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Abstract—This paper describes the image processing techniques
designed to localize the tracks of snowcats for the automation of
transportation of goods and people during the Italian scientific
missions in Antarctica. The final goal is to enable a snowcat to
automatically follow the preceding one in a train-like fashion. A
camera is used to acquire images of the scene; the image sequence
is analyzed by a computer vision system which identifies the tracks
and produces a high level description of the scene. This result is
then forwarded to a further software module in charge of the con-
trol of the snowcat movement. A further optional representation,
in which markers highlighting the tracks are superimposed onto
the acquired image, is transmitted to a human supervisor located
off board. This system has been tested in the Italian test site and
was under testing in the South Pole during the early 2002 Italian
scientific mission. The paper also briefly describes an alternative
solution based on an evolutionary approach.

Index Terms—Autonomous vehicles in extreme conditions,
extreme robots, machine vision.

I. INTRODUCTION

HIS PAPER presents the artificial-vision algorithms devel-
oped to autonomously drive a platoon of snowcats. This research
is a part of the Ente per le Nuove Tecnologie, l’Energia e l’Am-
biente, Italy (ENEA) Surface Antarctic Robot (SAR) project,
aimed at facilitating the transportation of people and goods in
the Antarctica region during the Italian scientific missions in the
South Pole. The logo of the Italian missions is shown in Fig. 1.

Researchers and equipment arrive from Italy via New
Zealand on a ship which stops in the harbor of the “Baia Terra
Nova” permanent Italian base (7441 42 south, 164 07 ),
shown in Fig. 2. Part of the goods and people must reach
the “Dome Concordia” inland Italian base or the “Dumont
d’Urville” French base, which are about 1 200 and 2 300
km away from the harbor, respectively. This distance can be
covered by helicopter, but goods generally travel by a platoon
of snowcats, whose average speed is 10–12 km/h.

The RAS Project has been launched in order to ease the long
and stressful procedure of people and equipment transportation
in the unfriendly South Pole environment; the main goal of this
project is to partially automate this procedure.
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Fig. 1. Logo of the Italian research programs in Antarctica.

Fig. 2. Aerial view of the Italian base in Terra Nova, Antarctica.

In the first implementation, the leading vehicle will be manu-
ally driven by an expert driver; in a second step, as shown in
Fig. 3, it will be equipped with a camera and a TV antenna
which will broadcast live images to the base and will allow re-
mote driving.

All the remaining vehicles of the platoon will follow automat-
ically in a train-like fashion. Moreover, since cracks in the ice
can put both the driver and the snowcat itself in serious danger ,
it is imperative that the following vehicles follow the same pre-
cise path defined by the first vehicle. Since even small drifts
from the original driving path defined by the human driver can
be extremely dangerous, an extremely precise detection of the
tracks left by the previous vehicle, a correct measurement of
their position, and a smooth control of the actuators must be
carefully designed, tested, and evaluated.
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Fig. 3. Platoon of snowcat vehicles; the first will be either manually driven by an expert driver or remotely driven from the Italian base; all the others will follow
automatically, using visual information only.

Fig. 4. Prototype vehicle during a test in the Italian test site.

Fig. 5. Sensing capabilities of the platoon leading vehicle.

A preliminary test phase showed that the most promising
sensor that should be able to deliver sufficiently precise mea-
surements is a vision sensor (camera). Many other devices have
been considered [1]–[3], even active ones, since the specific
working site would not present any problem due to interfer-
ence or to environmental pollution [4]. However, vision seems
the sensing capability that may deliver the highest performance
in terms of precision of the localization. Data are currently ac-
quired from a monocular camera installed inside the driving
cabin, but a stereo pair has been integrated to allow stereo image
processing in the future. Fig. 4 shows the prototype of the ve-
hicle follower, while Fig. 5 shows all the sensing capabilities
of the platoon leading vehicle. Besides cameras, a global posi-
tioning system (GPS) will be also used for self-localization, but
due to the impossibility to use differential GPS (DGPS) in the
area, their effectiveness will need to be confirmed.

Fig. 6 shows the internal equipment, while Fig. 7 shows an
external view of the stereo cameras. The calibration of the cam-
eras is done thanks to a set of markers at known distances on a

Fig. 6. Inside view of the vehicle during a test; the stereo cameras are visible
on the left-hand side.

