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ARTIFICIAL SUBSTRATE AND CORAL REEF RESTORATION:
WHAT DO WE NEED TO KNOW TO KNOW WHAT WE NEED

Richard E. Spieler, David S. Gilliam and Robin L. Sherman

ABSTRACT

To use artificial substrate effectively in coral reef restoration certain basic knowledge
is required: (1) what is the artificial substrate expected to accomplish relative to the goals
of the restoration effort and (2) what are the expected interactions of the selected substrate’s
composition, texture, orientation, and design with the damaged environment and the biota
of interest. Whereas the first point is usually clear, at least in general terms, the second is
not. In this review, we examine: the functions of artificial substrate in restoration and
some of the physical (i.e., composition; surface texture; color and chemistry; and design
in terms of profile, shelter, shading, size and configuration, settlement attractants, and
stability) and environmental factors (i.e., temperature, light, sedimentation, surrounding
biota, hydrodynamics, depth, and temporal effects) affecting these functions. We con-
clude that until substantial additional research is accomplished, the use of artificial sub-
strate in coral reef restoration will remain a ‘best guess’ endeavor. Areas requiring addi-
tional research are identified and some potentially promising lines of inquiry are sug-
gested.

Coral reefs worldwide are in a state of decline (Ginsburg, 1994; Jameson et al., 1995).
Although a number of causative factors for the decline are natural in origin (i.e., storms,
changing weather patterns, and epizootics), much of the damage is anthropogenic (e.g.,
coastal development, ship groundings, pollution, etc.). Damage due to natural causes is
often so widespread and catastrophic that human intervention or restoration is not fea-
sible. In contrast, there is considerable interest in preventing anthropogenic damage as
well as mitigating, rehabilitating and/or restoring coral reef environs subjected to human
disturbance. In recent years, there has been increasing interest in using artificial substrate
to aid in accomplishing these goals.

To use artificial substrate effectively in coral reef restoration requires certain basic
knowledge: (1) What is the artificial substrate expected to accomplish relative to the
goals of the restoration effort? (2) What are the expected interactions of the selected
substrate’s composition, texture, orientation, and design with the damaged environment
and the biota of interest?

In contrast to much of the earlier work with artificial reefs, a review of recent papers,
gray literature, and request for proposals (RFPs) indicates that resource managers, in
general, have a clear idea of what they wish to accomplish with artificial substrate in
mitigation and restoration projects. Usually the primary goals deal with easily verifiable
physical construction, i.e., reconstructing vertical relief, consolidating substrate, and coral
transplantation or reattachment (Hudson and Diaz, 1988; Clark and Edwards, 1994). The
construction should, in turn, aid in restoring the biotic community. Restoration is much
more difficult to quantify, however, especially in the absence of pre-destruction baseline
data.

The second of the two questions is not as readily answered. Relatively little is under-
stood about the interaction of artificial substrate with the ecology of the environment in
which it is placed. It is this problem that we address here. This paper concentrates on
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restoration of coral reefs that have been subjected to physical damage (e.g., ship ground-
ings, coral mining) rather than nutrient or other chemical damage. Restoration is used
here in the broadest sense to include mitigation and rehabilitation.

Although there have been a host of other reviews pointing out the state of knowledge,
and the substantial deficits in knowledge, of artificial reef function, they have mainly
concentrated on fisheries issues (e.g., Bohnsack and Sutherland, 1985; Seaman et al.,
1989; Bohnsack, 1991; Bohnsack et al., 1991; Grove et al., 1991; Seaman and Sprague,
1991; Seaman, 1997). There have also been several reviews of workshops on coral reef
restoration (Woodley and Clark, 1989; Miller et al., 1993) but apparently this is the first
review to specifically examine the state of knowledge of artificial substrate in coral reef
restoration efforts with the aim of discerning research needs.

Below we examine the functions of artificial substrate in restoration, the structural and
environmental determinants of function, and some considerations of costs and aesthetics.
Many of the topics touched on in this paper are backed by an extensive literature, well
worth a review unto themselves, for example: structural complexity and community struc-
ture or colonization dynamics on artificial substrates. In such cases our citations are in-
tended to be representative, not all inclusive.

FUNCTION OF ARTIFICIAL SUBSTRATE IN RESTORATION

Artificial structures can be designed and deployed to accomplish multiple functions:
(1) provide hard substrate for invertebrate colonization; (2) provide refugia for fish and
invertebrates; (3) alter currents; (4) consolidate rubble; (5) impede fishing, for example
by obstructing trawling; (6) attract fish; (7) provide a tourist attraction; or any combina-
tion of these characteristics.

