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Abstract  

Sensory memory, formed at the beginning when we perceive and interact with the 

environment, is considered as one primary source of intelligence.  Transferring such 

biological concept into electronic implementations aims at achieving perceptual intelligence, 

which would profoundly advance a broad spectrum of applications such as prosthetics, 

robotics, and cyborg systems.  Here, we summarize recent development on design and 

fabrication of artificial sensory memory devices and highlight their applications in recognition, 

manipulation, and learning.  The emergence of such devices benefits from recent progress on 

both bioinspired sensing and neuromorphic engineering technologies and also obtains 

abundant inspirations and benchmarks from an improved understanding of biological sensory 

processing.  Increasing attention on this area would offer unprecedented opportunities toward 

new hardware architecture of artificial intelligence, which could extend the capabilities of 

digital systems with emotional/psychological attributes.  Pending challenges are also 

addressed to such aspects as integration level, energy efficiency, and functionality, which 

would undoubtedly shed light on the future development of translational implementations. 
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1. Introduction 

Intelligence is fundamentally a memory-based process, and the dynamic modification 

of the memory underlies our learning capability.  The memory in biological systems benefits 

from the natural evolution of neural networks that possess several properties including event-

driven operation, in-memory computing architecture, and massive parallel processing.  These 

characteristics allow us to perceive and react appropriately when confronting to the events of 

the real world in a more robust, plastic, fault tolerant, and energy efficient manners than 

current digital systems.[1]  Although digital systems could acquire, store and access 

information with high speed and precision, they absolutely rely on the complementary metal-

oxide-semiconductor (CMOS) technology and von Neuman scheme, which are struggling 

with achieving intelligence as the biological systems.[2, 3]  To address this problem, new 

hardware architectures designed to adapt neuromorphic computing paradigm are highly 

pursued by both academia and industry, such as coherent nanophotonic circuits,[4] quantum 

neural network,[5, 6] IBM TrueNorth,[1] and Google TPU.[7] 

Accessing data is crucial to the success of these systems, and ultimately no level of 

algorithmic or systematic sophistication would make up for a poor set of data.  In biology, the 

sensory neuron that initiates the sensory memory process could be regarded as the first stage 

of data access in the neural network of our brain.  It collects, integrates, and refines massive 

sensory data timely for dynamically training the neural network, which greatly shapes our 

cognition and awareness through modifying the connections between neurons.[8, 9]  In that 

case, electronic implementations with sensory neuron paradigm could serve as the building 

block for constructing new hardware architectures toward autonomous artificial intelligence, 

which directly access to sensory data and store them at the same time (Figure 1).  One step 

forward is to develop devices that capture the essential properties of the sensory neuron and 

are able to implement sensory memory.  Sensory memory is interpreted as the capability to 

restore the sensory information after the stimuli gone.[10-14]  The stored sensory information 
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can be further processed to form a specific perception, which could serve as the expertise for 

action/decision.[15-17]   

Recently, much effort has been made on the incorporation of advanced bioinspired 

sensing and neuromorphic engineering technologies.  In these works, the integrated devices 

were endowed with both the receptor-like exquisite sensing capabilities and synapse-like 

memory/learning behaviors for mimicking the sensory memory processes observed in sensory 

neurons and/or sensory nervous system.  Accordingly, we introduce the concept of artificial 

sensory memory (ASM) to describe this type of devices.  The precise and timely access to the 

spatiotemporal sensory data is now feasible with the development of bioinspired sensing 

devices such as electronic skin (E-skin)[18-22], which mimic the essential properties of natural 

sensory organs or receptors.[23-26]  This has aroused profound implications in the development 

of prosthetics,[27-30] soft-/bio-robotics,[19, 31-35] wearable medical devices,[36-41] and so on.  In 

the meanwhile, the development of neuromorphic engineering has given birth to synaptic 

devices, which aims at building bio-inspired cognitive adaptive devices to reproduce 

processing/memory capabilities as the biological synapse.[42, 43]  Furthermore, artificial neural 

networks based on synaptic devices enable the efficient implementation of machine learning 

algorithms when fulfilling such tasks as pattern classification and feature extraction.[44-47]  

Therefore, the incorporation of the two attributes (i.e. sensing and memory), in one device is 

promising and at exactly the right time to propel the development of related artificial 

intelligence.[48, 49]  Studies on the design, fabrication, and application of ASM devices are also 

critical to the realization of intelligent and humanized systems that directly interact with 

humans. 

Herein, recent advances in ASM devices are discussed with respect to strategies for 

integrating functional modules to achieve various modalities of sensory memory.  We 

highlight the advantages of combining bioinspired sensors with neuromorphic devices for 

their applications in robotics and prosthetics.  Potential implications on neuromorphic 
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perception have also been discussed, which would improve current technologies in cyborg 

systems, robotics, and prosthetics, and might endow these systems with 

emotional/psychological attributes.  It is believed that rational integration resembling the 

biological sensory memory would open a new chapter in artificial intelligence, and the ASM 

device serves as the building block for constructing systems with perceptual intelligence. 

 

2. Understanding sensory memory 

Sensory information (Figure 2) could be interpreted as the source that underlies the 

exteroception (involved in touch, sight, sound, smell, and taste) that enables the awareness of 

the external, the interoception (involved in pain, hunger, and other homeostatic conditions) 

that enables the awareness of the inner, and the proprioception (involved in body position, 

movement, and acceleration) that enables the awareness of motion.  Such sensory information 

could be detected, interpreted, and memorized by our sensory nervous system to provide us 

with awareness and guidance.  The ‘multistore model’ of human memory was proposed by 

Atkinson and Shiffrin in 1968.[50]  Despite its very simplified form, it is considered as one 

most accepted model to date.  In this model, the memory flow is explained as follow.  Firstly, 

when sensory information is firstly detected, it would enter the sensory memory (SM).  If this 

information is paid enough attention, it enters the short-term memory (STM).  Only when the 

information is rehearsed (i. e. repeated), known as the consolidation, the short-term memory 

will transform to long-term memory (LTM).  The long-term memory store information 

permanently, which always requires protein synthesis in the nervous system.[51]  Otherwise, 

the information would be forgotten induced by the processes of displacement or decay.  Each 

store is a unitary structure and has its own characteristics in terms of encoding, capacity, and 

duration.[52]  The duration for SM, STM, and LTM could be a quarter to one second, one to 

dozens of seconds, and unlimited, respectively.  Such hierarchical memorial mechanism is 

intrinsically different from what underlies modern semiconductor memory devices where 
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forgetfulness is never useful.  For mammals, forgetfulness is not always a disadvantage, 

because it allows them to pay attention to more important or more urgent information, which 

could improve adaptability and save energy for individuals. 

In the sensory nervous system, the sensory neuron that serves as the interface between 

external stimuli and inner memory is responsible for sensory transduction—an important link 

in sensory processing underlying memory, perception, and action.  Sensory neuron could be 

simplified by three parts including receptor, axon, and synapse, which has provided 

inspirations and benchmarks for the ASM.  Recent progress on ASM has been devoted to 

integrating the sensing and memory components together (Figure 1) to mimic the sensory 

memory process.  The further developments would also benefit from the more in-depth 

biological and anatomic understanding the sensory neuron.  

2.1 From biological receptors to electronic receptors 

In the peripheral nervous system, the sensory information comes from the sensory 

receptors and is carried by the sensory neuron toward the central nervous system.  The 

sensory memory begins with the comprehensive activities of the sensory neuron, in which the 

sensory information is converted into action potentials or graded potentials.  Generally, the 

stimulus would induce the open of Na+ channels, which allow Na+ to flow into the cell.  Then 

such a process would result in depolarization that causes the Ca2+ channels to open, which in 

turn lead to the release of neurotransmitter into the afferent nerve receptors.[53, 54]  Different 

types of sensory neurons have different sensory receptors that respond to specific kinds of 

stimulus.  Our human beings have several kinds of receptors that enable us to sense iconic, 

auditory, gustatory, haptic stimuli, and so on.  For example, seven kinds of receptors are 

involved in the formation of tactile sensation including nociceptive receptors, cold receptors, 

warm receptors, and four mechanoreceptors.[28, 55]  

Therefore, mimicking the sensing capability of these receptors and even developing 

platforms similar to the sense organs might greatly propel the development in the prosthesis, 
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robotics, and artificial intelligence.  Recent progress on e-skin devices that resemble the 

haptic receptors could be regarded as a salutary lesson for the development of electronic 

receptors with other sense modalities.  The e-skin devices are pursued not only exquisite 

sensing capability as the biological receptors[56] but also other intriguing properties like 

stretchability,[57-61] self-power,[62-64] and self-healing.[65, 66]  To achieve this, specific structures 

and materials were exploited.  For example, a mass of microstructures was utilized such as 

micropyramidal,[67-70] microdome,[71-74] microcavity,[75-79] microcracks,[80-82] thickness-

gradient structures,[57, 83] even metamaterial structure.[84]  Biomaterials,[70, 85-88] 

nanocomposites,[89-94] triboelectric and piezoelectric materials,[95-99] stimuli-responsive 

polymers,[66, 100] hydrogels,[101-104] and so on, were exploited to enhance the functionalities and 

to extend the limits owned by traditional silicon-based materials.[105-107]  Aforementioned, 

multiple receptors are involved in the formation of tactile sensation, which has also inspired 

the design and integration of artificial sensors with versatile sensing capabilities.[36, 72, 82, 108-

111] 

Furthermore, unlike the electronic sensors modulate signals on direct-current (dc) 

amplitude, biological receptors exploit oscillating electrical action potentials for signal 

transmission, which is inherently energy-efficient and tolerant to noise.[27]  Thus, 

implementing such a strategy in electronic receptors would greatly advance the technologies 

of highly functional prosthetics that directly interact with the human.  For an instant, a digital 

mechanoreceptor was developed based on piezoresistive sensors with microstructure and 

organic transistors-based ring oscillator that is capable to transduce pressure into digital 

frequency signals with similar frequency range as the biological counterpart. 

2.2 From synapse to electronic synapse 

To take benefit of nature evolved memory mechanism which promotes the efficiency 

and adaptability of individuals to an ever-changing environment, synaptic electronics has 

been proposed based on the consensus that the synapse is the origin point for learning and 
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memory.[112, 113]  The ability to memorize relies on synaptic plasticity, and the memorization 

events would change the strength of synaptic connections (or weights). To develop electronic 

analogues (Figure 3), a broad spectrum of electronic/ionic hybrid devices have been 

developed, including atom switch,[43, 114, 115] resistive switching device,[42-44, 116-119] phase 

change memory,[120-122] electrolyte gated transistor,[123-128] correlated oxide transistor,[129, 130] 

ferroelectric device,[131-134] electrochemical device,[135-137] Mott insulator.[138, 139]  Generally, 

the conductance of these devices is usually analogous to synaptic weight, which could be 

tuned by programmed stimuli (e.g voltage, light, and temperature) pulses gradually due to the 

interactions between electrons and ions.  In this case, some essential synaptic plasticity, as 

well as the memory, computation and even learning behaviors have been mimicked, which 

would empower the design and implementation of neuromorphic engineered systems.  The 

ultimate aim is to build an electronic brain to empower current computing systems beyond 

binary logic and von Neumann architecture.  Artificial neural networks based on the synaptic 

devices that represent a step forward this aim have already achieved.[46, 47, 140]  These 

achievements in synaptic devices reveal the possibility for developing a new architecture 

toward autonomous artificial intelligence, in which the artificial neural network based on 

synaptic devices could directly be trained by the data from the ASM devices.  