Fig. 7. External view of the stereo cameras.

planar surface; Fig. 8 shows the test site on the Italian Alps and
the grid used for calibration.

Due to the extreme conditions of the working environment,
where temperatures can reach80 C, the terrain is completely
covered by snow or ice, strong sunlight and reflections may be
present, and no specific ground references are available nor as-
sumptions can be made on the terrain slope, this application is
extremely challenging and presents many additional problems
with respect to the driving of unmanned vehicles on traditional
(un)structured roads [5].

For this reason, an extremely careful analysis and design of
the processing techniques is mandatory.

Several approaches have been considered due to the low visi-
bility of white tracks on a white background, and specific filters
have been developed in order to cope with the typical problems
of this environment. The high problem complexity is slightly re-
duced by the low speed of the vehicle, which permits focus on
the localization of tracks in a reduced close area only.

Moreover, in the automatic driving of road vehicles [6] a
special emphasis is generally given to the exploitation ofa
priori knowledge in order both to speed up the computation and
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Fig. 8. Image of the test site on the Italian Alps; a patch of snow with markers
is used to calibrate the cameras.

make the detection robust. In this case, only a little knowledge
about the environmental conditions can be exploited: generally
no other vehicle or building is seen by the camera, and the
only markings on the ice are due to the preceding vehicle.
On the other hand, no assumptions can be made with respect
to a possible flatness of the area ahead of the vehicle, nor to
a given range of illumination of the scene. In other words,
hilly conditions must be considered as well and, therefore,
the camera orientation generally used in road environments
(low toward the road ahead) cannot be replicated here. Besides
the acquisition of a large amount of insignificant data during
driving in flat areas, the framing of a large portion of the sky
can raise another important problem: since in the working site
the sun may be very low on the horizon, no specific camera
orientation can overcome the problem of direct sunlight into the
vision system. This is an extremely difficult issue that must be
carefully considered in the development of vision algorithms.

The approach used to solve this artificial-vision problem was
suggested by the experience of the research group within the au-
tomotive field [7]. Within the ARGO Project, aimed at the devel-
opment of an intelligent vehicle able to drive autonomously in
real-traffic conditions and on real roads, many vision algorithms
were developed and implemented. Unfortunately, the extremely
different environmental conditions did not allow us to use the
same algorithms, but the experience made on lane detection was
of basic importance to design the system used on the snowcat.
In particular, a simple approach was preferred with respect to

more sophisticated ones because of its easy implementation on
the simple processing engine available on the snowcat. Also, the
requirement for a fast response was a key issue that suggested
the development of a simple but efficient algorithm.

This paper is organized as follows. Section II discusses the
characteristics of the working environment which make the ap-
plication particularly challenging, Section III describes the de-
tails of the vision algorithm, Section IV presents some results,
Section V illustrates a different approach to the problem which
is under development, and finally Section VI presents future
project developments.

II. ENVIRONMENTAL CHARACTERISTICS

The environmental characteristics of the Antarctica region are
very challenging and the automatic driving of a vehicle in these
conditions is extremely different from traditional highway or
urban applications.

The main differences are due to the coverage of the driving
area with snow or ice, and the localization of other vehicles’
tracks on different kinds of snow or ice requires specific algo-
rithms able to adapt to different scenarios.

As shown in Fig. 9(a) and (b), the tracks’ characteristics can
vary considerably: due to different sun positions, in the first
image the tracks are darker than the background, while in the
second image the tracks are brighter than the surrounding area.
Besides a weak brightness gradient, another invariant that could
be exploited is the brightness variance, or—in other words—the
texture. Unfortunately, due to the high brightness of the environ-
ment, the snow texture provides very weak information. As can
be seen in all the images of Fig. 9 the difference of texture be-
tween tracks and background is generally small.

In some cases the shadow of the vehicle itself or of the moun-
tains are captured by the camera [see Fig. 9(c)]. Due to the very
high contrast of shadows on snow, it is impossible to detect weak
brightness gradients (the tracks) in the region inside the shadow,
which, therefore, must be eliminated from the analysis. In par-
ticular, it is necessary to remove the high brightness gradient
generated by shadows, and keep and enhance the weak tracks’
edges.

