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ARTIN PRIME PRODUCING POLYNOMIALS

AMIR AKBARY AND KEILAN SCHOLTEN

Abstract. We define an Artin prime for an integer g to be a prime such that
g is a primitive root modulo that prime. Let g ∈ Z \ {−1} and not a perfect
square. A conjecture of Artin states that the set of Artin primes for g has
a positive density. In this paper we study a generalization of this conjecture
for the primes produced by a polynomial and explore its connection with the
problem of finding a fixed integer g and a prime producing polynomial f(x)
with the property that a long string of consecutive primes produced by f(x)

are Artin primes for g. By employing some results of Moree, we propose a
general method for finding such polynomials f(x) and integers g. We then
apply this general procedure for linear, quadratic, and cubic polynomials to
generate many examples of polynomials with very large Artin prime production
length. More specifically, among many other examples, we exhibit linear,
quadratic, and cubic (respectively) polynomials with 6355, 37951, and 10011
(respectively) consecutive Artin primes for certain integers g.

1. Introduction

We define an Artin prime for an integer g (for simplicity called an Artin prime) to
be a prime p with the property that g is a primitive root modulo p. Let g ∈ Z\{−1}
and not a perfect square. A celebrated conjecture of Artin states that the set of
Artin primes for g has a positive density. More generally, for a fixed integer g if we
set

δg(x) :=
#{p ≤ x; p is an Artin prime for g}

#{p ≤ x; p prime} ,

then the conjecture predicts that

δg = lim
x→∞

δg(x)

exists. Also the conjecture states that if g = g1g
2
2 is not a perfect power and its

square-free part g1 �≡ 1 (mod 4), then

δg = A =
∏

q prime

(
1− 1

q(q − 1)

)
= 0.373955813 . . . ≈ 3

8
.

Moreover, if g = −1 or a perfect square, then δg = 0 and in all other cases δg is
a positive constant that depends on g and is also a rational multiple of A. The
absolute constant A is called Artin’s constant. Artin’s conjecture is unresolved. In
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1862 AMIR AKBARY AND KEILAN SCHOLTEN

1967 Hooley [5] proved it conditionally under the assumption that for every square-
free d the Dedekind zeta function of the Kummerian fields Q(e2πi/d, g1/d) satisfies
the generalized Riemann hypothesis.

In this paper we consider a generalization of Artin’s conjecture for the primes
generated by polynomials with integer coefficients. For prime q let

Nq(f) = #{n (mod q); f(n) ≡ 0 (mod q)}.
It is easy to show that if a polynomial f(x) produces infinitely many primes for
values n ∈ Z+, then the following three conditions hold:

(i) The leading coefficient of f(x) is positive.
(ii) f(x) is irreducible over Z.
(iii) There is no prime q such that Nq(f) = q.

An old conjecture due to Bouniakowsky [3] states that the three conditions above
are also sufficient.

Conjecture 1.1 (Bouniakowsky). A polynomial f(x) ∈ Z[x] produces infinitely
many primes if and only if (i), (ii), and (iii) hold.

This conjecture is a special case of a far reaching conjecture of Schinzel [14] (the
so-called Hypothesis H) on prime values of a finite collection of polynomials. A well-
known conjecture of Bateman and Horn provides a quantitative version of Schinzel’s
Hypothesis H. Here we state this conjecture in the case of a single polynomial. A
polynomial f(x) is called a prime producing polynomial if it produces infinitely
many primes. From now on we assume that Conjecture 1.1 holds (i.e., f(x) ∈ Z[x]
is a prime producing polynomial if and only if conditions (i), (ii), and (iii) hold).
Let

πf (x) = #{0 ≤ n ≤ x; f(n) is prime}.
Conjecture 1.2 (Bateman-Horn). Assume that f(x) ∈ Z[x] produces infinitely
many primes. As x → ∞,

πf (x) ∼
1

deg(f)

∏
q prime

(
q −Nq(f)

q − 1

)
x

log x
= C(f)

x

log x
.

The constant C(f) is called the prime producing constant of f(x). It can be
shown that the product defining C(f) is convergent (see [1, p. 364]).