Up to now, three kinds of devices have been currently utilized as the memory 

components to mimic the sensory memory, including the resistive switching memory, 

threshold switching device, and ionic/electronic hybrid transistor.  Resistive switching 

memory is a kind of nonvolatile memories, which typically applies two-terminal geometry 

with a metal–insulator–metal (MIM) architecture.[141-144]  Such device can be configured 

between a high resistance state (HRS) and a low resistance state (LRS), inducing the 

information storage by encoding OFF (0) and an ON (1) states, respectively.[141, 145, 146]  Only 

a voltage that is larger than threshold would induce a transition between HRS to LRS, and the 

transition in conductance is permanent.  While, threshold switching (TS) devices is a kind of 
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volatile memories with a similar structure as the resistive switching memory, which is notable 

for the spontaneous rupture of conduction channels with a time window from nanoscale 

seconds to tens of seconds, even minutes.[147-149]  Depending on its specific relaxation time, it 

can be served as diffusive memristor for neuromorphic computing or access device for matrix 

addressing.[149-151]  The electrochemical and diffusive dynamics of the active metals such as 

Ag and Cu), is regarded as the dominant mechanisms for the conductance evolution.[147]  

Unlike the resistive memory, the resistance of TS devices recovers back spontaneously when 

the applied voltage decrease to a low value.  The decay process occurs spontaneously due to 

the metal ions need to merge into minimized interfacial energy state, and the time for such a 

process is known as the relaxation/retention time.  The ionic diffusive process and its 

dynamics have been demonstrated the capability for mimicking the short term plasticity.[118]  

Synaptic transistor, unlike the previous two devices, is deemed as another important group of 

synaptic devices with exclusive three-terminal or multi-terminal structure.[124, 152]  

Ionic/electronic hybrid transistor is a typical synaptic transistor, in which the 

electrostatic/electrochemical interactions between ions and electrons at the electrolyte/channel 

interface are regarded as the general working mechanism.[153-155]  In such devices, the swept 

gate voltage would induce a metal-insulator-transition in the semiconducting channel, and the 

transfer curves usually show hysteresis, which could be due to the ionic relaxation.[154]  An 

intriguing phenomenon based on the ionic relaxation is that the channel conductance could be 

temporally retained after a voltage pulse, exhibiting very similar behaviors as short-term 

plasticity of the biological synapse. 

Besides, there are other promising candidates could function as the memory 

components like the ferroelectric synapses and electrochemical synapse.  For example, the 

ferroelectric synapses are notable for its long-term memory effect, in which the multi-valued 

modulation of the conductance can be achieved by applying a pulse gate voltage due to the 

polarization of the ferroelectric materials.[131, 132, 156]  All these candidates would enrich and 
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facilitate the development of artificial sensory memory by providing versatile memory forms 

that closely resemble the biological process. 

 

3. Developing artificial sensory memory 

Although much attention has been paid in the collection of information in forms of 

light, sound, smell, etc., of the vivid world via apparatus for thousands of years, technologies 

for recording such information were developed rather late.  For example, the camera obscura 

principle has been described by Chinese philosopher Mozi for more than 2000 years, but there 

was no way to preserve the images before the photographic processes came.  The artificial 

sensory memory could also be deemed as the continuation of such tradition to pursue 

recording technologies with respect to sensory information by biological wisdom (Figure 4).   

Up to now, researchers have developed several kinds of ASM devices for detecting-recording 

the stimuli of haptic,[146] iconic,[157] nociceptive,[158] motor[159] aspects, respectively.   

3.1 Artificial haptic memory 

Haptic memory is used for guiding the grip and interaction with familiar objects in our 

daily life.[160]  The haptic memory could help us with holding a fragile object after several 

times of broken experience, and tell us how much force is needed for string-pressing of a 

violin by practice.  The fact that we are able to figure out how much force needs to hold most 

of the common objects without hesitation is also benefited by such kind of memory (Figure 

5a).[146]  The state-of-art robots or brain-computer interfaces might be able to utilize the tactile 

feedback for detection/manipulation of targets.[30, 161]  However, without the addition of haptic 

memory, these apparatuses would still suffer from stiffness and unintelligence when coming 

to even familiar objects.  In that case, the artificial haptic memory is very necessary, and a 

step forward is to develop the basic devices to mimic the haptic memory.  

A simple method to record the tactile sensation is to integrate sensing and memory 

elements.  For example, Figure 5b and 5c show the haptic memory device based on a resistive 
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pressure sensor and a resistive switching memory device, in which the two devices were 

connected in series.  Such devices take advantage of the amplitude of the pressure sensor 

signal as a criterion for memory. Such circuit is equivalent to a voltage divider.  When the 

pressure was applied on the sensor, the resistance of the sensor would decrease, which 

increases the voltage applied on the resistive switch.  If the applied voltage is larger than the 

threshold on the memory device, a long-term change in conductance could be observed.  

Therefore, such pressure information could be stored in the resistive memory. 

In the resistive pressure sensor, the microstructured elastomer film served as a 

sensitive layer is usually embedded with conducting nanowires (e. g. AgNWs and CNTs) as 

shown in Figure 5d.  The high pressure sensitivity in the low-pressure regime (<1 kPa) is 

achieved because the microstructure arrays (e. g. pyramidal) could provide large deformation 

in response to the subtle pressures.[18, 69]  The sensitivity of such kind of pressure sensor is 

defined as S = dR/dP, where R is the resistance and P is applied pressure.[146, 162]  The 

sensitivity is generally dependent on:[69] 1) the compressibility of the material used; 2) 

geometrical shape (e. g. slope) of the structures; 3) spatial arrangement of the structures.  In 

this haptic memory device, the memory component is a SiO2-based resistive switch with the 

metal-insulator-metal (MIM) architecture, and the possible switching mechanism should be 

due to the forming and dissolution of the Ag filaments (Figure 5e).[163, 164]  As the two 

components are connected in series, the partial voltage applied on the memory device is 

dependent on the pressure applied to the pressure sensor.   Only when the pressure is larger 

than 500 Pa would induce a partial voltage higher than the threshold voltage.  In this case, the 

transition from HRS to LRS in the memory device could be observed, resulting in storage of 

the pressure information.  

To demonstrate the skin-like capability of haptic memory, the array of this haptic 

memory device was utilized to map and memorize haptic patterns by using the letter molds 

(Figure 5f).  The mapping and recording of external pressure by such device arrays were 
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tested by using different letter molds of “N”, “T”, and “U”.  As shown in Figure 5g, only on 

the top of a device that is covered by the letter molds can be memorized, inducing a 

discernible current change for mapping the external pressure.  In this manner, the nonvolatile 

conductance change of the resistive switch would also provide long-term storage of the 

pressure distribution even after the removal of the letter molds.  As illustrated in Figure 5h, 

the arrays can retain the haptic pattern of “T” based on current mapping with slight decay for 

a week.  Moreover, pressure information can be easily erased demonstrating the 

reprogrammable capability for multicycle usage. 

3.2 Artificial iconic memory 

Near half of our cerebral cortex is busy with processing visual information,[165] 

because through vision we could appreciate object’s surface in terms of the size, shape, color, 

and brightness of objects, distance, and location sensation, smoothness, roughness, etc.[166, 167]  

Iconic memory that refers to the memory of visual stimuli is also an important exteroceptive 

sensory memory.  It could be classified into visual short-term memory (VSTM) and long-term 

memory (VLTM), and it’s believed to be essential for a range of cognitive tasks, from 

measuring of fluid intelligence to visual search.[168]  

The iconic memory begins with the receiving of the image information from the retina 

and ends with the memory of the impressions of images in the neural network, as illustrated in 

Figure 6a.  Inspired by the biological configuration, integrating photodetectors with memory 

devices in series could directly achieve visual long-term memory (Figure 6b).[157]  The In2O3 

semiconductor micrometer-sized wires (SMWs) were fabricated by a direct-printing system, 

which was used for detecting the UV light signal.  The photocurrents increase with the light 

intensity because the increase of absorbed photon flux would enhance the photogenerated 

charge carrier efficiency.  As shown in Figure 6c, when being applied with ultraviolet light, 

the charge carrier in SMWs increases greatly than in dark, inducing more than two 

magnitudes current increase under the same voltage sweep.  The Al2O3 based resistive 



  

12 

memory was exploited to store the light signals detected by the photodetector, which 

exhibited good bipolar resistive switching characteristics.  As the memristor was connected in 

series with the image sensor, its switching behavior is controlled by the photoelectric response.  

The current of the integrated device in dark is very low (<0.1 nA) during the voltage sweep 

applied to it (Figure 6d).  However, when the UV light is on, a dramatic increase (decrease) in 

current could be observed when the partial voltage applied on the resistive memory is larger 

than its positive (negative) threshold voltages. Therefore, when the device is exposed in UV 

light, the transition from HRS to LRS or from LRS to HRS of the whole integrated device 

could be observed.  In other words, such devices could retain or erase light information. 

To demonstrate the iconic memory capability, the iconic memory arrays (10 × 10 

pixels) were then fabricated for imaging and memorizing the distribution of external visual 

impression patterned light.  The patterned light image is generated through applying UV laser 

entered in the diffraction optical element (DOE) with a designed pattern (butterfly-like pattern, 

Figure 6e).  Then only the pixels exposed under the patterned light could be programmed 

when applying a positive voltage sweep from 0 to Vset would lead to a transition from HRS to 

LRS.  Thus, after removing the light, each programmed pixel could record the light 

information, and the whole arrays show a similar image as the original pattern.  The butterfly-

shaped pattern was imaged and retained in the visual memory arrays for one week with slight 

attenuation.  The arrays are reprogrammable by applying negative voltage sweeping from 0 to 

Vreset to erase the previous image information. 

3.3 Artificial nociceptive memory 

The humanoid robots seem affectless, and one possible reason is they have no feeling 

of pain.  Pain increases the adaptability for an individual by providing a rapid warning to the 

nervous system to defense further harm.[169, 170]  The pain sensation begins with the trigger of 

the action potential in nociceptor which is a specific receptor in response to noxious stimuli.  

The individual can feel the pain sensation only when the intensity of the external stimulus 
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exceeds a threshold value.  Unlike most other sensory receptors, no adaptation is observed in 

the nociceptor.  Only the excessively intensive stimulus that could result in tissue damage 

would increase their sensitivity, known as the sensitization.[171]  The sensitization can be 

characterized by “hyperalgesia” and “allodynia”: a normally painful stimulus induced 

increased pain response and a normally innocuous stimulus induced pain sensation, 

respectively.  In that case, the development of artificial nociceptor would enable the feasibility 

and simplicity of realizing embodied cognition in artificial intelligence systems.  Recently, an 

artificial thermal-nociceptor has been demonstrated with close properties as the biological 

counterpart.[158]  Artificial nociceptors in response to other types of noxious stimuli are 

feasible by translating this idea to various sensors.  

To develop an artificial nociceptor, a memory component is required for indicating the 

damage state and level at first.  More importantly, the memory component should also 

respond only to the stimuli higher than the threshold value, similar to what external stimulus 

does to the sensory receptor (Figure 7a).  Therefore, the threshold switch could be a perfect 

candidate (Figure 7b).  A SiOx:Ag based diffusive memristor was fabricated with a very thin 

silver layer (1 nm) inserted between the bottom electrode and the switching layer.  Such silver 

layer as a reservoir of Ag atoms enables the artificial nociceptors to avoid adaptation 

phenomenon which would result from the Ag depletion during successive stimuli.[158]    

Partial electroforming process was introduced to indicate different levels of damage through 

applying voltages several-fold larger than the threshold.  The partial electroforming process 

would induce a lower threshold voltage than the unformed devices.  In that case, the forming 

voltages could be analogous to the level of damages, which affect the response intensity of the 

devices.  After applying a higher forming voltage (severer damage), the higher current 

response could be observed by applying the same voltage (served as the normally painful 

stimulus), which could be analogous to the hyperalgesia phenomenon.  At the same time, the 
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same level of response could be induced by a lower voltage, which could be analogous to the 

allodynia phenomenon.  