As mentioned, strong sun or light reflections can cause the
appearance of reflections patterns in the image, as shown in
Fig. 9(d) and (e). This disturbing effect is also caused by the
inevitable presence of small icy particles on the windshield in
the region in front of the camera and scratches on the windshield
itself.

No assumptions on terrain slope can be made: in this appli-
cation domain, no a priori knowledge on the flatness of the re-
gion in front of the vehicle can be used to simplify the local-
ization algorithm. As can be clearly seen from Fig. 9(e) and
(f)—acquired with only a few seconds of distance—the slope
can change abruptly, making it difficult even to define an area
of interest in the image.

Furthermore, the change in terrain slope can also affect the
camera orientation with respect to the sun and, thus, can modify
the quantity of light acquired from the sensor. This is also vis-
ible in Fig. 9(e) and (f), in which in the former—due to strong
sunlight—the snow brightness is lower than in the latter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Images from both the Antarctica region and the Italian Alps.

The specific traveling conditions may also affect the tracks
shape and appearance: in case the ahead vehicle is towing a
sledge, the tracks will appear as two compact and uniform
stripes surrounded by background with a higher brightness
variance, as in Fig. 9(g) and (h). On the contrary, the tracks
texture when no sledge is used is characterized by a higher
brightness variance than the background (see all the other
images of Fig. 9).

Finally, no ground references at all can be exploited, as shown
by Fig. 9(g) and (h).

In this first version of the system, problems of divergence
from previous tracks as visible in Fig. 9(i) are not considered.
Furthermore, in some of the sequences acquired for the first
tests, the snowcat was equipped with a shovel—visible in the
bottom of Fig. 9(f)—and a windshield wiper is present in almost
all images. Both objects are filtered out through a specific filter,
as discussed in the following section.

III. T RACKS DETECTION

This section presents the description of the processing steps
for tracks detection; Fig. 10 sketches the corresponding block
diagram.

In order to reduce the complexity of the detection of snowcat
tracks in a snowy environment, some assumptions are taken. In
the first place, thanks to the low speed of the vehicle, the lo-
calization of the tracks in anearby areasuffices for the auto-
matic driving of the vehicle. Secondly, focusing on a close re-
gion ahead of the vehicle, the nearest portion of the tracks is sup-
posed to be straight and their position is assumed to be slowly
varying from frame to frame.

Therefore, for each track border a specific area of interest is
defined and analyzed (see Fig. 11). In these two regions, edges
are extracted by means of a classical gradient-based approach
(Sobel operator), followed by thresholding on both the edges’
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Fig. 10. Block diagram of the complete processing.

(a)

(b) (c)

Fig. 11. (a) Original image. (b) Area of interest for left border. (c) Area of
interest for right border.

phase and modulus. The application of a phase threshold is sug-
gested by perspective considerations: due to the perspective ef-
fect the track’s border appear as oblique lines. The threshold
on the modulus is aimed at extracting the sharpest edges which
should be due to the preceding snowcat’s track. In order to re-
duce the sensitivity to both noise and the threshold value itself,
a preliminary clustering is applied as well as a specific filter
to mask the presence of shadows and/or dark objects. The re-
sulting edge images (right and left border) present a sequence
of disconnected regions of high gradient in correspondence of
the snow blocks moved by the snowcat. They are then used to
recover a linear approximation of the tracks position by means
of the Hough transform. The steps of this algorithm are detailed
in the following.

Since the contrast between the track and the snowy or icy
ground is generally low, the edge extraction phase can ben-

Fig. 12. Result of the iterative clustering. The procedure is actually applied
to the areas of interest only; the whole clusterized image is here presented for
displaying purposes.

efit from a preliminary clustering step. An iterative procedure
proposed in [8] has been used, which is able to enhance also
weak and isolated intensity discontinuities. It repeatedly substi-
tutes each pixel’s brightness with a weighted average computed
over its neighborhood. The definition of the weights comprises
a function of the neighborhood which enhances sharp edges and
preserves smooth edges, while averaging uniform areas. Fig. 12
shows the result of seven iterations of a filter applied to
Fig. 11(a).