A congruence class modulo a positive integer m is called m-allowable for f(x)
if (f(r),m) = 1 for any integer r in that congruence class. Similarly we can define
an m-non-allowable congruence class for f(x). Thus Nq(f) is the number of q-non-
allowable classes for f(x). Note that in each m-non-allowable class for f(x) there
are only finitely many n for which f(n) is prime, since any prime in such a class is
a prime divisor of m and such primes can be taken as values of f(x) only finitely
many times. Moreover, as a consequence of the Bateman-Horn conjecture, it can
be shown that the integers n for which f(n) is prime are asymptotically uniformly
distributed over the m-allowable classes for f(x) (see [12, p. 112] for a proof). In
other words, if a is in an m-allowable class for f(x) and Am(f) is the total number
of m-allowable classes for f(x), then

lim
x→∞

#{0 ≤ n ≤ x; f(n) is prime for n ≡ a (mod m)}
#{0 ≤ n ≤ x; f(n) is prime} =

1

Am(f)
.

We postulate this as the following conjecture which plays an important role in our
investigations in this paper.
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Conjecture 1.3 (Uniform Distribution). Assume that f(x) ∈ Z[x] produces in-
finitely many primes. Then for any positive integer m the integers n for which f(n)
is prime are asymptotically uniformly distributed over the m-allowable congruence
classes for f(x).

The following is proposed by Moree [12, Conjecture 3, p. 119].

Conjecture 1.4 (Generalized Artin’s Conjecture). Assume that f(x) ∈ Z[x]
produces infinitely many primes. For an integer g let

δg(f, x) :=
#{0 ≤ n ≤ x; f(n) = p is an Artin prime for g}

#{0 ≤ n ≤ x; f(n) is prime} .

Then
δg(f) = lim

x→∞
δg(f, x)

exists.

Combining the above conjecture with the Bateman-Horn conjecture we have

#{0 ≤ n ≤ x; f(n) = p is an Artin prime for g} = δg(f)C(f)
x

log x
+ o

(
x

log x

)
,

as x → ∞. The case f(x) = x corresponds to the classical Artin conjecture. It
would be interesting if similar to the classical case we could develop a conjectural
value for the density δg(f). This appears to be difficult. However, it seems possible
to propose a conjectural density in certain cases.

Conjecture 1.5 (Density Expression). Assume that f(x) ∈ Z[x] produces in-
finitely many primes. Let g be a square-free integer with the property that all the
primes produced by f(x) (except finitely many) stay inert in Q(

√
g). Then

δg(f) = lim
x→∞

δg(f, x)

exists and is independent of g. Moreover,

(1.1) δg(f) = δ(f) :=
∏

prime q>2

(
1− #{s (mod q)|f(s) ≡ 1 (mod q)}

q#{s (mod q)|f(s) �≡ 0 (mod q)}

)
.

In Section 2.3 we give a heuristic argument in support of the above density ex-
pression. Also in Proposition 3.2, under the assumption of the generalized Riemann
hypothesis for Dedekind zeta function of certain number fields, we prove that the
above conjecture is true for linear polynomials. The infinite product δ(f) was first
proposed by Moree [12] as a good approximation for δg(f). We have done some
experiments in order to see how well δ(f) approximates δg(f). Using a variety
of quadratics f(x) and integers g with the property that all the primes produced
by f(x) (except finitely many) stay inert in Q(

√
g), we numerically estimated val-

ues for δg(f) and δ(f). More precisely, we used the first 500000 primes in the
infinite product defining δ(f) to find a value for δ(f). We then found the actual
value of δg(f,X) by counting how many of the primes produced in the sequence
f(0), f(1), . . . , f(X) are Artin primes for g. We did this for three different values
of X (i.e., 500000, 1000000, and 5000000) and recorded the difference between our
approximated value of δ(f) and δg(f,X). A sample of our experimental data for
four quadratic polynomials is given in Table 1

In contrast with the classical Artin constant, which has a relatively small value
(≈ 3/8), the values of δ(f) for four quadratic polynomials recorded in Table 1 are
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Table 1. Numerical results on δ(f)− δg(f)