Finally, such devices were connected with a thermoelectric module for mimicking 

thermal nociceptor (Figure 7c).  The thermoelectric module would generate a voltage in 

response to a thermal stimulus.  If this voltage exceeds the threshold value of the threshold 

switch, the conductance of the threshold switch would greatly decrease and increased voltage 

would apply on the series resistor.  The voltage responses generated by the thermoelectric 

module under different temperature and the voltage responses measured on the resistor were 

shown in Figure 7d and 7e, respectively.  If the temperature was too low (40 oC), the 

generated voltage would lower than the threshold voltage (0.25-0.3 V) of the TS devices, and 

the system would not trigger any output alarm signal.  On the contrary, if the temperature was 

higher than a certain value, substantial output signals could be observed. 

3.4 Artificial motor memory 

Motor memory also noted as muscle memory, which could help to improve the 

smoothness and accuracy of movements by memorizing muscle motions and is necessary for 

complicated movements.[172]  The motor memory that starts from the triggering of the stretch 

receptors located in the muscles and the joint-supporting ligaments is formed based on the 

proprioception.[173] Motor memory also underlies proprioception which could provide the 

brain with information on the movement and relative positions of the parts of the body.[174] 

Rooted in such sensory-memory cooperated system, animals can simultaneously monitor and 

memorize the corresponding motion information, and perform these motions later (Figure 8a). 

The necessity of the motor memory for animals thus inspired the design and 

integration of motor memory devices for biomimetic/robotic systems as well as wearable 

applications. One of the major challenges for realizing motor memory devices is to achieve 

good mechanical tolerance to accommodate deformations of motor systems. The 

aforementioned sensations that response to pressure, light, and heat, respectively, are not 
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prone to be deformed. However, motor systems are suffered to deformation from time to time. 

The mechanical deformation from the motor systems would significantly degrade the 

performance of the functional components with delicate configuration and constituent brittle 

materials. A possible strategy is to provide a stretchable substrate for those constituent brittle 

materials and separate the high and low moduli domains of the substrate. (Figure 8b).[159]  As 

a result, physical forces would lead different localized strain on these patterned domains.  

Therefore, both the stretchable and non-stretchable components can be located on the 

mechanically compatible parts of the hybrid structure.  

By achieving that, a device integrated with a strain sensor and a resistive memory 

could obtain both mechanical stability and the capability of motion monitoring and 

memorizing.  A LED was connected to the integrated devices for indicating the state of 

motion as shown in Figure 8c.  The LED would be turned on when the integrated device was 

stretched with the elbow flexion (Figure 8d).  It is because the induced strain on the strain 

sensor could increase the voltage applied to the memory, which in turn switch the memory 

from HRS to LRS.  After the extension of the elbow, the resistance of the memory could be 

retained and the LED was still lightening, indicating the muscle action has been memorized. 

Such artificial motor memory can be reprogramed (from LRS to HRS) by applying the reset 

voltage.  As shown in Figure 8e, two motor memory devices were jointly used for monitoring 

the composite motions of shoulder abduction and elbow flexion, indicating the complex 

motion could also be stored by the motor memory devices. 

 

4. Exploiting artificial sensory memory for recognition tasks 

The sensory memory could be deemed as one fundamental mechanism of intelligence, 

and it is involved in very essential tasks such as manipulation, recognition, and learning 

(Figure 9). Generally, these tasks can be grouped under three categories: action for perception, 

perception for action, and reaction.[175, 176] At the same time, these tasks are always 
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interrelated and require integration of multiple sensory modalities. We explore a certain object 

like an egg, a keyboard, or a piano by observing, listening, as well as touching, grasping and, 

tapping, which are related to tactile perception. Then we could obtain the features of the 

object and recognize it. After recognition, we could manipulate them based on our previous 

experience, which is mainly obtained through repeated perceptual learning.  

An important step for robotic systems to achieve perceptual learning capability is to 

refine and memorize sensory inputs in both short-term and long-term manners. Hence, the 

development of ASM possesses great potential for artificial intelligence in robotic systems. 

Summation of recent achievements on achieving intelligent tasks based on ASM devices is 

briefed and discussed below. 

4.1 Artificial sensory memory for differentiating touch speed 

The neural coding could be classified into two categories: temporally correlated 

coding (encoded in input timing) and rate coding (encoded in input rate).[177, 178]  These coding 

strategies have inspired the implementation of synaptic devices to process information beyond 

the binary paradigm.[124, 135, 179-181]  Synaptic transistors possess intriguing advantages in the 

processing of both timing and rate information.  The response of such kind of transistors is not 

only dependent on the intensity of the stimuli but also dependent on the frequency, numbers 

and time intervals of the stimuli. Such phenomena have inspired the emulation of some 

neuronal/synaptic processing power, such as high-pass[152, 182, 183] and low-pass filtering[184, 185]. 

In biology, increasing or decreasing response to high-frequency synaptic inputs 

(corresponding to high-pass and low pass filtering, respectively) is achieved based on short-

term synaptic facilitation and depression, respectively. For synaptic transistors, the high or 

low-pass filtering function is realized due to the residual ions in the gate dielectric generated 

by previous inputs that induce higher or lower electron/hole concentration in the channel.  

For most of the e-skin devices in respect to bioinspired tactile sensing, only the 

amplitude of touch could be measured or mapped. Besides, essential information like the rate 
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or timing of the touch could not be figured out without peripheral equipment. The sensory 

neuron could integrate multidimensional information as a whole by the receptors and 

selectively transmit based on a series of interaction and cooperation strategies of 

synapses/neurons in the neural network (Figure 10a). For example, the short-term synaptic 

depression and/or facilitation enable the synapses to selectively respond to a specific mode of 

stimuli. Unlike the aforementioned ASM devices that belong to the long-term memory 

category, these filtering functions are related to short-term memory. Therefore, by introducing 

short-term memory into artificial sensory devices would be of great significance for collecting 

and refining massive sensory information rather than passive storage. This inspires the 

integration of pressure sensor and synaptic devices, especially synaptic transistors for 

extending the sensing capabilities and exploring the potential of endowing e-skin devices with 

tactile perception. 

A possible approach was proposed based on a dual-organic-transistor-based tactile 

perception element (DOT-TPE)[186] as shown in Figure 10b and the equivalent circuit shown 

in Figure 10c. Suspended gate transistors[76] were exploited as a pressure sensitive component 

for converting the pressure stimuli into electrical signals. The converted signals were 

transmitted to an organic synaptic transistor through a common electrode.  The channel 

current of the synaptic devices that resembles the excitatory postsynaptic current (EPSC),[112] 

was used as the output.  Such output could be modified by the amplitude, duration, numbers, 

and time interval (could be equivalent to reciprocal of frequency) of the input spikes. The gate 

voltage would cause the protons concentration gradient at the gate dielectric/channel interface, 

which could induce the electrons in the n-type semiconductor through electrostatic interaction. 

In that case, larger gate voltage would drive more protons to the interface, thereby increasing 

the electron concentration in the channel. What’s more, the concentration of residual protons 

at the interface of the dielectric/channel would increase by the successive gate pulses before 
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they diffuse back to the equilibrium state. Therefore, increasing the numbers or reducing the 

time intervals of the pulses would augment the output current. 

Based on these proton/electron electrostatic coupling mechanisms, the tactile signals 

from the suspended gate transistor-based pressure sensors could be processed by the organic 

synaptic transistors. The higher pressure applied on the sensors would induce a larger partial 

voltage (equivalent to gate pulse) applied on the gate of the synaptic transistors, and a larger 

EPSC could be observed (Figure 10d). More importantly, the speed of the touch could be 

recognized by such devices based on the short-term facilitation property (Figure 10e). The 

higher touch speed means less contact time and less time interval between each touch, 

therefore the lower output amplitude by the first spike (Figure 10f, left panel) and the higher 

facilitation ratio (Figure 10f, right panel) could be achieved.  A 3´3 arrays was used to 

illustrate the current change by different touch speeds (Figure 10g).  

4.2 Artificial sensory memory for recognition tasks 

Perceptual learning enhances our ability with respect to vision, hearing, taste, etc. 

based on what we’ve experienced.[187]  The reason why we can differentiate two musical tones, 

recognize braille and identify faces, is due to the capability of perceptual learning.  At the 

cellular level, sensory stimuli are detected by receptors of sensory neurons.  Signals are sent 

through the afferent axons to synapses for further process by the postsynaptic neurons.  For 

instance, multilevel features of the touched pattern could be obtained by sensory neurons in 

skin by integrating and modulating both synchronous and asynchronous signals in an action-

perception loop.[188]  Our capability to perceive and react with the real-world are further 

empowered through practice and/or training—a process known as the perceptual.  In that case, 

the endowing the device/system with learning capability is essential for robust and fault-

tolerant processing of sensory stimuli.  Furthermore, the addition of learning capability would 

ultimately endow machines/systems with artificial intelligence that enables them to possess 

“self-awareness” like human. 
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To implement such capability in biomimetic devices/systems, the first step is to 

develop a functional device to extract enough features of external stimuli.  Almost all sensory 

data is unstructured, such as face and voice, which is difficult for a digital computer to 

recognize.  ASM devices like the DOT-TPE that can extract both amplitude and timing 

information of the pressure stimuli has set a good example.  However, in order to perform 

identification and recognition tasks and go beyond just tactile pattern differentiation, there is a 

need to fabricate devices for implementation of learning capabilities.  At the same time, 

another important issue is to make such devices mechanical tolerant considering the 

processing unit is prone to breakdown under the ever-changing environment.  To meet such 

challenge as well as to explore the potential of perceptual learning in robotic systems, a 

neuromorphic tactile processing system (NeuTap) is proposed for mimicking the sensory 

neuron and implementing perceptual learning.  There are three core components including a 

resistive pressure sensor, a soft ionic cable, and a synaptic transistor to analogous the receptor, 

axon, and synapse, respectively (Figure 11a).  The functions of sensing, deciding and acting 

are usually located in different places and are connected through the afferent/afferent nerves 

in the animal.  The introduction of the ionic cable that resembles the nerve fibers would 

benefit the design of robotic systems.  Because the ionic cable could: 1) separate processing 

and sensing units to reduce interference; 2) provide ionic/electronic coupling interfaces; 3) 

endow stretchability to enhance mechanical stability (Figure 11b, left panel).  

The information flow in NeuTap could be interpreted as: 1) signal conversion from 

pressure stimuli to electrical signals by the pressure sensor; 2) ionic fluxes triggering in the 

ionic cable by the converted electrical signals; 3) the triggering of a transient channel current 

of the synaptic transistor.  By achieving that, a protocol should be addressed in order to apply 

these specific features for recognition.  As a demonstration, four kinds of patterns represented 

by two-bit binary numbers were used as the object to be recognized (Figure 11b, right panel).  