Subsequently, possible dark objects, such as shadows or
framed parts of the internal or external snowcat equipment
(windshield wiper, shovel, etc.), have to be detected since they
disturb the high-level track recognition phase. An histogram of
the pixels intensity is computed in the union of the two search
regions, in order to devise a brightness threshold which allows
to discriminate between the snow, which is generally bright, and
shadows or other dark objects. In this way, sharp edges deriving
from dark objects can be masked out, while leaving smooth
edges generally representing the tracks position. Fig. 13(a)
shows the gray-level histogram computed in the search areas of
the clusterized image: the contribution of dark objects [a small
shadow in the right bottom corner and part of the windshield
wiper on the left of Fig. 11(a)] can be clearly distinguished
from the bright ground. The result of the threshold (a binary
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(a)

(b)

Fig. 13. (a) Histogram of gray-level values. (b) Result of masking.

image to be later used as a mask) is then dilated with a
morphological structuring element [9] to enlarge the masked
areas. In Fig. 13(b) the result of masking is presented.

Once dark objects are masked out, edges are extracted in
the union of the two search regions by means of a Sobel op-
erator. To separately detect the two tracks’ borders, the gradient
based filtering is followed by thresholding the edges’ phase so
to extract edges belonging to forward slanting oblique borders
in the left area of interest, and edges belonging to backward
slanting oblique borders in the right area of interest. Such fil-
tering has been designed to rely on edges’ direction only—and
not on a complete 360phase—in order to work both with tracks
brighter and darker than the ground [see, for example, Fig. 9(a)
and (b)]. Oblique edges point are then thresholded with respect
to their modulus by means of an adaptive threshold which main-
tains constant from frame to frame the density1 of surviving
edges in the search area. The value of this parameter was ex-
perimentally computed from the analysis of several different
sequences. In this way, the process is adjusted to the different il-
lumination conditions and variable contrast between tracks and
ground: a constant density of edges is obtained by lowering the
threshold when the luminance difference is low and raising the
threshold when the contrast is high. The threshold value is easily
determined from a cumulative histogram of the gray-level inten-

1The density of edges is defined as the number of edges divided by the size
of the search area, which is dynamically varied as explained in the following.

Fig. 14. Edges extracted in the two different areas of interest.

sity values. Fig. 14 shows the edges extracted from Fig. 13(b)
in the two different areas of interest.

The Hough transform is then applied to localize the straight
line that best fits the edge points of each track border. When se-
lecting the line which gains the highest score in the parameter
space, a region centered on the average position of the track
in the previous few frames is considered, in order to exploit
the strong temporal/spatial correlation. In order to take into ac-
count that the tracks edges are generally not perfectly aligned, a
local average is performed in the parameter space. This opera-
tion smoothes the score of isolated peaks, while preserving the
strength of cluster of close peaks.

Once two lines approximating the nearest portion of the track
borders have been selected (see Fig. 15), the focus of expansion
(FOE) is determined by computing their intersection. The po-
sition of the FOE is compared to the previous few ones: if it is
too distant from previous results or if it exits from a specific area
whose size and position have been determined from the analysis
of several sequences (see Fig. 16), the current result is discarded.

Moreover, the two search areas are dynamically resized: their
height and width are adapted using the average of the FOE posi-
tion in a few previous images; the FOE position encodes infor-
mation on the terrain slope and the relative orientation between
the vehicle and terrain (see Fig. 17).

A. Different Use of the Hough Transform

In order to extract the edges of objects from an image, the ap-
plication of a gradient based operator which gives a measure of
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Fig. 15. Straight lines that approximate the track borders.

Fig. 16. Image representing the recurrence of the FOE position: the darker the
point, the higher the frequency of occurrence in the considered sequences; the
dashed bounding box represents the area used to validate the final result.

the brightness discontinuity, such as the Sobel operator, has to
be followed by a thresholding operation. It selects the pixels in
which the gradient is sufficiently high for the point to be con-
sidered an edge.