Polynomial f(x) Fixed g ≈ δ(f) δ(f)− δ(f)− δ(f)−
δg(f, 500000) δg(f, 1000000) δg(f, 5000000)

56417x2 + 174208554651372 1877 0.9987863 0.0002893 0.0002678 0.0000665

x2 + 9828324151968468548 14458 0.9989678 0.0002039 0.0003953 0.0002410

x2 + 2x+ 9828324124393614405 8458 0.9988635 0.0000252 0.0003463 0.0001775

x2 + 2x+ 9828324573822479829 3 0.9989856 0.0000661 0.0006741 0.0004032

very large (≈ 1). The existence of such polynomials was conjectured, in a related
problem, first by Griffin and later was explored by Lehmer [7] and Moree [12]. We
now consider this problem.

Let f(x) be a prime producing polynomial with integer coefficients and let g be
an integer. Consider the sequence (f(n))∞n=0. Let pi(g, f) be the i-th prime in this
sequence which is also relatively prime to g. Let

�g(f) = min{i ∈ N; pi(g, f) is not an Artin prime for g} − 1.

If the above minimum does not exist we set �g(f) = ∞. We call �g(f) the Artin
prime production length of f(x) with respect to g. A natural question to ask is
whether it is possible to find polynomials f(x) and integers g with very large Artin
prime production length. The first known attempt for finding a polynomial f(x)
and an integer g with large �g(f) was carried out by Raymond Griffin. In 1957, he
proposed that the decimal expansion of 1/p should have period length p− 1 for all
primes of the form 10n2+7. This is equivalent to saying that the polynomial 10x2+7
with g = 10 has infinite Artin prime production length, although with modern
computers we can quickly determine that this length is only 16. The problem
of finding f(x) and g with �g(f) = ∞ is known as Griffin’s dream. Moree has
conjectured that Griffin’s dream cannot be realized for prime producing quadratic
polynomials. Lehmer [7] considered this problem and showed that for g = 326,
primes produced by the polynomial 326x2 + 3 are expected to be Artin primes for
326 with a probability of 0.99337 . . . (this value is corrected to 0.99323 . . . in [12]).
It turns out that the first 206 primes produced by 326x2+3 have 326 as a primitive
root. This is remarkable keeping in mind that by the classical Artin conjecture the
likelihood that 206 primes are Artin primes for 326 is roughly(

3

8

)206

≈ 0.1780086686× 10−87.

In 2007 Moree [12] generalized the method used by Lehmer in order to find many
quadratic polynomials f(x) and integers g with large �g(f).

Note that the problem of finding f(x) and g with large �g(f) is intimately related
to finding f(x) and g with a large density δg(f). In fact, the expected value of �g(f)
can be approximated by the sum

(1.2)

∞∑
j=1

jδg(f)
j(1− δg(f)) =

δg(f)

1− δg(f)
.

So a value of δg(f) close to 1 will result in a large value for the expected Artin
prime production length �g(f).

We can use the density expression (1.1) in order to find f(x) and g with large
δg(f) as long as all primes produced by f(x) (except finitely many) stay inert in
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Q(
√
g). In other words, we should have

(
D
p

)
= −1 for all (except finitely many)

primes p = f(n), where D is the discriminant of Q(
√
g). It is clear that this

happens, under the assumption of Conjecture 1.3, if and only if τ−D (f) = 1, where

τ−D (f) =
#{r (mod D)|

(
D

f(r)

)
= −1}

#{r (mod D)|(f(r), D) = 1} .

Here
(
D
.

)
denotes the Kronecker symbol. By the quadratic reciprocity and under

the assumption of Conjecture 1.3 one can find expressions for τ−D (f) in terms of
quadratic character sums with polynomial arguments (see Theorem 2.2). The com-
putations of these sums for general polynomials are difficult, however, for linear,
quadratic, and some special cubics one can find explicit expressions for τ−D (f). We
can then use these expressions to prove the following useful result.

Proposition 1.6. Assume that f(x) = axn + b produces infinitely many primes
and that the primes produced by f(x) are uniformly distributed among allowable
congruence classes. Let D be a fundamental discriminant.