Then the response of the NeuTap to the patterns and the corresponding label of the pattern (i. 
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e. ‘01’) were used as the feature data and label, respectively, for training the model using a 

supervised machine learning algorithm. After that, new or testing feature data was input, and 

the trained model would give an inferred label for this data based on previous training. The 

typical responses to the three nonzero patterns (i. e. ‘01‘, ‘10‘, and ‘11‘) were shown in Figure 

11c, the decay properties could be obviously differentiated. However, these specific feature 

data is unstructured and even user-dependent. One possible reason is due to the variations 

between every touch process (i. e. contacting with the binary patterns). Thus, the feature data 

of one pattern could be varied, and the clear criterion for recognizing these patterns seem 

impossible to be figured out by limited times of training. However, by taken advantage of the 

machine learning method, these patterns could be classified through several times of training 

and the error rate of recognition decreases with the training times (Figure 11d). 

More recently, an artificial optic-neural synaptic (ONS) device was proposed for 

color-mixed pattern recognition with notable accuracy and energy efficiency.  Such device is 

fabricated by integrating synaptic and optical-sensing functions together as shown in Figure 

11e.[189]  Such device could be equivalent to an optic sensor and a synaptic transistor 

connected in series.  The channel conductivity of this synaptic transistor could be modulated 

based on the trapping or de-trapping of electrons, which is the dominant operation mechanism.  

The light would decrease the resistance of the optic sensing component, which increases the 

voltage applied on WSe2 channel. A shorter wavelength of light induces a larger decrement of 

the resistance of the optical sensing device. Such operation mechanisms result in 

differentiable responses with red, green, and blue light as stimuli. The differentiable responses 

thus provide robust features for recognizing different single-colored numeric pattern images 

(Figure 11f) and even color-mixed patterns. To demonstrate the advantages of such 

combination (i. e. optic-sensing device and synaptic device), an optic-neural network (ONN) 

was built based on the ONS devices as shown in Figure 11g, which shows a better recognition 

result than conventional neural network (Figure 11h).  The synaptic weight values were 



  

21 

optimized with the increase of the training epochs, which were reconstructed and visualized 

as shown in Figure 11i. 

4.3 Artificial sensory memory for motion control 

To build robotic/biomimetic/prosthetic systems with artificial intelligence, intensive 

attention has been paid on the movements control that enables exploring and interaction with 

the external environment.  Although by combining software and complex electronic circuits 

could realize precise movement control, the bioinspired devices could serve as a simplified 

strategy by replicating the functionality of essential biological components.  For example, a 

digital mechanoreceptor [27] based on organic ring oscillator and resistive pressure sensors that 

greatly resembles the signal conversion in a biological system, represents a step toward the 

advanced prosthetic systems with the feedback of neural-integrated touch based on large-area 

organic electronic skins.  However, the lacking of functional components that could integrate 

and extract features from the converted tactile inputs, would limit the potential for precise and 

effective control or recognition. 

An artificial afferent nerve was developed for collecting data from multiple digital 

mechanoreceptors, and mimic the encoding of tactile information process as the 

somatosensory peripheral nerves (Figure 12a).[190] The artificial afferent nerve incorporates 

sensors, organic ring oscillators, and a synaptic transistor (Figure 12b).  In such afferent nerve, 

the information flow is interpreted as follow: 1) external tactile stimuli converted into voltage 

pulses by pressure sensors and the ring oscillator; 2) integration of multiple electrical signals; 

3) triggering of postsynaptic currents by a synaptic transistor.  As mentioned before, the 

amplitude, duration, and frequency of the spike applied on the gate of the synaptic transistor 

could modulate the response of it, thus the intensity and duration of touch would also tune the 

response of such afferent nerve. It should be noted that the duration could not be 

differentiated if without the synaptic transistor. 
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Based on these mechanisms, an artificial reflex arc is built as shown in Figure 12c. 

The artificial afferent nerve was exploited to construct a biohybrid monosynaptic reflex arc by 

connecting to biological efferent nerves in a detached cockroach leg (Figure 12d).  The 

information flow in such hybrid neuromorphic circuit could be described as follow: 1) the 

pressure stimuli result in the voltage change of the pressure sensor; 2) the voltage change 

leads to voltage pulses with corresponded frequency through the oscillator; 3) the voltage 

pulses are integrated by the synaptic transistor to induce EPSC responses; 4) the EPSC signals 

then are converted and amplified as a voltage to trigger the actuation of the cockroach leg.  

Because the oscillating signals are robust to noise, therefore these signals exhibited better 

performance than signals encoded by constant voltages, in terms of elicitation of action 

potentials from the artificial afferent nerve.[27]  Figure 12e shows a typical response of the 

afferent nerve to touch.  The EPSC signals eventually were exploited to program the motion 

of the cockroach leg by actuating the muscle of tibial extensor.  The amplitude and frequency 

of stimulation signals would increase the activation number of muscle fibers and augment the 

forces from each fiber, respectively.  Such behavior could be well mimicked by the artificial 

afferent nerve due to the integrating capability of the synaptic transistor (Figure 12f and g). 

 

5. Conclusions and perspectives 

Despite its infancy, artificial sensory memory has implicated in a broad range of 

applications like bionics, prosthetics, robotics, and artificial intelligence.  The mimicry of 

sensory memory involved in exteroception, interoception, and the proprioception has been 

achieved although not completed.  One motivation to develop ASM is the consensus that 

memory is the basis of intelligence and the sensory memory is the very first step of 

information encoding from outside.  Therefore, the emerging ASM would give rise to 

perceptual intelligence and even the realization of robotic cognition.  In the meanwhile, it can 

improve these systems by simplifying traditional complex silicon-based circuits, while 
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endowing them with biological characteristics like stretchability and self-healing capability.  

Recent progress in incorporating such advanced technologies in bioinspired sensing and 

neuromorphic engineering is impressive, and the next wave of this area is around the corner. 

ASMs basically incorporates three main components: the sensor (S), the pathway (P), 

and the memory device (M), which resembles the biological receptor, axon, and synapse, 

respectively.  Connecting sensors with memory devices in series (named as SM-ASM) could 

electrically implement in-situ sensory memory.  Namely, the sensory stimuli could be 

memorized where they were activated.  A group of ASMs has exploited this architecture to 

achieve sensory memory, such as haptic memory[146] and iconic memory[157].  However, the 

sensor unit is herein exposed to the external environment with diverse ever-changing stimuli 

(e.g., mechanical deformation, humidity, chemical, and light), which would lead to the failure 

of synaptic devices.  Also, the functionality would be very limited by the simple equivalent 

model.  One alternative approach is to introduce a pathway (named as SPM-ASM) that could 

introduce additional functions or serves as connecting wires with mechanical tolerance.  For 

example, an ionic cable, as a pathway with structural similarity to the afferent axon, blocks 

the crosstalk between the sensory and memory modules and endows the system with 

stretchability.[49]  Another case is to introduce a ring oscillator for converting the DC signal 

from the sensory module into AC signal in order to transmit the signal as what the biological 

neuron does.  Compared with information transmission using AC, the DC amplitude 

modulated signals may suffer from low noise tolerance over a long transmission distance.  A 

critical requirement for such oscillator is that the frequency range should match that of the 

biological mechanoreceptors.  

The pursuit of electronic implementations that resemble the functions or structures of 

the biological sensory system has brought about evolutions in nano/micro- electronic devices 

including sensors[146], oscillators[27], memristors[149], transistors[49], etc.  For example, the 

detectable range to pressure could be <1 kPa by introducing pyramidal microstructures[146], 
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and ultrahigh sensitivity of 110 millivolts/decibel to auditory signal was achieved by using 

triboelectric nanogenerator (TENG)[24].  In the meanwhile, the increasing demands for 

memory/processing power and artificial intelligence have also facilitated the development of 

memory devices derived from neuromorphic engineering.  The combination of the two key 

modules represents the step forward realizing artificial sensory memory, while the 

compatibility between the two was considered as a dominant factor of the design.  For 

instance, to realize long-term memory by SM-ASM, researchers rationally designed the 

threshold voltage of the memory devices to match the response (i. e. voltage) range of the 

sensor module.[146]  To achieve that, the threshold voltage of a resistive switch could be used 

as the criterion for stimulus intensity—only the strong stimulus would lead to a transition of 

conducting state in the resistive switch device.  This mimics its counterpart in psychology, in 

which the intensive sensory stimulus is prone to draw attention to an individual.  

These achievements thereafter give birth to the novel memory-related functions which 

should require complex circuits or algorithms before.  Sensations, including haptic, iconic, 

nociceptive, and motor aspects, could be detected by artificial receptors and subsequently 

memorized in a long-term by synaptic devices.  In parallel, short-term memory to sensory 

stimuli has also been achieved based on some synaptic devices such as diffusive 

memristor[158] and electrolyte gated synaptic transistors.[49]  These devices took advantages of 

the temporal ionic/electronic coupling that closely resembles the biological processes.  A 

sensory stimulus that is able to evoke a current response through the memory device could 

increase the device conductance in a short-term manner, and the increased responses could be 

observed by the closely followed stimuli.  Besides, short-term and long-term memory 

mimicking, extracting and integrating the transiently-stored information in ASM could 

provide important cues/features for recognition, learning, manipulation, and so on.  These 

advances achieved by ASM could be deemed as one step forward artificial intelligence, which 

might greatly enrich the application scope of this emerging device on such areas as robotics 
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and prosthetics.  Furthermore, the future robotic systems would introduce new features such 

as mechanical conformability, biocompatibility, self-healing.  In that case, the prestretched,[191] 

bridgeisland,[192] origami/kirigami,[193] honeycomb lantern structures,[194] and so on, would 

deliver the mechanical robustness in such systems that incorporate both hard and soft 

materials.  In addition, materials like polymer,[195] hydrogel,[196] and biohybrid materials[197] 

would also benefit the design of ASM with both good electronic and mechanic properties.  

In the future, to reproduce an artificial perceptual system, a diversity of stimuli-

responsive materials/structures are needed for the detection of external information (touch, 

sight, sound, smell and taste), inner information (pain, hunger, and other homeostatic 

conditions), and action/reaction information (body position, movement, and acceleration) of 

an individual.  The detection of subtle sensory information is still challenged by issues with 

regards to resolution, sensitivity, and selectivity.  In addition, synaptic devices should be 

designed and integrated to process the sensory information with such nature evolved merits as 

massive parallelism, ultralow energy consumption, and high connectivity.[198, 199]  In short, 

several challenges need to be addressed before the practical application of such emerging bio-

inspired devices. 

One major challenge of ASM is the architectural design of such devices to reproduce 

the biological sensory memory process.  To resemble the three essential components of a 

sensory neuron—receptor, axon, and synapse, researchers integrated pressure sensor, ionic 

cable, and synaptic transistors respectively in the NeuTap-based ASM.[49]  The ionic cable 

could be further improved by using other ionic conductors with better mechanical tolerance, 

such as tough hydrogels.[200]  In addition, the length could be extended by using materials with 

high ionic conductivity but unaffected transmission efficiency, being consistent with the 

biological afferent axon.  A reported ionic cable with the length of 45 cm was able to transmit 

standard audio signal with high ion diffusivity up to 107 m2/s,[201] which is as long as that of 

an afferent nerve from fingertip to spinal cord.  However, pursing allelism in artificial neuron 
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should not fall into stereotypes that simply replace the exquisite architecture of the sensory 

neuron with electronic implementations.  Besides, the increased functionality and complexity 

would empower ASM devices while reducing the density of an integrated system.  The 

biological sensory system recruits information from a large number of receptors (e.g., >100 

cm−2 in one hand[55]).  Monolithic 3D integrated sensing/processing/memory systems using 

advanced microfabrication techniques have greatly increased the device density and provide 

recognition power to classify ambient gases through FET-based classification accelerator.[202]  

Admittedly, these systems may be compromised by the challenge of neither constructing an 

artificial peripheral nervous system where the density of receptors should be quite dispersed 

(e. g. receptors in the skin) nor endowing such system with mechanical tolerance.  This 

approach could implicate the digitizing of ASM-based systems to be interfaced with modern 

digital microprocessors. 