The first four of these functional characteristics are mainly the ones of interest in resto-
ration efforts. The first two (provide hard substrate and refuge) deal primarily with bio-
logical concerns, the latter two (alter currents and consolidate rubble) primarily with en-
gineering concerns. Obviously, there is substantial overlap between biological and engi-
neering concerns. For example, reefs designed as invertebrate substrate will need to con-
sider questions of stability, and consolidated rubble should incorporate biological consid-
erations related to substrate and refuge. We briefly expand on these four functions below.

The main problem in coral reef damage to the corals is the loss of the animals. The loss
of corals, and coralline structure, can cause profound changes in the entire reefal commu-
nity structure (Ebersole, 1999; Swanson et al., 1999). Restoration efforts with corals,
using artificial substrate, are therefore aimed at providing fixed substrate, either for coral
settlement or for artificial attachment of broken or transplanted corals. For settling corals,
at least, the artificial substrate also needs to provide refuge (see below). To date, most of
the work on coral reef restoration has concentrated on coral repair, either through reat-
tachment or transplantation to natural or artificial substrate and, to some extent, provid-
ing hard substrate for settlement (for references see: Miller et al., 1993; Clark and Edwards,
1995; Oren and Benayahu, 1997; Edwards and Clark, 1998). Edwards and Clark (1998)
have critically examined current transplantation approaches and concluded that in most
cases, where the degraded area receives sufficient recruits naturally, coral transplantation
should be the last resort of a restoration effort. Further, they suggested when coral trans-
plantation is justified that slow-recruiting, slow-growing massive corals be used. These



SPIELER ET AL.: ARTIFICIAL SUBSTRATE AND CORAL REEF RESTORATION 1015

conclusions highlight the need for artificial structure, at least in the short term, to replace
the structural function of coral.

In contrast to corals, with fishes and some macroinvertebrates the problems associated
with coral reef damage, such as a ship grounding, are usually not the direct loss of the
animals per se but rather the loss of refuge supplied by coral and epifaunal structure
(Dennis and Bright, 1988). There is some debate as to what generalizations on fish-habi-
tat interactions can reliably be formed from research to date (Jones and Syms, 1998).
Nonetheless, there have been a number of studies reporting a positive correlation be-
tween reef complexity, or refuge, and diversity of fishes as well as total numbers of fish
(Shulman, 1984; Roberts and Ormond, 1987; Hixon and Beets, 1989; 1993; Beukers and
Jones, 1998; Rilov and Benayahu, 1998; Friedlander and Parrish, 1998; Eklund, 1996;
Gilliam, 1999; Sherman, 2000) or lobster (Herrnkind et al., 1997). Most of these studies
have concentrated on refuge from predation. However, refuge from current can also be an
important consideration in some areas (Bohnsack et al., 1991; Hobson, 1991). Damage to
coral reefs also destroys some food resources; although it is not clear if food resources on
the reef are limiting for many species (Shulman, 1984; Jones, 1991). By increasing diver-
sity and the numbers of some fishes and invertebrates, replacing refuge also increases the
amount of food available to higher trophic levels; thereby replacing food resources lost
due to physical destruction. Thus the major goal of artificial structure in coral reef resto-
ration efforts, as relates to fishes and some macroinvertebrates, is to replace necessary
refuge.

As fixed structures, corals are hydrodynamic elements affecting current flow. The loss
of corals can, therefore, dramatically affect downstream currents and wave action, pro-
ducing scouring and destruction of biota that are adapted to lower energy environments.
There have been several attempts to mitigate the loss of current-protective corals or natu-
ral reef structure with artificial structure (Clark and Edwards, 1994; Harris, 1999).

Ship groundings, and the associated attempts to dislodge the ship, as well as coral
mining can produce extensive rubble. Left unaltered, rubble can be moved about on the
sea floor by current action and can damage attached or nearby invertebrates (Gittings et
al., 1993; Clark and Edwards, 1994). There have been several recent efforts, with limited
success, to consolidate rubble using artificial substrate such as lime-rock boulders and
concrete mat or modules (Clark and Edwards, 1994, Waxman et al., 1999).

From a biological perspective, to take full advantage of the functions artificial sub-
strate can provide to restoration efforts, we must understand both the restoration objec-
tives and which attributes of artificial structure provide its functionality. How associated
organisms will interact with an artificial reef will depend, in large measure, on the spe-
cific structural attributes of that reef and the environment in which it is deployed.

STRUCTURAL DETERMINANTS OF FUNCTION

The physical attributes of artificial substrate that contribute to its function are dis-
cussed in this section, e.g., composition; surface texture, color and chemistry; and design
in terms of profile, shelter, shading, size and configuration, settlement attractants, and
stability.