(i) If n = 1 and τ−D (f) = 1, then D | a.
(ii) If n = 2 and τ−D (f) = 1, then D | 24a2b.
(iii) If n = 3 and τ−D (f) = 1, then D | 56a.
The above proposition plays a fundamental role in our search for integers g and

polynomials f(x) with large �g(f). Part (ii) of the above proposition for a general
quadratic polynomial is proved in [12, Proposition 3]. The proofs of parts (i) and
(iii) are given in Sections 3 and 5. The proof in the cubic case involves a careful
analysis of the character sum

ψq,3(E) =

q−1∑
u=1

(
u3 + E

q

)
,

and its associated Jacobsthal sum

φq,3(E) =

q−1∑
u=1

(
u

q

)(
u3 + E

q

)
,

where q ≡ 1 (mod 3) is prime and u and E are integers. A section of this paper
(Section 5) is devoted to the calculation of these character sums. Generalizations
of these computations to the case of a full cubic f(x) = ax3 + bx2 + cx + d seem
to be difficult. This is the reason that we restricted our attention in this paper to
special cubics of the form f(x) = ax3 + b.

Another approach to the problems considered in this paper would be to study
convenient ways for producing many Artin primes. Our examples of prime pro-
ducing polynomials with a high density of Artin primes for an integer g provide a
simple way of producing many Artin primes. We can also do similar experiments
by other functions; for example, one can consider Artin primes associated to linear
recurrences.

The structure of the paper is as follows. We will review Lehmer’s results and
Moree’s generalization in Section 2 and based on the ideas in [12] we describe a
general method for finding Artin prime producing polynomials of a given degree
with large lengths. We next demonstrate this method for linear polynomials in
Section 3 and in Table 2 provide the top five linear polynomials found in our
search. In Section 4 we present our modification of the presented method in [12]
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for quadratic polynomials. Using our modified procedure, we find a quadratic
polynomial f(x) and an integer g with �g(f) = 37951. The top three quadratic
polynomials f(x) of negative discriminant and their corresponding integers g found
in our search are presented in Table 3. In Section 5 we prove specific results for the
case of cubic polynomials and present the cubic

f(x) = 16735790906636782452200520x3+41975422096126566714360524823960x2

+35093173864667750962440687534348342360x

+977977739033023039412995828230137416763737,

which has g = 11045 as a primitive root for the first 10011 primes produced by
f(x). In Section 6 we finish the article with some remarks and questions for future
research.

A database of results found in this research, which includes lists of linear, qua-
dratic, and cubic polynomials with large Artin prime production lengths and exper-
imental data regarding the value of δ(f) is available at www.cs.uleth.ca/∼akbary/
APPP.

Notation 1.7. Throughout this article p and q denote prime numbers, ā denotes the
modular inverse of a with respect to a given modulus, Fp denotes the finite field of

p elements, and
(

.
p

)
denotes the Legendre symbol.

2. A general method

2.1. Lehmer’s example. We start by reviewing Lehmer’s result from [7] which
states that a very large proportion of primes in the form 326n2+3 are Artin primes
for 326. The following elementary lemma provides a criterion for Artin primes.

Lemma 2.1. Let p � 2g. Then p is not an Artin prime for g if and only if there

exists a prime q such that q | p− 1 and g
p−1
q ≡ 1 (mod p).

Proof. See [10, Theorem 4.8]. �

We consider primes of the form p = 326n2 + 3. Conjecture 1.1 predicts that
infinitely many such primes exist. By Lemma 2.1 if p is not an Artin prime for

326 then there exists a prime q such that q | p − 1 and 326
p−1
q ≡ 1 (mod p). We

claim that such q cannot be equal to 2, since otherwise 326
p−1
2 ≡ 1 (mod p) for

p = 326n2+3 which implies that
(

326
p

)
= 1. However, by the quadratic reciprocity

we have(
326

p

)
=

(
326

326n2 + 3

)
=

(
326n2 + 3

163

)
=

(
3

163

)
= −

(
1

3

)
= −1.