Unfortunately, following the application of the filter which
masks out dark objects, the portion of the non masked image ex-
clusively includes bright snowy soil, therefore, the pixels bright-
ness is not distributed along the whole gray-level scale, but is
rather concentrated around the highest gray-level values [see
Fig. 13(a)]. Therefore, the luminance differences between each
pixel and its neighbors measured by the gradient operator are
very small. Thus, the application of a threshold to extract edges
in such conditions is very critical.

For this reason a different use of the Hough transform
(sketched in Fig. 18) has been considered to avoid the need
for a thresholding step which is particularly critical when the
gray values are very concentrated. In this procedure the edge
points contribute to the score of each line passing through them
with their gray value, rather than with a fixed vote. In this way,
sharp edges have a higher weight than smooth edges in the
selection of the best line, and nevertheless it is not necessary to
fix a threshold above which the edge is considered sufficiently
strong to be able to vote for the lines.

In Fig. 19(a) the right border of the track is not clearly marked
and the classical fixed vote approach fails to detect it. On the

Fig. 17. Different search areas are considered depending on the FOE position,
displayed with a black dot.

other hand, the new variable-weight Hough transform is able to
recognize it, as shown in Fig. 19(b). This new alternative pro-
cedure is also being experimented on other sequences and its
actual effectiveness is under evaluation.

IV. DISCUSSION OFRESULTS

Fig. 20 shows some results of snowcat track detection in dif-
ferent conditions.

Fig. 20(a)–(d), (g), and (h) present the result on the corre-
sponding images of Fig. 9. The remaining images of Fig. 9 rep-
resent very critical situations where the track cannot be distin-
guished from background with the current algorithm. In such
cases, the system is anyway able to realize and signal its failure
in the detection of the track by evaluating the quality of the se-
lected border lines in terms of number of encompassed edge
points, position and orientation, and the position of the resulting
FOE.

Conversely, Fig. 20(e)–(f) and (i) illustrates situations where
the detection is successful even if noisy or critical conditions
such as shadows, sun reflections, unknown terrain slope, and
dark objects are present.

Generally, the tracks feature a quasilinear behavior in the
region of interest. Anyway, it can happen that when approaching
a curve—particularly when facing a hill—the tracks begin to
deviate from this assumption and the Hough transform result
is not precise. For this reason, a simple extension to the Hough
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Fig. 18. Block diagram of the processing for the weighted-Hough transform.

(a)

(b)

Fig. 19. (a) Result of the application of the fixed vote Hough transform. (b)
Result of the application of the variable-weight Hough transform.

transform is being developed. Instead of looking for a single
maximum, when the peak is formed by a cluster of adjacent
pixels of similar value some representatives are selected. In
this way, the final result is not a single line, but polylines
formed by more than one segment.

In any case, in order to address this problem a totally
different new approach is being developed which provides a
free form chain of pixels as a result. It is based on a stochastic
method, where independent agents move on the image trying to

walk on high-intensity edge points. The cooperation between
the agents assures that the knowledge of the position of high
intensity pixels will be shared, and that noncompletely random
choices will be made. The following section briefly describes
this new approach.

V. SOLUTION WITH A DIFFERENTAPPROACH

An evolutionary approach based on the ant colony optimiza-
tion (ACO) method has been applied to the same problem of
snowcat tracks detection. The initial stage of this algorithm
is the same: a low-level processing is performed aimed at
extracting the image edges, after masking noisy areas to elim-
inate disturbing objects such as the windshield wiper, shovel,
shadows, etc.

Starting from the same edge image, the problem of recog-
nizing the tracks is here converted into that of tracing a con-
sistent line from the lower border of the image up to the line
of the horizon that is the shortest and passes through as many
edge points as possible. The recognition can be accomplished by
means of an algorithm based on the ACO approach. The ACO
[10] is a distributed meta-heuristic for hard combinatorial opti-
mization problems. The idea of the methodology is drawn from
the behavior of real ant colonies searching for food.

The edge image under analysis functions as a two dimen-
sional map featuring the territory where the artificial ants move.
The ants of the first exploring groups have no knowledge of the
territory and choose their path randomly, with the heuristic of
preferring edges to homogeneous regions. When they reach the
top line of a given search area, a pheromone trail is dropped: the
shorter the path, the stronger the pheromone trail left by a given
ant. The following sets of ants observe the pheromone and trade
their random decision with the experience of precedent ants. As
more cycles are completed, ants pay more attention to the ac-
cumulated knowledge (pheromone) than to the simple heuristic
of following the edges. Thus, the whole colony quickly finds
a short way to reach the destination line by passing through
as many edges as possible. Fig. 21 shows two examples of the
tracks recognized by the ants as the best path.