ComposITION.—A variety of materials have been used in the construction of artificial
reefs: e.g., wood, steel, fiberglass, PVC, materials-of-opportunity, tires, boulders, con-
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crete, electro-deposition of CaCO,/Mg(OH), (Grove et al., 1991). Although there may be
exceptions, such as the use of tires or plastic (Chua and Chou, 1994; Oren and Benayahu,
1997), in most coral reef restoration or mitigation efforts some form of concrete (usually
steel reinforced) or natural rock (lime rock boulder) or a combination of the two has been
the material of choice (Hudson et al., 1989; Clark and Edwards, 1994). These materials
have the advantages of: providing a substrate of similar composition as that replaced,
durability, high weight for stability, economy, and in most cases, availability. In addition,
concrete is readily engineered into a specific design. However, from an ecosystem resto-
ration perspective, additional research is required to examine the organismal assemblages
associated with these materials. Scott and coworkers (1988) found differences in endo-
lithic fauna between limestone and a concrete aggregate and Miller and Barimo (this
volume) found differences in coral recruitment to concrete and lime rock.

The deposition of CaCO,/Mg(OH), on to steel frames, or other conductive material, by
the application of low voltage direct current (1-24 v), also appears to have a number of
advantages. The substrate is created at the restoration site from natural materials and
allows for a rapid attachment of coral transplants to a wire frame that can be shaped as
desired (Hilbertz, 1981; van Treeck and Schuhmacher, 1997; Hilbertz and Goreau, 1998).
This technique appears to be a promising area for further research; however, we are un-
aware of any long-term, in situ studies using this construction approach.

Because, in general, scleractinian corals are slow growing, most restoration efforts in-
tend the artificial substrate to become a permanent part of the environment. A CaCO,
substrate, in some form, is admittedly the most natural and probably least obtrusive mate-
rial for such use and, although both lime rock and concrete structures are subject to
bioerosion (Scott et al., 1988), both are relatively long lived in the marine environment.
However, if a specific reefal attribute needs to be immediately restored as a temporary
fix, e.g., juvenile habitat or predator exclusion structure, then the use of other materials
would be appropriate, such as those that would deteriorate naturally (e.g., metal caging)
or which could be removed periodically for maintenance.

Surrace.—Essentially all colonizing biota, from bacteria to corals and fishes, exhibit
substrate-dependent settling preferences. In general, these preferences are due to some
physical or chemical aspect of the substrate surface, i.e., texture, color, and toxic or at-
tractant chemicals.

Texture—There has been extensive work on the texture of the preferred substrate for
settling coral, and this information has been a consideration in reports of reef restoration
efforts. However, it is not clear if these considerations have been a pre-design intent or
fortuitous byproduct of other construction priorities. For the most part, scleractinian cor-
als appear to prefer a rough textured, vertical surface, often shaded and/or protected (for
references see: Benayahu and Loya, 1987; also Carleton and Sammarco, 1987; Harriott
and Fisk, 1987; Tomascik, 1991). However, there may be important species-specific ex-
ceptions to this generality (Wallace, 1985; Schuhmacher, 1988). It has been hypothesized
that more common corals are less sensitive to texture (Carleton and Sammarco, 1987).
Some soft corals also prefer rough textured substrates with an organic coating (Benayahu
and Loya, 1984) and settle mainly on edges and lower surfaces (Benayahu and Loya,
1987). Fishes also exhibit substrate preference, although it is not clear what aspect of the
substrate is the responsible attribute (Jones and Syms, 1998). Eckert (1985) found sig-
nificant differences in substrate settling preferences among 15 species of fishes settling
to live or dead coral or coral rubble. Benthic assemblages (algae and invertebrates) are
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more abundant and diverse on textured surfaces. Further, small-scale relief appears to
increase diversity of this community in the presence of grazing fish (Hixon and Brostoff,
1985). Thus, although exceptions can be expected, in general it appears a rough, irregu-
larly contoured surface is appropriate for artificial substrate in restoration projects.

Color—Aggregating fishes have been reported to prefer darker colored (dark red and
black) to lighter colored artificial reefs (Grove and Sonu, 1985). Fouling organisms, in
general, apparently prefer dark-colored to light-colored surfaces (Long, 1974). Corals
exhibit preferential settlement to shaded versus unshaded substrate in shallow waters,
conversely in deep (Wallace, 1985); perhaps this indicates a color preference as well. The
interaction between surface color and the initial settlement of epibiota warrants addi-
tional research because the initial colonizers could, as adults, potentially influence suc-
ceeding assemblages (Peckol and Searles, 1983; Ambrose, 1984; Bailey-Brock, 1989;
Fearon and Cameron, 1997; Holm et al., 1997; Dunstan and Johnson, 1998).