Therefore
(

326
p

)
�= 1 and so q �= 2.

Now suppose that q > 2 and q | p− 1 = 2(163n2 + 1), which can happen only if(
−163

q

)
= 1. Note that the total number of q-allowable residue classes for 326x2+3

is q −
(
1 +

(
−978

q

))
. So under the condition

(
−163

q

)
= 1 there are exactly two q-

allowable residue classes mod q out of q−
(
1 +

(
−978

q

))
that contain such primes.

Thus under the assumption of Conjecture 1.3 we conclude that the probability

that q | p − 1 is 2/
(
q − 1−

(
−978

q

))
. On the other hand, the probability that
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326
p−1
q ≡ 1 (mod p) (i.e., 326 is a q-th power modulo p) is (p−1)/q

p−1 = 1
q , since the

number of q-th power in F×
p is (p−1)/q if q | p−1. Therefore a good approximation

for the proportion of Artin primes of the form 326n2 + 3 for 326 is

∏
(−163

q )=1

⎛
⎝1− 2

q
(
q − 1−

(
−978

q

))
⎞
⎠ = 0.99323 . . . .

Note that this infinite product coincides, for f(x) = 326x2 +3, with the expression
for δ(f) given in (1.1).

2.2. Moree’s generalization. In [12] Moree generalized Lehmer’s method to an
integer g and an arbitrary prime producing polynomial f(x). Here we describe his
generalization. Suppose that a polynomial f(x) conjecturally produces infinitely
many primes and has large δ(f) as given in (1.1). In order to replicate examples
similar to Lehmer’s we need to look for a quadratic field Q(

√
g) of discriminant

D with the property that all primes of the form f(n) remain inert in Q(
√
g) (i.e.,(

D
f(n)

)
= −1). Moree [12] has devised a method for finding such quadratic fields.

Recall that for a fundamental discriminant D and a polynomial f(x) we defined

τ−D (f) =
#{r (mod D)|

(
D

f(r)

)
= −1}

#{r (mod D)|(f(r), D) = 1} .

Note that τ−D (f) is a rational number. Moreover, τ−D (f) = 1 implies that all the

primes p = f(n) in D-allowable classes for f(x) are inert in Q(
√
D). The following

result enables us to calculate τ−D (f).

Theorem 2.2 (Moree). Let D be a fundamental discriminant. Let f(x) be a
polynomial that generates infinitely many primes and assume that the primes of the
form f(n) are uniformly distributed over the D-allowable residue classes for f(x).
Let D1 be the largest odd square-free divisor of D and assume that D1 > 1. For
j = 1, 3, 5, and 7, let

αj =
#{s (mod 8)|f(s) ≡ j (mod 8)}
4#{s (mod 2)|f(s) ≡ 1 (mod 2)} .

Then we have

(2.1) 2τ−D (f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− aD1

(f) if D is odd,

1 + (α3 + α7 − α1 − α5)aD1
(f) if D ≡ 4 (mod 8),

1 + (α3 + α5 − α1 − α7)aD1
(f) if D ≡ 8 (mod 32),

1 + (α5 + α7 − α1 − α3)aD1
(f) if D ≡ 24 (mod 32),

where, for odd square-free d, ad(f) is the multiplicative function defined by

(2.2) ad(f) =

∑
r (mod d)

(
f(r)
d

)
#{r (mod d)|(f(r), d) = 1} .

Proof. See [12, Theorem 1]. �

Using this theorem we can narrow down the search for a fundamental discrimi-
nant D with τ−D (f) = 1.
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2.3. Heuristic on density expression δ(f). In analogy with Artin’s conjecture
here we describe a heuristic argument that will lead to the density expression (1.1).
The elementary conditions for Artin primes given in Lemma 2.1 have the following
interpretation in terms of the splitting of primes in certain algebraic number fields.
Let ζq denote a primitive q-th root of unity. Consider the Kummerian field Lg,q =

Q(ζq, g
1/q). Then g is a primitive root for a prime p � 2g if and only if there is no

prime q for which p splits completely in Lg,q.
Let P(f) be the set of primes produced by f(x), let k = q1 · · · qs be a square-free

positive integer, and Lg,k = Lg,q1Lg,q2 · · ·Lg,qs the compositum of the fields Lg,qi

