

0
/

0
0

where K0 and Y0 are different sensitization constants, and
A denotes an amplitude, a pulse width, or an interval.
Note that varying the stimulus intensity A in Step 2 alters
the pain sensitivity Y, consistent with the characteristics
of biological sensitivity.
Further analyzing the responses before and after the

strong stimulation (Fig. 4b–d, respectively), we found that
the device mimicked the allodynia and hyperalgesia be-
haviors of real neurons (Fig. 5d–f). Allodynia means that
the device is unresponsive to weak stimulation in the
normal state but is responsive after injury. Hyperalgesia
refers to the increased response to weak stimulation
[17,49]. Corresponding to sensitivity is desensitization.
We designed a pulse train to verify the desensitization
(Fig. 6a), and the conductance difference (ΔG) of Step 3
and Step 1 is plotted in Fig. 6b. Increasing the time in-
terval between Steps 2 and 3 decreased the ΔG, mi-
micking desensitization in the human nervous system,
which may be due to the diffusion effect of oxygen va-
cancy with the increase of time interval [54,55].
To more quantitatively understand the effect of sti-

mulus interval on desensitization, we fitted the experi-
mental data to the following exponential equation
(Fig. 6c):

Y K Y= e + , (5)
t

0
/

0

where Y = (G3 − G1)/G1 × 100% is the sensitization degree
(here, G1 and G3 are the response amplitudes of Step 1
and Step 3, respectively), Y0 is the sensitization constant
in the stable state, K0 represents the sensitization factor,
and τ is the relaxation time. It can be seen that the sen-
sitivity gradually decreases with the increase of time in-
terval and desensitization phenomenon enhanced [18].
Finally, we investigated the resistance switching me-

chanism of the system. We investigated that the con-
duction mechanism and temperature dependence of the
HRS and LRS and found that the possible mechanism is
electronic hopping between two sites rather than phase
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transition [56,57]. Hopping conduction can be expressed
as follows:

J qanv
qaE

kT
W
kT

= exp , (6)

where E is the strength of the electric field, q is the
electronic charge, a is the distance between trap sites, n is
the electron concentration in the conduction band of a
dielectric, v is the thermal vibration frequency of the
electrons at trap sites, T is the absolute temperature, k is
Boltzmann’s constant, and W is barrier height (activation
energy). W and a are related as follows [58]:

W W
e

a
= , (7)m

2

0

where Wm is the energy difference between the potential

wells of the localized states, ε is the dielectric constant of
the matrix material and the band (or extended) state, ε0 is
the dielectric constant of vacuum, and e is the charge of
an electron.
The I-V curves of the HRS and LRS at different tem-

peratures were well fitted to the hopping conduction (see
Fig. 7a, c). The trap spacing in TiO2 was ~4.2 nm in the
HRS and 3.3 nm in the LRS. According to the tempera-
ture dependence of curent density, the activation energy
was ~0.6 eV in HRS and 0.1 eV in LRS, as shown in
Fig. 7b, d, respectively, indicating the hopping of carrier
got easier in the LRS and produced a large current [59].
We surmise that more oxygen vacancies were generated
when the negative voltage increased, thus reducing the
distance between the oxygen vacancies, lowering the ac-

Figure 4 Mimicking the sensitization behavior of nociceptors. (a) Stimulus pattern for investigating sensitivity. Step 1 is a weak pulse stimulation
(small amplitude, small pulse width, large interval), Step 2 is a strong pulse stimulation (large amplitude, large pulse width, small interval), and Step 3
repeats the weak stimulation of Step 1. (b–d) Sensitivity behaviors induced by pulses with large amplitude (−2 V), small interval (100 ns), and large
width (500 ns), respectively. (e–g) Responses to different amplitudes, intervals, and widths of the stimulus pulse, respectively, in Step 2.
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Figure 5 (a–c) Effects of stimulation intensity on the degree of pain sensitization. (d–f) Allodynia and hyperalgesia behaviors corresponding to
Fig. 4b–d.

Figure 6 Mimicking the behavior of nociceptors: desensitization. (a) The desensitization phenomenon is verified by changing the time interval
between Steps 2 and 3. (b) ΔG versus time interval (where Δt corresponds to (a)). (c) The Y index plotted as a function of the time interval between
Steps 2 and 3.
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tivation energy, and facilitating carrier jump. Accord-
ingly, the device switched from HRS to LRS [60]. Fig. S6
illustrates this mechanism in detail.

CONCLUSION
We prepared an Al/TiO2/Pt memristor via a simple spin
coating method and demonstrated its advantageous and
stable electrical properties. The conductance of the device
was modulated by a pulse voltage, and biological synapse
behaviors such as STDP and PPF were successfully si-
mulated. We also analyzed the I-V curve of the device.
The HRS and LRS follow a hopping conduction me-
chanism. Most importantly, we proposed and validated a
new method for reproducing the behavior of nociceptors,
including sensitization, desensitization, allodynia, and
hyperalgesia. These novel biomimetic functions might
expand the application of TiO2 to electronic skins, hu-
manoid robots, and similar technologies, and will aid the
establishment of hardware-based neural morphological
networks in the future.
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一种基于TiO2纳米片忆阻器的人工伤害感受器
兰晋玲1†

, 曹刚1
, 王静娟1

, 闫小兵1,2†*

摘要 人工忆阻突触的学习记忆功能是实现人工神经网络和神经
形态计算的必要条件. 纳米片材料由于其良好的可扩展性, 在细胞
级学习水平中得到了广泛的应用, 但基于纳米片材料的伤害感受
器行为研究却鲜有报道. 本文中, 我们提出了一种具有Al/TiO2/Pt

结构的忆阻器. 电铸后, 忆阻器呈现出逐渐的电导调节, 并能模拟
突触功能, 如突触重量的增加和降低. 我们还设计了一个新的方案
来验证真实伤害感受器的痛觉敏感、脱敏、超敏和痛觉过敏行为.

具有这些特性的忆阻器可以显著提高智能电子器件的性能. 数据
拟合表明, 高阻和低阻状态符合跳跃导电机制. 这项工作使得基于
TiO2的器件有望应用于下一代神经形态学系统.
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