Toxic Leachate—There has been some work on the potential of artificial substrate to
leach toxic substances, acids/bases and the like (Duedall et al., 1985; Day et al., 1993;
Livingston, 1994). One artificial reef manufacturer recommends the addition of microsilica
to concrete to provide a neutral pH surface (Reef Ball™). Leachate does not appear to be
a consideration in current restoration efforts, most of which use experience-validated
materials, e.g., concrete. Presumably, even if these materials do release a leachate it must
be a temporary situation as witnessed by the epibiota they rapidly accumulate. Nonethe-
less this approach may require reevaluation. A clean substrate immersed in seawater quickly
acquires an organic/microbial biofilm. This biofilm, in turn, is used by many invertebrate
species, but not all, as a positive settling cue (for references see Wieczorek and Todd,
1997). Differences in leachate on initial immersion may, at least in part, be responsible
for differences in the accumulation of colonizing epibiota to differing materials
(Fitzhardinge and Bailey-Brock, 1989). As mentioned above, these initial colonizing mi-
crobial, algal, and invertebrate assemblages, as established residents, may affect succeed-
ing biota.

Surface Chemistry.—The surface chemistry of artificial substrate is receiving increas-
ing attention. For example the wettability of a surface can differentially affect initial colo-
nization by some invertebrates (Rittschof and Costlow, 1989; Holm et al., 1997). The
addition of growth promoting substances or attractants to artificial substrate has also
received some attention. Eklund (1996) found adding fertilizer to artificial reefs was not
successful in increasing epibenthic production. However, there are reports of increased
coral recruitment on steel surfaces (Fitzhardinge and Bailey-Brock, 1989) and in some
marine environments iron appears to be the limiting nutrient for primary production
(Millero, 1997). The fertilizer used by Eklund (1996), Osmocote®, does not contain iron.
Perhaps enriching the surface of artificial substrate with iron would, either directly or
indirectly, enhance growth of the associated biological assemblage. It is well established
that some corals will preferentially settle on substrate encrusted with red coralline algae
(for references see Morse and Morse, 1996). The chemical inducer for settlement and
metamorphosis of Agariciid corals has recently been extracted, and the authors hypoth-
esized a larval ‘fly paper’ that could be applied to a surface to attract corals (Morse and
Morse, 1996). Preliminary work apparently supports this contention (Morse and Morse,
1996; J. D. Thomas, unpubl. data). There does not yet appear to be extensive work on
species-specific responses of invertebrate larvae to differential organic or microbial makeup
of biofilms. Nonetheless, the fact that biofilms differentially influence invertebrate set-
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tling indicates a potential role for manufactured biofilms to promote selective recruit-
ment to artificial substrate. Further, work with settling fishes indicates the importance of
a chemical cue for some species (Sweatman, 1983, 1988). This work was done with
planktivorous damselfish (Pomacentridae); presumably there are chemical attractants for
other fishes as well. Perhaps chemical fish attractants may be used to indirectly structure
reef communities. For example, some herbivorous damselfish can affect coral settlement
and growth (for references see Jones et al., 1991; Gleason, 1996). On the whole, the use
of attractants in restoration biology appears to be a fertile area for future research.

DesioN.—Vertical Profile—Corals settle preferentially on vertically oriented substrate
(Carleton and Sammarco, 1987; Harriott and Fisk, 1987; Tomascik, 1991). We are not
aware of similar work on fish settlement. Some post-settled fishes do appear to be at-
tracted by vertical aspects of artificial reefs. However, substrate associated fishes, the
fishes of primary interest in restoration, usually aggregate within 3 m from the bottom of
an artificial reef (Bohnsack et al., 1991; Grove et al., 1991). Therefore, from a biological
perspective, although the vertical profile of artificial substrate can be an important factor
in an effective restoration design, great height, apparently, is not.

Shelter—Although still a debated topic, there is a growing body of literature indicating
that in at least some, if not all, coral reef environs, the major post-settlement determinant
of community structure, for fishes, corals, and lobsters, is predation (for references see
Hixon, 1991; Tomascik, 1991; also Caley, 1993; Carr and Hixon, 1995; Beets, 1997,
Eggleston et al., 1997; Hixon, 1998). Thus, in terms of biology, shelter is a critical at-
tribute of artificial substrate function. Under the broad heading of shelter we include here
a variety of interrelated attributes: complexity, hole size, void space, architecture, shade,
and caging.

Many corals, as well as other invertebrate larvae, prefer to settle in complex interstices
of substrate rather than on a flat surface (for references see Carleton and Sammarco,
1987). In addition, when given a choice, corals often have higher settlement rates to the
undersides of horizontal substrate. Presumably such preference is adaptive for sessile
species to avoid predation and grazing. Settling on the underside of horizontal substrate
also avoids smothering by sedimentation (Maida et al., 1994). Recent research, however,
indicates coral settlement on preferred sites may not confer advantages throughout subse-
quent development. Babcock and Mundy (1996) found that that during the first few months
after settlement coral mortality was highest on highly sedimented upper surfaces; but
after a few months, growth and survivorship were highest on these same surfaces. Thus,
to reduce mortality and maintain optimum growth, artificial refuge may require struc-
tural modification through time.