Another challenge could arise from the poor understanding of biological memory 

mechanisms.  The biological sensory memory system is hierarchical as shown in Figure 2. It 

is widely accepted that all forms of sensory memory are very brief (e. g., up to hundreds of 

milliseconds for iconic memory).  Most information in the sensory memory can decay and be 

forgotten, while some of them could draw the attention of individuals and then be transformed 

into short-term memory.  Through repeated rehearsals, the transition from short-term memory 

to long-term memory could be achieved.  Such mechanism thus filters the meaningless 

information, allowing us to focus on something of higher importance and urgency.  However, 

such a transition has not yet been achieved in current ASM devices.  To address this challenge, 

suitable synaptic devices and strategies should be chosen or designed, because previous 

reports on synaptic electronics have already experimentally demonstrated the transition from 

short-term memory to long-term memory.[114, 116, 203]  Furthermore, the engineered 

neuromorphic networks based on synaptic device arrays exhibit much greater processing 
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power than those using a single synaptic device, which could be trained for a high order of 

intelligent tasks like feature extraction and pattern recognition.[44, 45]  

The aforementioned hierarchical memory processes thus underlie the biological 

system with high efficacy and ultralow energy consumption.  Energy efficiency is quite 

important for building an artificial sensory system with ASM as a building block.  For 

example, hundred millions of photoreceptors are found in one eye,[204] awesome energy would 

be required to drive an artificial system even with milliwatts power for each pixel.  There is 

an obvious gap between the current ASMs and biological neurons in respect to power 

efficiency as demonstrated in Figure 13.  Currently, the ON state power consumption for 

most of ASMs is around microwatts level.  The OFF state power consumption could be quite 

low (picowatt level) for most two-terminal-memory based ASMs (including resistive switch 

and TS device).  As the enhancement-mode transistors are normally off, they could be chosen 

as the three-terminal-memory component, in order to decrease the OFF state power 

consumption for the transistor-based ASMs.  The low OFF state energy consumption of DOT-

TPE is based on such a strategy.[186]  At the same time, self-powered (e. g. piezoelectric and 

triboelectric) sensors could be used as the sensing component to further decrease the energy 

consumption at ON state.  A similar strategy achieved a low driving voltage and high 

sensitivity by the combination of piezoelectric nanogenerators (NGs) and ion gel gated 

transistors.[205]  An important issue for integrating self-powered sensors in ASM devices is to 

match the signal intensity from the sensors with memory modules.  For the two terminal 

memories, the amplitude range of the signal generated from the sensors should cover the 

threshold voltage of the memories, in order to achieve storage operation.  While for the 

transistor-based memories, charges generated from the sensors would be coupled to the gate 

dielectric/channel interface to induce a current change through the channel.  Therefore, the 

change of currents should be high enough compared with noise signals (to achieve acceptable 

signal-noise-ratio).  Another approach to achieve low energy consumption is to exploit 
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synaptic device with high transconductances, such as electrochemical cells[136] and organic 

nanowires-based synaptic transistors[128], and the power consumption could be several orders 

lower. 

One major advantage of the biological sensory system is the capability to integrate two 

or more sensory modalities for subsequent processing, interpretation, and act together as a 

synthetical perception.[206-208]  Although tremendous efforts have been concentrated on 

developing ASM devices with one sensory modality, there are only several multifunctional 

sensing devices that integrate multiple sensors to realize more advanced sensations such as 

proprioception,[209] tactile perception.[72, 108, 111]  Future trend in the large-number, multimodal, 

and multipoint sensing/memory/processing integrated systems would be focused on 

developing essential components for encoding and decoding the complex sensory information 

and the interfaces with hardware neural networks.  In this case, the electrolyte-gated synaptic 

transistor would be a promising candidate for integrating paralleled sensory signal through 

EDL capacitive coupling and constructing neuromorphic computational networks based on its 

electrochemical non-volatile memory property.  Accordingly, the incorporation of multiple 

sensations would be able to execute more complex recognition or decision tasks, which may 

finally deliver integrated artificial sensory organs.  To achieve this, the endeavor should be 

made in the leap from memory to perception by constructing an artificial neural network with 

ASM devices/modules as the first layer neurons (Figure 14), which allows the close imitation 

of biological processes.  Such neuromorphic perceptual systems would greatly improve 

current technologies in cyborg systems, humanoid robotic systems, human-machine systems, 

prosthetic systems, and so on.  Given the recognition of the advantages, it’s reasonable to 

replicate intelligence highly with regards to cognitive, emotional, social as well as 

psychological aspects in these systems.  Having witnessed the rapid development, we believe 

the artificial sensory memory is a promising candidate for novel architectures of hardware 
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artificial intelligence, and it would undoubtedly shed light on future advances with respect to 

various translational implementations. 

 

Acknowledgements 

The authors thank the financial support from the National Research Foundation, Prime 

Minister’s office, Singapore, under its NRF Investigatorship (NRF-NRFI2017-07), Singapore 

Ministry of Education (MOE2017-T2-2-107) and the Agency for Science, Technology and 

Research (A*STAR) under its AME Programmatic Funding Scheme (Project #A18A1b0045). 

 

Received: ((will be filled in by the editorial staff)) 

Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 



  

30 

Reference 

[1] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, 

B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. 

Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, D. S. Modha, 

Science 2014, 345, 668. 

[2] R. W. Picard, E. Vyzas, J. Healey, IEEE T. Pattern Anal. 2001, 23, 1175. 

[3] D. F. Lohman, Review of Educational Research 1989, 59, 333. 

[4] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. 

Zhao, H. Larochelle, D. Englund, M. Soljačić, Nat. Photonics 2017, 11, 441. 

[5] A. J. da Silva, T. B. Ludermir, W. R. de Oliveira, Neural Networks 2016, 76, 55. 

[6] D. Ventura, S. Kak, Inform. Sciences 2000, 128, 147. 

[7] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. 

G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. 

Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. 

Kavukcuoglu, D. Hassabis, Nature 2016, 538, 471. 

[8] V. E. Abraira, D. D. Ginty, Neuron 2013, 79, 618. 

[9] E. A. Lumpkin, M. J. Caterina, Nature 2007, 445, 858. 

[10] E. R. Kandel, Science 2001, 294, 1030. 

[11] J. D. Cohen, W. M. Perlstein, T. S. Braver, L. E. Nystrom, D. C. Noll, J. Jonides, E. E. 

Smith, Nature 1997, 386, 604. 

[12] C. E. Curtis, M. D'Esposito, Trends Cogn Sci. 2003, 7, 415. 

[13] B. Milner, L. R. Squire, E. R. Kandel, Neuron 1998, 20, 445. 

[14] D. J. Field, Neural Comput. 1994, 6, 559. 

[15] R. S. Dahiya, G. Metta, M. Valle, G. Sandini, IEEE T.  Robot. 2010, 26, 1. 

[16] A. M. Fernandes, P. B. Albuquerque, Cogn. Process. 2012, 13, 285. 

[17] W. S. Richard M. Shiffrin, Psychol. Rev. 1977, 84, 127. 

[18] S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. 

V. O. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 2010, 9, 859. 

[19] Y.-C. Lai, J. Deng, R. Liu, Y.-C. Hsiao, S. L. Zhang, W. Peng, H.-M. Wu, X. Wang, Z. 

L. Wang, Adv. Mater. 2018, 30, 1801114. 

[20] S. Furber, IEEE Spectrum 2012, 49, 44. 

[21] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. 

Sci. 2004, 101, 9966. 

[22] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. 

Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 

499, 458. 

[23] J. W. Gardner, E. L. Hines, M. Wilkinson, Meas. Sci. Technol. 1990, 1, 446. 

[24] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, 

C. Wu, C. Hu, J. Wang, Z. L. Wang, Sci, Robot. 2018, 3, 2516. 

[25] M. S. Mannoor, Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. 

Verma, D. H. Gracias, M. C. McAlpine, Nano Lett. 2013, 13, 2634. 

[26] Y. Liu, H. Wang, W. Shi, W. Zhang, J. Yu, B. K. Chandran, C. Cui, B. Zhu, Z. Liu, B. 

Li, C. Xu, Z. Xu, S. Li, W. Huang, F. Huo, X. Chen, Angew. Chem. Int. Edit. 2016, 55, 

8884. 

[27] B. C.-K. Tee, A. Chortos, A. Berndt, A. K. Nguyen, A. Tom, A. McGuire, Z. C. Lin, 

K. Tien, W.-G. Bae, H. Wang, P. Mei, H.-H. Chou, B. Cui, K. Deisseroth, T. N. Ng, Z. 

Bao, Science 2015, 350, 313. 

[28] A. Chortos, J. Liu, Z. Bao, Nat. Mater. 2016, 15, 937. 

[29] L. Seminara, M. Franceschi, L. Pinna, A. Ibrahim, M. Valle, S. Dosen, D. Farina, 

"Electronic skin and electrocutaneous stimulation to restore the sense of touch in hand 



  

31 

prosthetics", presented at 2017 IEEE International Symposium on Circuits and 

Systems (ISCAS), 28-31 May 2017, 2017. 

[30] G. A. Tabot, J. F. Dammann, J. A. Berg, F. V. Tenore, J. L. Boback, R. J. Vogelstein, 

S. J. Bensmaia, Proc. Natl. Acad. Sci. 2013, 110, 18279. 

[31] S. R. Shin, B. Migliori, B. Miccoli, Y.-C. Li, P. Mostafalu, J. Seo, S. Mandla, A. 

Enrico, S. Antona, R. Sabarish, T. Zheng, L. Pirrami, K. Zhang, Y. S. Zhang, K.-T. 

Wan, D. Demarchi, M. R. Dokmeci, A. Khademhosseini, Adv. Mater. 2018, 30, 

1704189. 

[32] S.-J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. 

H. Campbell, S. Dauth, A. K. Capulli, F. S. Pasqualini, S. Ahn, A. Cho, H. Yuan, B. 

M. Maoz, R. Vijaykumar, J.-W. Choi, K. Deisseroth, G. V. Lauder, L. Mahadevan, K. 

K. Parker, Science 2016, 353, 158. 

[33] R. V. Martinez, C. R. Fish, X. Chen, G. M. Whitesides, Adv. Funct. Mater. 2012, 22, 

1376. 

[34] Y. S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. 

Aida, Nat. Mater. 2015, 14, 1002. 

[35] C. Choi, M. K. Choi, S. Liu, M. S. Kim, O. K. Park, C. Im, J. Kim, X. Qin, G. J. Lee, 

K. W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S.-H. Kwon, N. L. Jeon, Y. M. Song, N. 

Lu, D.-H. Kim, Nat. Commun. 2017, 8, 1664. 

[36] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. 

W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. 

Hyeon, D.-H. Kim, Nat. Nanotechnol. 2014, 9, 397. 

[37] H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. 

Chung, N. Lu, T. Hyeon, S. H. Choi, D.-H. Kim, Nat. Nanotechnol. 2016, 11, 566. 

[38] J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, O. O. Park, ACS Appl. Mater. Inter. 

2015, 7, 6317. 

[39] Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, A. C. Arias, Adv. Mater. 2016, 28, 

4373. 