For its intrinsic evolutionary nature, the algorithm is char-
acterized by a set of parameters which influence the solution.
As an example Fig. 22 presents the results of two executions
of the algorithm driven by different parameters. Indeed the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 20. Results of snowcat track detection in different conditions.

tuning of such parameters represents a critical aspect of this
kind of approach.

From the results of a set of preliminary tests this approach ap-
pears to be a promising solution deserving further investigation,
which is currently under development and will be described in
a subsequent paper.

VI. CONCLUSION AND FUTURE RESEARCH

The setup and the algorithms discussed in this paper have al-
ready been tested on board of the prototype vehicle available to
all the research units in the Italian test site. Further tests will be
performed on prerecorded images coming from both the Italian
test site and the South Pole (the latter have been acquired on
previous missions to Antarctica).

In the last months the prototype vehicle was shipped to
the South Pole so that during the current scientific mission to
Antarctica (from January 2002 to March 2002), the vehicle can
be tested on-site and in real environmental conditions. The pos-
sibility to test the vision system under illumination conditions

that are unique on earth will be of basic importance to adapt
the system with respect to possible unexpected problems.

Besides extremely low temperatures, one of the most im-
portant issue that must be carefully tested is the behavior of
the vision system during stormy conditions. Due to different
weather, it is impossible to replicate or emulate antarctic condi-
tions on the Italian test site, and it is, therefore, imperative that
exhaustive tests are performed on-site. The tests will take at least
two months, during which not only the vision system but also
other equipment such as speedometer, radar, lidar, GPS, and TV
broadcasting system will be tested.

During the test period, the research unit will continue working
on the artificial-vision project and will address two other impor-
tant issues:

• precise computation of the terrain slope in front of the
vehicle;

• possible use of ground penetrating radar (GPR) to detect
snow or ice thickness and density.

Currently, slope detection is obtained as an indirect result of
track detection, since the position of the FOE gives a rough in-
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Fig. 21. Examples of the best path selected by the ants; the upper part of each
image encodes the number of ants passed on each pixel.

dication about the orientation of the tracks with respect to the
vehicle. The FOE horizontal position, together with the mea-
surement of the snowcat pitch and roll, can be used to assess the
orientation of the path, and, thus, used to steer the vehicle. On
the other hand, the FOE vertical position can be used to obtain
an indication about the slope of the terrain ahead.

Since the driving of a snowcat vehicle is extremely complex,
even manually, an extremely precise measurement of terrain
slope becomes mandatory. Therefore, one of the next research
stages will be the use of both cameras—as a stereo pair—to get
an accurate three-dimensional (3-D) reconstruction in a limited
portion of the terrain ahead.

Another future research stage is based on the use of a GPR,
they provide high resolution geophysical imaging of the shallow
subsurface. This ability to investigate and map the subsurface
using continuous 2-D profiles is advantageous to many engi-
neering and environmental applications, but in our case mainly
to safeguard the antarctic robot from terrain dangers and detect
subsurface objects. Moreover, the radar data can be used to char-
acterize snow/ice/bedrock stratigraphy. GPR position measure-
ments may also enable the mapping of the location of hazards
and interesting subsurface objects and features.

Another problem that does not seem to be easily solvable is
the presence of light reflections in the acquired images. Since
the camera must be kept inside the driving cabin, due to the very
low temperatures of the Antarctic region, images are acquired
through the windshield. This causes reflection problems when

(a)

(b)

Fig. 22. Results of two executions of the algorithm with different set of
parameters. (a) Wrong right track is selected. (b) Correct right track is selected.

the windshield presents scratches and when snow or small ice
particles stick on the windshield itself.

These new research directions will be dealt with in the months
to follow, together with the new evolutionary approach that, al-
though requiring a complex parameter tuning stage, seems to
deliver high qualitative performance.
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