There have been a number of reports examining the relationship between reefal com-
plexity, natural and artificial, and the associated assemblages of fishes. Most of these
studies have used differing hole sizes or total holes as measures of complexity. Those
studies, with few exceptions, where structural complexity is associated with diverse refu-
gia, find a positive correlation between structural complexity and species diversity and
total numbers of fishes. Likewise most studies, but not all, examining reefs with varying
hole sizes find a correlation between hole size and the size of the associated fishes; a
shelter-scaling effect (reviews: Bohnsack and Sutherland, 1985; Bohnsack et al., 1991;
Hixon, 1991; Jones, 1991; also Potts and Hulbert, 1994; Friedlander and Parrish, 1998;
Nemeth, 1998; Sherman, 2000). Void space, the amount of open space within an artificial
reef, has also been examined by several groups relative to associated fish assemblages,



SPIELER ET AL.: ARTIFICIAL SUBSTRATE AND CORAL REEF RESTORATION 1019

and specific recommendations for the size of void space have been suggested for fisher-
ies reefs (review: Bohnsack and Sutherland, 1985). Recent work on model reefs, however,
suggest that void space does not provide some unique biological function to an artificial
reef. The refuge function of a void space does not differ from any other hole, and for
restoration at least, the size of the void should be governed by the desired assemblage
(Sherman et al., 1999).

For spiny lobster, shelter is clearly a major determinant of survival and appropriately
sized artificial structure can maintain lobster populations when natural shelter is destroyed
(Herrnkind et al., 1997). Eggleston and co-workers (1990, 1997; Mintz et al., 1994) have
shown that refuge scaling reduces predation on appropriately sized lobsters.

For fishes and lobster the architecture of the shelter also appears important. For ex-
ample some blennioid fishes are found in blind-ended tunnels, while other fish appear to
prefer ledges or complex coral structure with multiple escape routes. Spiny lobster prefer
refuge with multiple entrances (Spanier and Zimmer-Faust, 1988; Herrnkind et al., 1997).

As already mentioned many corals prefer shaded areas for settlement, at least in shal-
low water (Wallace, 1985; Maida et al., 1994). For spiny lobster shading appears to be
even more important than physical contact with the refuge (Spanier and Zimmer-Faust,
1988). Fishes will often congregate in shaded areas to avoid predators, or at least to gain
visual range on a potential predator (Helfman et al., 1997) and incorporation of structural
elements that produce shadow has been recommended for fisheries reefs (Grove et al.,
1983).

Substantial work on the importance of post-settlement processes in determining com-
munity structure has been acquired with predator-exclusion studies using caging. In com-
parison to reefs without caging, these studies show an increase in juvenile fishes on arti-
ficial reefs from which large piscivores have been excluded (Doherty and Sale, 1986;
Eklund, 1996; Gilliam, 1999). Because of fouling problems, caging material is not appro-
priate for long-term, unattended use in restoration projects. However, for short-term en-
hancement of settlement and survival of juveniles, caging could be a valuable tool in
restoration projects.

To briefly summarize these diverse studies on shelter, it is clear that: (1) predation is a
major determinant of reef community structure and thus (2) in terms of biological func-
tion, a major attribute of artificial substrate lies in its ability to provide refuge. Much
more research is required to understand how to use this attribute effectively. Not only are
the species-specific shelter requirements of the varying sizes and life stages of individual
species needed, but, ideally, the shelter requirements of the intended replacement com-
munity as well; a daunting task at best.

Size and Deployment Configuration.—There has been considerable work with artifi-
cial reefs for fisheries which have examined the fish assemblages associated with differ-
ent sized reef modules or different spatial configurations among reef modules (reviews:
Bohnsack et al., 1991; Grove et al., 1991; also Borntrager and Farrell, 1992; Bohnsack et
al., 1994; Frazer and Lindberg, 1994; Seaman et al., 1994). In restoration work involving
rubble consolidation or wave attenuation these are probably not major concerns since the
amount of artificial substrate will primarily be determined by the amount of damage.
However, these are critical concerns in habitat restoration.

With fisheries the research on optimal size and deployment configuration has focused
on maximizing the resources, both artificial (i.e., the amount of material deployed) as
well as natural (i.e., prey availability) to gain the greatest economic benefit in terms of
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harvest. With restoration efforts, the goal in configuring the artificial structure(s) should
be to provide a natural spatial distribution of predators and prey. At this point, the ideal
size or dispersion of artificial substrate for restoration is not known. It is unlikely that a
single optimal configuration exists, as this will depend on the range and refuge sizes of
the pre-damage community. Concentrating replacement habitat, as is done in some miti-
gation projects, should probably be avoided. Close placement of artificial modules can
result in lower species abundance and diversity of fishes than the same number of mod-
ules more widely dispersed (Bohnsack et al., 1994; Frazer and Lindberg, 1994). In addi-
tion, concentrations of fishes or invertebrates can attract predators and possibly produce
density-dependent increases in mortality thereby potentially reducing the refugal effec-
tiveness of the artificial substrate (Forrester, 1995; Hixon and Carr, 1997; Beukers and
Jones, 1998; Steele, 1998).