[40] A. Tricoli, N. Nasiri, S. De, Adv. Funct. Mater. 2017, 27, 1605271. 

[41] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, 

Nat. Commun. 2014, 5, 3132. 

[42] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 2010, 

10, 1297. 

[43] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, X. J. Zhu, Adv. Funct. Mater. 2012, 

22, 2759. 

[44] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W. D. Lu, Nat. Nanotechnol. 2017, 

12, 784. 

[45] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. 

Strukov, Nature 2015, 521, 61. 

[46] Y. Jeong, J. Lee, J. Moon, J. H. Shin, W. D. Lu, Nano Lett. 2018, 18, 4447. 

[47] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, D. Strukov, Nat. 

Commun. 2018, 9, 2331. 

[48] M. L. Hammock, A. Chortos, B. C.-K. Tee, J. B.-H. Tok, Z. Bao, Adv. Mater. 2013, 

25, 5997. 

[49] C. Wan, G. Chen, Y. Fu, M. Wang, N. Matsuhisa, S. Pan, L. Pan, H. Yang, Q. Wan, L. 

Zhu, X. Chen, Adv. Mater. 2018, 30, 1801291. 

[50] N. Cowan, C. C. Morey, Z. Chen, A. L. Gilchrist, J. S. Saults, in Psychology of 

Learning and Motivation, Vol. 49 (Ed: B. H. Ross), Academic Press,  2008, 49. 

[51] T. J. Jarome, F. J. Helmstetter, Frontiers in Molecular Neuroscience 2014, 7. 

[52] T. V. P. Bliss, G. L. Collingridge, Nature 1993, 361, 31. 

[53] A. L. Hodgkin, A. F. Huxley, J. Physiol. 1952, 117, 500. 



  

32 

[54] V. B. Mountcastle, J. Neurophysiol. 1957, 20, 408. 

[55] Victoria E. Abraira, David D. Ginty, Neuron 2013, 79, 618. 

[56] Z. Bao, X. Chen, Adv Mater 2016, 28, 4177. 

[57] Z. Liu, D. Qi, G. Hu, H. Wang, Y. Jiang, G. Chen, Y. Luo, X. J. Loh, B. Liedberg, X. 

Chen, Adv. Mater. 2018, 30, 1704229. 

[58] J. A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang, Z. Liu, H. 

Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, J. A. 

Rogers, Nat. Commun. 2014, 5, 3266. 

[59] A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. 

Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, T. Someya, Nat. 

Nanotechnol. 2017, 12, 907. 

[60] C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hinckley, I. Pochorovski, X. 

Yan, J. W. F. To, J. Y. Oh, J. B. H. Tok, Z. Bao, B. Murmann, Nat. Electron. 2018, 1, 

183. 

[61] S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, 

S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, 

A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, Z. Bao, Nature 2018, 555, 83. 

[62] Q. Zhang, T. Jiang, D. Ho, S. Qin, X. Yang, J. H. Cho, Q. Sun, Z. L. Wang, ACS Nano 

2018, 12, 254. 

[63] Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng, W. Wei, J. Yang, Z. L. Wang, ACS Nano 

2017, 11, 8830. 

[64] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z. L. Wang, Sci Adv 

2017, 3, 1700015. 

[65] J. Kang, D. Son, G. N. Wang, Y. Liu, J. Lopez, Y. Kim, J. Y. Oh, T. Katsumata, J. 

Mun, Y. Lee, L. Jin, J. B. Tok, Z. Bao, Adv. Mater. 2018, 30, 1706846. 

[66] H. Yang, D. Qi, Z. Liu, B. K. Chandran, T. Wang, J. Yu, X. Chen, Adv. Mater. 2016, 

28, 9175. 

[67] F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, Science 2008, 321, 

1658. 

[68] H.-H. Chou, A. Nguyen, A. Chortos, J. W. F. To, C. Lu, J. Mei, T. Kurosawa, W.-G. 

Bae, J. B. H. Tok, Z. Bao, Nat. Commun. 2015, 6, 8011. 

[69] B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, Z. Bao, Adv. Funct. 

Mater. 2014, 24, 5427. 

[70] B. Zhu, H. Wang, W. R. Leow, Y. Cai, X. J. Loh, M. Y. Han, X. Chen, Adv. Mater. 

2016, 28, 4250. 

[71] J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S. Y. Kim, H. Ko, ACS Nano 

2014, 8, 4689. 

[72] J. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Sci Adv 2015, 1, 1500661. 

[73] J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, H. Lim, S. Y. Kim, H. Ko, ACS 

Nano 2014, 8, 12020. 

[74] J. Park, J. Kim, J. Hong, H. Lee, Y. Lee, S. Cho, S.-W. Kim, J. J. Kim, S. Y. Kim, H. 

Ko, NPG Asia Mater. 2018, 10, 163. 

[75] B. Nie, R. Li, J. Cao, J. D. Brandt, T. Pan, Adv. Mater. 2015, 27, 6055. 

[76] Y. Zang, F. Zhang, D. Huang, X. Gao, C. A. Di, D. Zhu, Nat Commun 2015, 6, 6269. 

[77] A. P. Gerratt, H. O. Michaud, S. P. Lacour, Adv. Funct. Mater. 2015, 25, 2287. 

[78] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. 

Bao, Nat. Commun. 2014, 5, 3002. 

[79] B. Nie, R. Li, J. D. Brandt, T. Pan, Lab. Chip. 2014, 14, 1107. 

[80] M. Amjadi, M. Turan, C. P. Clementson, M. Sitti, ACS Appl. Mater. Inter. 2016, 8, 

5618. 



  

33 

[81] X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao, Y. Zhang, Adv. 

Funct. Mater. 2015, 25, 2395. 

[82] Y. Tai, T. Kanti Bera, Z. Yang, G. Lubineau, Nanoscale 2017, 9, 7888. 

[83] Z. Liu, D. Qi, P. Guo, Y. Liu, B. Zhu, H. Yang, Y. Liu, B. Li, C. Zhang, J. Yu, B. 

Liedberg, X. Chen, Adv Mater 2015, 27, 6230. 

[84] Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W. R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu, 

C. Wan, Z. Liu, X. Chen, Adv. Mater. 2018, 30, 1706589. 

[85] G. Chen, N. Matsuhisa, Z. Liu, D. Qi, P. Cai, Y. Jiang, C. Wan, Y. Cui, W. R. Leow, 

Z. Liu, S. Gong, K. Q. Zhang, Y. Cheng, X. Chen, Adv. Mater. 2018, 30, 1800129. 

[86] Q. Wang, M. Jian, C. Wang, Y. Zhang, Adv. Funct. Mater. 2017, 27, 1605657. 

[87] C. Wang, K. Xia, M. Zhang, M. Jian, Y. Zhang, ACS Appl. Mater. Inter. 2017, 9, 

39484. 

[88] D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. 

Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-

C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511. 

[89] N. T. Tien, S. Jeon, D. I. Kim, T. Q. Trung, M. Jang, B. U. Hwang, K. E. Byun, J. Bae, 

E. Lee, J. B. Tok, Z. Bao, N. E. Lee, J. J. Park, Adv. Mater. 2014, 26, 796. 

[90] Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang, J. Xiao, Sci Adv 2018, 4, 0508. 

[91] J. Wu, H. Wang, Z. Su, M. Zhang, X. Hu, Y. Wang, Z. Wang, B. Zhong, W. Zhou, J. 

Liu, S. G. Xing, ACS Appl. Mater. Inter. 2017, 9, 38745. 

[92] M. Li, Y. Wang, Y. Zhang, H. Zhou, Z. Huang, D. Li, J. Mater. Chem. C 2018, 6, 

5877. 

[93] H. Lee, D. Kwon, H. Cho, I. Park, J. Kim, Sci. Rep. 2017, 7, 39837. 

[94] Y. Huang, J. Zhang, J. Pu, X. Guo, J. Qiu, Y. Ma, Y. Zhang, X. Yang, Mater. Res. 

Express. 2018, 5, 065701. 

[95] Q. Sun, D. H. Ho, Y. Choi, C. Pan, D. H. Kim, Z. L. Wang, J. H. Cho, ACS Nano 

2016, 10, 11037. 

[96] K. Dong, Z. Wu, J. Deng, A. C. Wang, H. Zou, C. Chen, D. Hu, B. Gu, B. Sun, Z. L. 

Wang, Adv. Mater. 2018, 30, 1804944. 

[97] Z. Ren, J. Nie, J. Shao, Q. Lai, L. Wang, J. Chen, X. Chen, Z. L. Wang, Adv. Funct. 

Mater. 2018, 28, 1802989. 

[98] R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, 

Z. L. Wang, ACS Nano 2018, 12, 5190. 

[99] S. Qin, Q. Zhang, X. Yang, M. Liu, Q. Sun, Z. L. Wang, Adv. Energy. Mater. 2018, 8, 

1800069. 

[100] H. Yang, W. R. Leow, T. Wang, J. Wang, J. Yu, K. He, D. Qi, C. Wan, X. Chen, Adv. 

Mater. 2017, 29, 1701627. 

[101] J. Duan, X. Liang, J. Guo, K. Zhu, L. Zhang, Adv. Mater. 2016, 28, 8037. 

[102] K. Tian, J. Bae, S. E. Bakarich, C. Yang, R. D. Gately, G. M. Spinks, M. in het 

Panhuis, Z. Suo, J. J. Vlassak, Adv. Mater. 2017, 29, 1604827. 

[103] J.-Y. Sun, C. Keplinger, G. M. Whitesides, Z. Suo, Adv. Mater. 2014, 26, 7608. 

[104] C.-C. Kim, H.-H. Lee, K. H. Oh, J.-Y. Sun, Science 2016, 353, 682. 

[105] J. A. Voorthuyzen, P. Bergveld, A. J. Sprenkels, IEEE T. Electri. Insul. 1989, 24, 267. 

[106] D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, IEEE Photonics 

Technology Letters 2001, 13, 993. 

[107] J. N. Palasagaram, R. Ramadoss, IEEE Sens. J. 2006, 6, 1374. 

[108] Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, Z. L. Wang, Nat. Commun. 

2018, 9, 244. 

[109] C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey, Nat. Mater. 

2013, 12, 899. 



  

34 

[110] W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. 

Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, A. Javey, Nature 

2016, 529, 509. 

[111] Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie, S. Akita, K. Takei, Sci. 

Adv. 2016, 2, 1601473. 

[112] G.-Q. Bi, M.-M. Poo, Nature 1999, 401, 792. 

[113] G.-Q. Bi, M.-M. Poo, J. Neurosci. 1998, 18, 10464. 

[114] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, M. Aono, Nat. 

Mater. 2011, 10, 591. 

[115] T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, M. 

Aono, Adv. Mater. 2010, 22, 1831. 

[116] T. Chang, S. H. Jo, W. Lu, ACS Nano 2011, 5, 7669. 

[117] Y. Yang, B. Chen, W. D. Lu, Adv. Mater. 2015, 27, 7720. 

[118] Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. 

Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L. Xin, R. S. Williams, Q. Xia, J. J. 

Yang, Nat. Mater. 2016, 16, 101. 

[119] B. Li, Y. Liu, C. Wan, Z. Liu, M. Wang, D. Qi, J. Yu, P. Cai, M. Xiao, Y. Zeng, X. 

Chen, Adv. Mater. 2018, 30, 1706395. 

[120] D. Kuzum, R. G. D. Jeyasingh, B. Lee, H. S. P. Wong, Nano Lett. 2012, 12, 2179. 

[121] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H. S. P. Wong, Adv. Mater. 2013, 25, 1774. 