Attractants.—In addition to the chemical attractants already mentioned (subsection:
Surface) there have been several attempts to increase larval fish settlement on artificial
reefs using added structure. The use of midwater FADs (fish aggregating device) attached
to artificial reefs increased recruitment of juvenile fishes to the benthic structure (Beets,
1989; Brock and Kam, 1994). Presumably this increase is due to focusing settlement of
larval fishes from the water column when they encounter the FAD (Brock and Kam,
1994). However, surface buoys moored to natural reef (Munday et al., 1998) or 12-m
lengths of polypropylene line attached to small floats and artificial reefs in 21 m of water
did not enhance settlement (Sherman et al., 1999). It is not clear if these discrepancies are
due to equipment or environmental differences among the studies. A light aggregating
device has also been used to focus larval fish onto natural reef (Munday et al., 1998).
However, larval focusing using floating line, and presumably lights as well, may also
focus recruitment of predators, as well as planktonic invertebrates which can compete
with the normal benthic fauna (Thomas, 1998).

The use of attractants, both chemical and physical, to enhance settlement on artificial
substrate is potentially an extremely productive research direction. Clearly, if the sub-
strate does not supply the species-dependent habitat requirements in terms of food and
shelter, increased settlement is of little pragmatic value.

StaBiLITY.—Questions of stability are critical. There have been several studies on the
movement and/or destruction of artificial structures due to severe storm events. In some
cases portions of artificial reefs have been thrown ashore, in others they have damaged
nearby natural reefs (Sheehy and Vik, 1983; Blair et al., 1994; Seaman, 1997; Turpin,
1999). In restoration efforts, which take place on the natural reef, such movement could
cause more damage than the original problem. Artificial structures will be exposed to
varying wave action depending on their location, for example reef crest or lagoon, and
their stability or attachment to the natural substrate must take into account this exposure
as well as predicted forces from severe storm events. Calculations for determining the
stability of artificial reefs are available (Grove et al., 1991; Lin, 1999) as are wave tank
determinations. As previously mentioned the rubble formed by ship groundings or coral
mining can produce extensive damage if left on site. There has been some attempt to
consolidate such rubble with artificial substrate (Clark and Edwards, 1994; Waxman et
al., 1999). However, these efforts have apparently not produced a substrate sufficiently
stable to withstand severe storm events. A full understanding of the appropriate methods
to stabilize rubble (including biological consolidation, Wulff, 1984) remains to be eluci-
dated.
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As a general comment on artificial substrate design, it is noteworthy that coral reefs
show a distinct fractal organization (Bradbury and Reichelt, 1983; Basillais, 1997). It is
not clear how critical this organization is to biological or hydrological functions. How-
ever, complexity, or rugosity, is an important factor influencing species richness and abun-
dance at differing scales, from surface texture to fish refuge. Thus, fractal geometry would
appear to be a potentially important area for future research aimed at ecosystem restora-
tion and may aid in designing artificial structure to provide a natural spatial distribution
of predators and prey.

ENVIRONMENTAL DETERMINANTS OF FUNCTION

The functions of any artificial substrate will be determined in large measure on where
it is deployed (for references see Sherman et al., this volume). Major site dependent de-
terminants can be specific or general and include temperature, light, sediment, surround-
ing biota, hydrodynamics, depth, and temporal effects. Obviously, these characteristics
are often highly interrelated; they are separated here for ease of discussion.

TEMPERATURE.—Marine organisms are well known to have a preferred temperature range.
Taking this fact into account in restoration efforts is normally not a problem as the goal in
such efforts is to return indigenous species. However, temperature may also affect settle-
ment of corals and fish (Doherty et al., 1996; Zaslow and Benayahu, 1996) and therefore
the temperature regimen when artificial substrate is deployed may, in part, determine the
makeup of the initial colonizers and succeeding assemblages.

Licut.—The preference of fouling organisms in general, as well as corals, macrobenthos,
and fishes to prefer shaded substrate has been discussed above. In addition to light inten-
sity, for coral settlement there are also species specific differences in response to light in
terms of intensity or spectral quality (Baker, 1995; Mundy and Babcock, 1998).

SepiMENT.—The amount of sediment that accumulates on an artificial substrate can
affect invertebrate settlement, including corals (for references see Tomascik, 1991). Like-
wise, the amount of suspended sediment can affect light penetration which will in turn
affect light levels and coral settlement (Hodgson, 1990; Tomascik, 1991).