[122] C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, R. J. Hicken, Adv. Mater. 2011, 23, 

3408. 

[123] H. Tian, W. Mi, X.-F. Wang, H. Zhao, Q.-Y. Xie, C. Li, Y.-X. Li, Y. Yang, T.-L. Ren, 

Nano Lett. 2015, 15, 8013. 

[124] C. J. Wan, L. Q. Zhu, Y. H. Liu, P. Feng, Z. P. Liu, H. L. Cao, P. Xiao, Y. Shi, Q. 

Wan, Adv. Mater. 2016, 28, 3557. 

[125] C. J. Wan, Y. H. Liu, P. Feng, W. Wang, L. Q. Zhu, Z. P. Liu, Y. Shi, Q. Wan, Adv. 

Mater. 2016, 28, 5878. 

[126] C. J. Wan, Y. H. Liu, L. Q. Zhu, P. Feng, Y. Shi, Q. Wan, ACS Appl. Mater. Inter. 

2016, 8, 9762. 

[127] K. Kim, C.-L. Chen, Q. Truong, A. M. Shen, Y. Chen, Adv. Mater. 2013, 25, 1693. 

[128] W. Xu, S. Y. Min, H. Hwang, T. W. Lee, Sci. Adv. 2016, 2, 1501326. 

[129] J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun. 2013, 4, 2676. 

[130] S. D. Ha, J. Shi, Y. Meroz, L. Mahadevan, S. Ramanathan, Phys. Rev. Applied. 2014, 

2, 064003. 

[131] Y. Nishitani, Y. Kaneko, M. Ueda, T. Morie, E. Fujii, J. Appl. Phys. 2012, 111, 

124108. 

[132] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro, K. 

Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthélémy, S. Saïghi, V. 

Garcia, Nat. Commun. 2017, 8, 14736. 

[133] Y. Nishitani, Y. Kaneko, M. Ueda, E. Fujii, A. Tsujimura, Jpn J. Appl. Phys. 2013, 52, 

04CE06. 

[134] S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, H. Hwang, IEEE 

Electron Dev. Lett. 2017, 38, 732. 

[135] P. Gkoupidenis, N. Schaefer, B. Garlan, G. G. Malliaras, Adv. Mater. 2015, 27, 7176. 

[136] Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. 

J. Marinella, A. Alec Talin, A. Salleo, Nat. Mater. 2017, 16, 414. 

[137] P. Gkoupidenis, D. A. Koutsouras, G. G. Malliaras, Nat. Commun. 2017, 8, 15448. 

[138] M. D. Pickett, G. Medeiros-Ribeiro, R. S. Williams, Nat. Mater. 2012, 12, 114. 

[139] P. Stoliar, J. Tranchant, B. Corraze, E. Janod, M.-P. Besland, F. Tesler, M. Rozenberg, 

L. Cario, Adv. Funct. Mater. 2017, 27, 1604740. 



  

35 

[140] I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. 

Rajendran, Y. Leblebici, A. Sebastian, E. Eleftheriou, Nat. Commun. 2018, 9, 2514. 

[141] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80. 

[142] L. Chua, IEEE T. Circ. Theor. 1971, 18, 507. 

[143] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Nat. Commun. 2012, 3, 732. 

[144] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. 

Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy, J. Grollier, 

Nat. Mater. 2012, 11, 860. 

[145] H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv 

Mater 2013, 25, 5498. 

[146] B. Zhu, H. Wang, Y. Liu, D. Qi, Z. Liu, H. Wang, J. Yu, M. Sherburne, Z. Wang, X. 

Chen, Adv Mater 2016, 28, 1559. 

[147] Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. 

Li, H. Wu, Q. Xia, J. J. Yang, Adv. Funct. Mater. 2018, 28, 1704862. 

[148] J. Song, J. Woo, A. Prakash, D. Lee, H. Hwang, IEEE Electron Dev. Lett. 2015, 36, 

681. 

[149] R. Midya, Z. Wang, J. Zhang, S. E. Savel'ev, C. Li, M. Rao, M. H. Jang, S. Joshi, H. 

Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H. L. Xin, R. S. Williams, Q. 

Xia, J. J. Yang, Adv. Mater. 2017, 29, 1604457. 

[150] M. Wang, W. Wang, W. R. Leow, C. Wan, G. Chen, Y. Zeng, J. Yu, Y. Liu, P. Cai, H. 

Wang, D. Ielmini, X. Chen, Adv. Mater. 2018, 30, 1802516. 

[151] X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei, R. Cao, Z. Yao, X. Zhu, F. Zhang, H. 

Lv, S. Long, M. Liu, IEEE Electron Dev. Lett. 2018, 39, 308. 

[152] L. Q. Zhu, C. J. Wan, L. Q. Guo, Y. Shi, Q. Wan, Nat. Commun. 2014, 5, 3158. 

[153] Q. Lai, L. Zhang, Z. Li, W. F. Stickle, R. S. Williams, Y. Chen, Adv. Mater. 2010, 22, 

2448. 

[154] C. J. Wan, L. Q. Zhu, X. Wan, Y. Shi, Q. Wan, Appl. Phys. Lett. 2016, 108, 043508. 

[155] C. Wan, J. Zhou, Y. Shi, Q. Wan, IEEE Electron Dev. Lett. 2014, 35, 414. 

[156] M. Jerry, P. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, S. Datta, "Ferroelectric FET 

analog synapse for acceleration of deep neural network training", presented at 2017 

IEEE International Electron Devices Meeting (IEDM), 2-6 Dec. 2017, 2017. 

[157] S. Chen, Z. Lou, D. Chen, G. Shen, Adv. Mater. 2018, 30, 1705400. 

[158] J. H. Yoon, Z. Wang, K. M. Kim, H. Wu, V. Ravichandran, Q. Xia, C. S. Hwang, J. J. 

Yang, Nat. Commun. 2018, 9, 417. 

[159] Y. Liu, Z. Liu, B. Zhu, J. Yu, K. He, W. R. Leow, M. Wang, B. K. Chandran, D. Qi, H. 

Wang, G. Chen, C. Xu, X. Chen, Adv. Mater. 2017, 29, 1701780. 

[160] A. M. Gordon, G. Westling, K. J. Cole, R. S. Johansson, J. Neurophysiol. 1993, 69, 

1789. 

[161] K. E. Foley, Nat. Med. 2016, 22, 2. 

[162] X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Adv. Mater. 2014, 26, 1336. 

[163] H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Adv. 

Funct. Mater. 2015, 25, 3825. 

[164] M. Cavallini, Z. Hemmatian, A. Riminucci, M. Prezioso, V. Morandi, M. Murgia, Adv. 

Mater. 2012, 24, 1197. 

[165] E. Diamant, Brain Res. 2008, 1225, 171. 

[166] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, I. Fried, Nature 2005, 435, 1102. 

[167] I. G. Sligte, A. R. Vandenbroucke, H. S. Scholte, V. A. Lamme, Front. Psychol. 2010, 

1, 175. 

[168] C. Lefebvre, J. Martinez-Trujillo, P. Jolicoeur, in Mechanisms of Sensory Working 

Memory,  (Eds: P. Jolicoeur, C. Lefebvre, J. Martinez-Trujillo), Academic Press, San 

Diego 2015, 1. 



  

36 

[169] J. Brooks, I. Tracey, J. Anat. 2005, 207, 19. 

[170] A. E. Dubin, A. Patapoutian, J. Clin. Invest. 2010, 120, 3760. 

[171] M. S. Gold, G. F. Gebhart, Nat. Med. 2010, 16, 1248. 

[172] R. Shadmehr, H. H. Holcomb, Science 1997, 277, 821. 

[173] C. S. Sherrington, Brain 1907, 29, 467. 

[174] A. D. Craig, Curr. Opin. Neurobiol. 2003, 13, 500. 

[175] M. R. Cutkosky, R. D. Howe, W. R. Provancher, in Springer Handbook of Robotics,  

(Eds: B. Siciliano, O. Khatib), Springer Berlin Heidelberg, Berlin, Heidelberg 2008, 

455. 

[176] R. S. Dahiya, M. Valle, Robotic Tactile Sensing: Technologies and System, Springer 

Netherlands,  2012. 

[177] G. Fuhrmann, I. Segev, H. Markram, M. Tsodyks, J. Neurophysiol. 2002, 87, 140. 

[178] R. A. Silver, Nat. Rev. Neurosci. 2010, 11, 474. 

[179] M. Lee, W. Lee, S. Choi, J.-W. Jo, J. Kim, S. K. Park, Y.-H. Kim, Adv. Mater. 2017, 

29, 1700951. 

[180] W. Hu, J. Jiang, D. Xie, S. Wang, K. Bi, H. Duan, J. Yang, J. He, Nanoscale 2018, 10, 

14893. 

[181] Z. Wang, M. Rao, J.-W. Han, J. Zhang, P. Lin, Y. Li, C. Li, W. Song, S. Asapu, R. 

Midya, Y. Zhuo, H. Jiang, J. H. Yoon, N. K. Upadhyay, S. Joshi, M. Hu, J. P. 

Strachan, M. Barnell, Q. Wu, H. Wu, Q. Qiu, R. S. Williams, Q. Xia, J. J. Yang, Nat. 

Commun. 2018, 9, 3208. 

[182] C.-S. Yang, D.-S. Shang, Y.-S. Chai, L.-Q. Yan, B.-G. Shen, Y. Sun, Phys. Chem. 

Chem. Phys. 2017, 19, 4190. 

[183] L. A. Kong, J. Sun, C. Qian, C. Wang, J. L. Yang, Y. L. Gao, Org. Electron. 2017, 44, 

25. 

[184] C. Qian, J. Sun, L. A. Kong, G. Gou, J. Yang, J. He, Y. Gao, Q. Wan, ACS Appl Mater 

Interfaces 2016, 8, 26169. 

[185] P. Feng, W. Xu, Y. Yang, X. Wan, Y. Shi, Q. Wan, J. Zhao, Z. Cui, Adv. Funct. Mater. 

2017, 27, 1604447. 

[186] Y. Zang, H. Shen, D. Huang, C. A. Di, D. Zhu, Adv. Mater. 2017, 29, 1606088. 

[187] J. I. Gold, T. Watanabe, Curr Biol 2010, 20, 46. 

[188] D. Y. Little, F. T. Sommer, Front. Neural Circuit. 2013, 7, 37. 

[189] S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh, J.-H. Kim, K. Heo, J.-W. Choi, C. Choi, S. 

Oh, D. Kuzum, H. S. P. Wong, J.-H. Park, Nat. Commun. 2018, 9, 5106. 

[190] Y. Kim, A. Chortos, W. Xu, Y. Liu, J. Y. Oh, D. Son, J. Kang, A. M. Foudeh, C. Zhu, 

Y. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, T.-W. Lee, Science 2018, 360, 998. 

[191] D. Qi, Z. Liu, Y. Liu, W. R. Leow, B. Zhu, H. Yang, J. Yu, W. Wang, H. Wang, S. 

Yin, X. Chen, Adv. Mater. 2015, 27, 5559. 

[192] D. Kim, G. Shin, Y. J. Kang, W. Kim, J. S. Ha, ACS Nano 2013, 7, 7975. 

[193] X. Ning, X. Wang, Y. Zhang, X. Yu, D. Choi, N. Zheng, D. S. Kim, Y. Huang, Y. 

Zhang, J. A. Rogers, Advanced Materials Interfaces 2018, 5, 1800284. 

[194] Z. Lv, Y. Tang, Z. Zhu, J. Wei, W. Li, H. Xia, Y. Jiang, Z. Liu, Y. Luo, X. Ge, Y. 