SurrROUNDING Biota.—There has been extensive work documenting the effect of nearby
natural reef populations on artificial reefs in terms of recruitment and predation (for
references see Bohnsack et al., 1991; Sherman et al., this volume). In several restoration
studies coral recruitment appeared to come predominately from nearby species with short-
lived pelagic stages and the establishing community at a grounding site was affected by
predators and grazers from nearby reefs (Benayahu and Loya, 1987; Smith, 1988; Gittings
etal., 1993).

Hyprobynamics.—Water movement affects a reef in multiple ways. The amount of cur-
rent or wave action can determine the distribution of algae, corals, and other benthic
invertebrates (Baynes and Szmant, 1989), and fishes (Grove et al., 1991) on a structure.
With sessile benthos, increased abundance and diversity on an artificial or natural reef is
associated with those areas of the structure receiving higher current flow (Baynes and
Szmant, 1989) but not necessarily higher wave energy (Tomascik, 1991). It is not clear if
this is due to decreased sedimentation, increased rates of recruitment, increased food for
planktivores, or some combination of these factors. It is clear, however, that the orienta-
tion of artificial substrate to prevailing current needs to be taken into account in design
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and deployment. Water flow around artificial substrates is also the primary environmen-
tal determinant of the structure’s stability (Grove et al., 1991; Lin, 1999) and is, therefore,
a critical consideration in artificial substrate design.

DeptH.—There have been several studies reporting differences in the populations asso-
ciated with artificial reefs (references: Sherman et al., 1999) or substrates (van Moorsel,
1988) deployed at different depths. There has been, however, no attempt to examine ex-
perimentally the specific biotic or abiotic variables associated with the differing depths in
any of these studies. It is likely one or more of the variables described above (tempera-
ture, light, sedimentation, etc.) are responsible for the depth-associated differences rather
than hydrostatic pressure or other unique depth-dependent variable. For example, it has
been suggested that optimum depth for adult coral survival is selected by coral planula
using photo cues, e.g., light intensity or spectral quality (Mundy and Babcock, 1998).

TemroraL ErrFecTs.—There are seasonal differences in larval availability of inverte-
brates and fishes as well as seasonal differences in the presence of motile adults, i.e.,
fishes. Thus the colonizing assemblage can differ depending on time-of-year artificial
substrate is deployed (for references see Bohnsack et al., 1991; Dunstan and Johnson,
1998; Rilov and Benayahu, 1998). Because resident individuals of both invertebrates and
fishes can affect succeeding recruitment, the season of deployment could, in large mea-
sure, determine the final, steady state assemblage composition.

To summarize this section, effective use of artificial substrate not only requires an
understanding of the physical attributes of the substrate that determine function, but of
the interacting ecology of the specific deployment site as well. Neither of these is a trivial
task. Ideally, the site will have been researched prior to damage to allow for an ecological
baseline on which to base restoration goals and methodology.

OTHER CONSIDERATIONS

ConsTRUCTION AND DEPLOYMENT CosTs.—The costs of restoration need to be offset by
the benefits gained. This simple economic reality requires a monetary value be attached
to the damaged area. There have been a number of papers discussing cost:benefit ratios
for artificial reefs. Most of these papers are concerned with either commercial or recre-
ational fishing reefs, or artificial reefs to attract divers (Milon, 1983; 1991; Brock, 1994;
Whitmarsh, 1997). With such structures economic benefit is readily defined and eco-
nomic gain vis-a-vis construction and deployment costs can be calculated. In coral reef
restoration efforts the economic benefits of a restored ecosystem may be equally clear
(Clark and Edwards, 1994) but in most cases is more difficult to fully quantify (Spurgeon,
1992; 1998).

In general, coral reefs are held in public trust by governing bodies. Placing value on the
anthropogenic loss of such property is a contentious affair at best; especially since losses
also occur naturally and coral is a renewable, albeit slow growing, resource. In some
cases a habitat equivalency analysis (HEA) has been used to assign value to damaged
reef. In other cases, previous fines have been used as precedent. Ship groundings in the
United States have resulted in payments by ship owners of from about $1200 to $11,000
m~ of totally destroyed coral reef. Recently, coral reef in the Florida Keys National Ma-
rine Sanctuary has been valued at $2,833 m=2. Whether or not this amount, or any other, is
a fair figure for the restoration effort and lengthy period of habitat loss, or if it provides
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sufficient motivation for deterrence, is likely to remain an unresolved question between
ship owners, their insurers, and coral reef managers and scientists.

It is noteworthy, that in most cases fines for coral reef damage are based on the assump-
tion that the damaged area will eventually return to a pre-damage state. Current research
data are interpreted by some researchers to indicate that in some cases a damaged coral
reef'that is not restored will not return to a pre-damaged condition (Ebersole, 1999; Swanson
et al., 1999) and is therefore, on a human time scale, permanently lost. Others apparently
disagree with this assessment (Gittings et al., 1990; 1993); however, should it prove cor-
rect, that non-restored reefs do not return to a pre-damaged state, the findings may tip the
cost:benefit ratios heavily towards restoration.

AgstHETICS.—Unlike fisheries reefs, with restoration efforts aesthetics can be a major
concern and it has been taken into account in the design of artificial reef modules used in
reef restoration (Hudson et al., 1989). Admittedly, a wide diversity of artificial reef de-
signs from ships to Christ statues and abstract sculpture have been deployed near or on
coral reefs for tourism; and these structures are undeniably popular with recreational
divers (Milon, 1983). Nonetheless, in areas where coral reefs are a major tourist draw,
e.g., Florida Keys, presumably most individuals would equate aesthetic value with natu-
ral looking. Ideally, the required functional attributes necessary can be incorporated into
natural-looking structure. This is a fertile area for interaction between engineering, biol-
ogy, and art. However, as stated elsewhere: aesthetic concerns need to be balanced against
the value of accelerated recovery (Miller et al., 1993).

CONCLUSIONS AND RECOMMENDATIONS

Ideally, a resource manager should be able to survey a damaged area of coral reef and
list, with a relatively high degree of certainty, the required methods and structures needed
to restore that specific site; currently this is not the case. Although it is clear that artificial
substrates can be important tools in coral reef restoration, the understanding of the inter-
action between their various attributes and the ecology of the environment in which they
are deployed is sketchy at best. Until this functionality is better understood, the use of
artificial substrate in coral reef restoration will remain a ‘best guess’ approach.

The need for research has been highlighted throughout this review. Yet we are unaware
of any state or federal body devoted to funding coral reef restoration research. At present,
all monies acquired by the U.S. Federal government as the result of a grounding incident
are used in habitat restoration efforts. This situation harkens back to artificial reef poli-
cies of the 1970s and 80s when there were large sums available for artificial reef deploy-
ment but none for research on their function. This is a highly questionable policy which
forces resource managers to proceed with a ‘best guess’ approach to restoration rather
than one based on research derived knowledge. A better approach would surely be to
sequester some of the funds derived from grounding incidents for research on artificial
substrate function. If this is not feasible then a different source of funds needs to be
directed to such research efforts.

To return to the question of this paper’s title: what do we need to know to know what we
need? It is difficult to distill the contents of this paper and make specific recommenda-
tions for future research priorities as ‘what we need to know’ will differ depending on the
needs of a particular restoration. Nonetheless, some generalities are possible. In terms of
research at the local level, we suggest a proactive, rather than an after-the-fact crisis man-
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agement, approach to research. Certainly one of the corner stones of any restoration project
is knowing what to restore. It is difficult to restore an environment without knowledge of
the pre-damage condition. In a ‘war games’ approach, resource managers should identify
likely areas of disturbance (e.g., areas around passages and anchorage), and possible de-
struction scenarios. This will afford the time to research the basic ecology of potential
damage sites and acquire the baseline information critical to designing site-specific res-
toration plans. For example, a site that is an important back-reef nursery area would obvi-
ously require a different restoration plan than a fore-reef feeding area. Grounding inci-
dents, or other destructive influences, will certainly occur at other, unanticipated, sites,
and in such cases restoration efforts will need to rely on faunal distributions from general
reef ecology. However, a little planning should reduce the need for such reliance.

Monitoring a completed restoration project for an extended period of time (minimum
5-10 yrs, ideally longer) is critical. Without monitoring there is no assurance that a par-
ticular restoration plan is effective and should or should not be repeated. Monitoring,
however, as used here, is evaluation not research. It allows resource managers to evaluate
how one restoration plan functioned at one specific site. It does not address if it was a
particularly good restoration plan, relative to another, or if its effects could be extrapo-
lated to other sites. To answer these questions multitreatment, hypothesis-based experi-
mentation is required. Until a better understanding of restoration methodology is acquired,
we recommend every restoration project include such a research component. This re-
search should be relevant to the area and goals of the restoration project. For example, in
a back-reef area where the destruction of nursery habitat is a main concern an examina-
tion of differing designs of artificial juvenile-habitat would be appropriate; in a fore-reef
area important for wave attenuation examining the stability and hydrodynamics of differ-
ing modules might be a good idea; on a reef crest where extensive rubble has been cre-
ated, varying methods of rubble consolidation could be tested.

In terms of research at the state or federal level, we suggest research initiatives to ex-
amine overarching questions of artificial substrate functionality. For example, from an
engineering perspective: studies on artificial substrate stability and durability as well as
innovative studies on capping or consolidating rubble would be applicable to most resto-
ration efforts. From a biological perspective, studies on community refuge and the struc-
tures to supply such refuge clearly are needed. Despite an abundant literature correlating
complexity, rugosity, hole-size and the like with species richness and abundance it would
be difficult, with current knowledge, to design optimal refuge for most species much less
a community. The potential for chemical attractants to promote settlement of corals and
fish also appears to be a topic of wide interest and a promising area of research.
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