Zhang, R. Wang, W. Zhang, X. J. Loh, X. Chen, Adv. Mater. 2018, 30, 1805468. 

[195] J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. 

Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W.-G. Bae, Y. 

Kim, L. Jin, J. W. Chung, J. B. H. Tok, Z. Bao, Nature 2016, 539, 411. 

[196] C. Yang, Z. Suo, Nature Reviews Materials 2018, 3, 125. 

[197] P. Cai, B. Hu, W. R. Leow, X. Wang, X. J. Loh, Y.-L. Wu, X. Chen, Adv. Mater. 2018, 

30, 1800572. 

[198] C. K. Machens, Science 2012, 338, 1156. 

[199] S. Navlakha, Z. Bar-Joseph, Molecular Systems Biology 2011, 7, 546. 



  

37 

[200] C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo, Science 

2013, 341, 984. 

[201] C. H. Yang, B. Chen, J. J. Lu, J. H. Yang, J. Zhou, Y. M. Chen, Z. Suo, Extreme Mech. 

Lett. 2015, 3, 59. 

[202] M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. S. P. Wong, S. 

Mitra, Nature 2017, 547, 74. 

[203] C. J. Wan, L. Q. Zhu, J. M. Zhou, Y. Shi, Q. Wan, Nanoscale 2013, 5, 10194. 

[204] C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, J. Comp. Neurol. 1990, 

292, 497. 

[205] Q. Sun, W. Seung, B. J. Kim, S. Seo, S.-W. Kim, J. H. Cho, Adv. Mater. 2015, 27, 

3411. 

[206] A. K. Engel, W. Singer, Trends Cogn Sci. 2001, 5, 16. 

[207] S G Lisberger, a. E J Morris, L. Tychsen, Annu. Rev. Neurosci. 1987, 10, 97. 

[208] S. Molholm, W. Ritter, M. M. Murray, D. C. Javitt, C. E. Schroeder, J. J. Foxe, Cog. 

Brain Res. 2002, 14, 115. 

[209] S. Zhao, R. Zhu, Adv. Mater. 2017, 29, 1606151. 

[210] B. Sengupta, M. B. Stemmler, K. J. Friston, PLOS Comput. Biol. 2013, 9, 1003157. 

[211] D. Attwell, S. B. Laughlin, J. Cereb. Blood Flow Metab. 2001, 21, 1133. 

  



  

38 

 
 

Figure 1. The comparison of artificial sensory memory and sensory neuron. The artificial 

sensory memory could be acted as the building block of the sensory processing artificial 

neural network, just as the sensory neuron in the neural network that collects, refines and 

preprocesses sensory information and transmit them to high order neurons for further 

processing. The design and fabrication of artificial sensory memory could obtain inspirations 

and benchmarks from the biological sensory neuron. A sensory neuron has three important 

components: receptor, axon, and synapse. In parallel, the artificial sensory memory generally 

comprises sensor, pathway, and memory. Two typical synaptic devices utilized in artificial 

sensory memory devices were shown, i. e. threshold switch device and ionic/electronic hybrid 

transistor (inset shows the electric-double-layer formed at the interface between the gate 

dielectric and channel).  
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Figure 2. The sensory memory and the multi-store model of memory. Sensory memory could 

be divided into several categories which are involved in exteroception, interoception, and 

proprioception. The information flow in the multi-store model of memory could be described 

as: 1) the sensory information enters the sensory memory after it is detected by the sense 

organs; 2) it enters the short-term memory if it draws enough attention to an individual; 3) the 

short-term memory transfers to long-term memory by rehearsals. 
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Figure 3. A brief summary of recent endeavors on neuromorphic devices. The neuromorphic 

devices serve as the building block of an electronic brain, which is designed and fabricated for 

capturing the memory or plasticity power of synapse/neuron. These memory or plasticity 

properties thus underlie the learning emulations by the neuromorphic devices. These 

achievements have no doubt facilitated the progress of achieving electronic brain ultimately. 1) 

Electronic synapse. Left top panel. Memristor-based synapse. Reproduce with permission.[42] 

Copyright 2010, American Chemical Society; Left bottom panel: Phase change memory 

based synapse. Reproduce with permission.[120] Copyright 2011, American Chemical Society; 

Right top panel: Atomic switch based synapse. Reproduce with permission.[114] Copyright 

2011, Springer Nature; Right bottom panel: Electrolyte gated transistor. 2) Plasticity & 

memory. Left panel: Schematic diagram of spike-timing-dependent plasticity (STDP). Right 

panel: Simplified memorization model in the electronic synapse. Reproduce with 

permission.[114] Copyright 2011, Springer Nature. 3) Learning & computing. Top panel: K-

means algorithm. Reproduce with permission.[46] Copyright 2018, American Chemical 

Society; Bottom panel: Delta rule algorithm. Reproduce with permission.[45] Copyright 2015, 

Springer Nature. The electronic brain. Reproduce with permission. Copyright 2018, Pixabay. 
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Figure 4. Timeline of milestones in pursuing the capability of sensory memory with multiple 

modalities. Photography. Reproduced with permission. Copyright 2000, 2001, 2002 Free 

Software Foundation, Inc. Phonograph. Reproduced with permission. Copyright 1965, 

Thinkstock. ANN-based E-nose. Reproduced with permission.[23] Copyright 1990, IOP 

Publishing. Pressure recording. Reproduced with permission.[21] Copyright 2004, National 

Academy of Sciences. Temperature recording. Reproduced with permission.[36] Copyright 

2014, Springer Nature. Artificial haptic memory. Reproduced with permission.[146] Copyright 

2016, Wiley-VCH. Haptic processing memory. Reproduced with permission.[186]  Copyright 

2017, Wiley-VCH. Artificial motor memory. Reproduced with permission.[159] Copyright 

2017, Wiley-VCH. Artificial nociceptor. Reproduced with permission.[158] Copyright 2018, 
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Springer Nature. Artificial iconic memory. Reproduced with permission.[157] Copyright 2018, 

Wiley-VCH. Artificial afferent nerve. Reproduced with permission.[190] Copyright 2018, 

American Association for the Advancement of Science. Artificial sensory neuron. 

Reproduced with permission.[49] Copyright 2018, Wiley-VCH. Artificial optic-neural synapse. 

Reproduced with permission.[189] Copyright 2018, Springer Nature. 
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Figure 5. Artificial haptic memory. a) The conceptual diagram of haptic memory. b) The 

equivalent circuit model for each pixel of the haptic memory device arrays. c) Layer-by-layer 

structure of the haptic memory device. d) A digital photo of the sensitive layer of the pressure 

sensor. e) Digital image of the SiO2 based resistive memory. f) Digital image of a ‘T’ pattern 

on the haptic memory device arrays. g) The mapping and memorizing results of the alphabetic 

patterns. h) Retention results for 1 week (left two figures) and the demonstration of the 

reprogramming capability. Reproduced with permission.[146] Copyright 2016, Wiley-VCH. 
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Figure 6. Artificial iconic memory. a) The conceptual diagram of iconic memory. b) 

Schematic diagram of each component of the iconic memory device. I-V tests for the c) single 

photodetector and d) integrated device. e) Retention properties and reprogrammable capability 

of the iconic memory device arrays. Reproduced with permission.[157] Copyright 2018, Wiley-

VCH. 
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Figure 7. Artificial nociceptive memory. The conceptual diagram of a) nociceptor and b) 

artificial nociceptive memory. c) The equivalent circuit model of an artificial nociceptor in 

response to thermal stimuli. d) The voltage changes of the thermoelectric module in response 

to different temperatures. e) The output of the artificial nociceptor system in response to 

different temperature stimuli. Reproduced with permission.[158] Copyright 2018, Springer 

Nature. 
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Figure 8. Artificial motor memory. a) The conceptual diagram illustrating the motor memory. 

b) Schematic figure of the devices and the device array. c) The equivalent circuit model for 

the motor memory devices. d) The allocation and response of a motor memory device on 

elbow flexion. e) Multi-motion recording by multiple motor memory systems. Reproduced 

with permission.[159] Copyright 2017, Wiley-VCH. 
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Figure 9. Artificial sensory memory could be deemed as a building block of intelligence that 

enables essential tasks like manipulation, recognition, and learning. 
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Figure 10. ASM for differentiating touch speed. a) The conceptual design of the artificial 

haptic memory for extracting timing information. b) Schematic diagram of the DOT-TPE 

device. c) The equivalent circuit model for the DOT-TPE. d) The output of the pressure 

sensor and the synaptic transistor in response to different pressures. e) Schematic diagram 

illustrating the protocol for applying touch cycles with different speeds. f) The EPSC response 

to the first touch (A1) and the gain (A4/A1) by touch cycles. g) Schematic diagram 

illustrating the touch speed recognition. Reproduced with permission.[186]  Copyright 2017, 

Wiley-VCH. 
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Figure 11. ASM for recognition tasks. a) The conceptual design of the NeuTap devices for 

tactile perceptual learning. b) Schematic figures of the devices on the finger (left), and pattern 

to be recognized (right), respectively. c) The typical response to the three pattern pairs. d) The 

recognition error rate decreases with the learning times. Artificial sensory neuron: 

Reproduced with permission.[49] Copyright 2018, Wiley-VCH. e) Schematic of the nerves in 

the human visual system versus the ONS device. The right panel shows the equivalent circuit 

model of the ONS device. f) Examples of the training dataset. g) The optic-neural network 

based on ONS devices. h) Recognition rate versus the training epochs. i) Weight mapping 

images after the 12th and 600th training epoch. Reproduced with permission. [189] Copyright 

2018, Springer Nature. 
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Figure 12. ASM for motion control. a) Biological and b) artificial afferent nerves that are 

stimulated by pressure. c) Schematic diagram illustrating the hybrid reflex. d) Digital image 

of an artificial afferent nerve on a discoid cockroach’s back. e) Force measured from the leg 

with a pressure applied on the artificial afferent nerve. f) The output forces plotted as a 

function of the applied pressure. g) The output forces plotted as a function of the duration of 

the applied pressure. Reproduced with permission.[190] Copyright 2018, American Association 

for the Advancement of Science. 
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Figure 13. The power consumption for several kinds of ASM versus biological neuron. The 

power consumption for a biological neuron is estimated based on several references.[210, 211] 

To evoke an action potential, ~108-109 ATP molecules are required to be hydrolyzed. The 

resting potential takes nearly 5-10 folds less energy than that of the action potential. The 

energy from ATP hydrolysis is estimated to 57 kJ/mol (~10-19 J/molecules). The ON (OFF) 

state refers to the state with stimulation on (off). Devices in the light-blue and light-yellow 

domains are transistor-based ASM and memristor-based ASM, respectively. The sensory 

components of the devices plotted in black, blue, green, and red, respectively, are in response 

to pressure, light, temperature, and strain. Memory behaviors mimicked by the devices plotted 

by squares, circle, and triangle, respectively, belong to exteroception, interoception, and 

proprioception categories. 
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Figure 14. The technological roadmap of the artificial sensory memory to artificial perceptual 

intelligence. The DEF index (density, energy consumption, and functionality) for evaluation 

of the development of ASM. 
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The table of contents entry. Transferring the biological concept of sensory memory into 

electronic implementations is promising to achieve perceptual intelligence. Recent endeavors 

on design, fabrication, and application of artificial sensory memory are summarized in this 

review. Such kind of device would undoubtedly shed light on future advances with respect to 

various translational implementations such as robotics, prosthetics, and so on. 
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