(1 ≤ i ≤ s). Let dk(g, f) be the density of primes in P(f) that split completely in
Lg,k. If f(x) = id(x) = x, then by the Chebotarev density theorem we know that
the density dk(g, id) exists. Let us assume that dk(g, f) exists in general. So using
the splitting criteria for primitive roots and by employing an inclusion-exclusion
argument we arrive at

δg(f) =

∞∑
k=1

μ(k)dk(g, f),

where μ(.) is the Möbius function. It can be shown that if k = q1 · · · qs is odd and
g is square-free, then the fields Lg,q1 , . . . , Lg,qs are linearly disjoint over Q and so
dk(g, f) = dq1(g, f) · · · dqs(g, f). In other words,

∞∑
k=1
2�k

μ(k)dk(g, f) =
∏
q>2

(1− dq(g, f)).

So if we can choose a square-free integer g such that all the primes produced by f(x)
(except finitely many) stay inert in L2 = Q(

√
g) (in elementary terms this means

that the polynomial x2 − g remains irreducible over Fp for all primes p = f(n)),
then

(2.3) δg(f) =

∞∑
k=1
2�k

μ(k)dk(g, f) =
∏
q>2

(1− dq(g, f)).

We continue by finding a conjectural explicit expression for dq(g, f). Let d1q(f)

be the density of primes p ∈ P(f) that split completely in Q(ζq)/Q, and let d2q(g)

be the density of prime ideals of Q(ζq) that split completely in Q(ζq, g
1/q)/Q(ζq).

Under the assumption that dq(g, f) and d1q(f) exist, it would be plausible to assume
that

dq(g, f) = d1q(f)d
2
q(g).

From the Chebotarev density theorem we know that d2q(g) = [Q(ζq, g
1/q) : Q(ζq)] =

1/q. It is known that an odd prime p splits completely in the cyclotomic field Q(ζm)
if and only if p ≡ 1 (mod m). Also 2 splits completely in Q(ζm) only if m = 1 or
2. So d1q(f) is the density of primes of the form f(n) such that f(n) ≡ 1 (mod q).
Under the assumption of Conjecture 1.3 we can conclude that

d1q(f) = lim
x→∞

#{0 ≤ n ≤ x; f(n) is prime and f(n) ≡ 1 (mod q)}
#{0 ≤ n ≤ x; f(n) is prime}

=
#{s (mod q)|f(s) ≡ 1 (mod q)}
#{s (mod q)|f(s) �≡ 0 (mod q)} .
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So

dq(g, f) = d1q(f)d
2
q(g) =

#{s (mod q)|f(s) ≡ 1 (mod q)}
q#{s (mod q)|f(s) �≡ 0 (mod q)} .

Applying the above expression for dq(g, f) in (2.3) results in (1.1).

2.4. A general method for finding large �g(f). We can now present a general
method for finding an integer g and a prime producing polynomial f(x) with large
�g(f). The density expression (1.1) and Theorem 2.2 are the main tools in our
search for Artin prime producing polynomials of large length.
General procedure.

(1) Select a prime producing polynomial f(x) ∈ Z[x] such that

δ(f) =
∏
q>2

(
1− #{s (mod q)|f(s) ≡ 1 (mod q)}

q#{s (mod q)|f(s) �≡ 0 (mod q)}

)

is very close to 1.
(2) Use Theorem 2.2 to find a fundamental discriminant D such that τ−D (f) = 1

and then select an integer g such that D is the discriminant of Q(
√
g).

(3) Determine the Artin prime production length of the polynomial f(x) with
respect to g.

We can also use two variations once we have found a polynomial f(x) and an
integer g. First we can consider f1(x) = f(x + d) which is simply a shift applied
to f(x) and repeat step (3) for f1(x) and g. Second we can consider g1 = k2g and
vary over k ∈ N and repeat step (3) for f(x) and g1.

2.5. Analysis of the general procedure. First, we note that for a given prime
producing polynomial f(x) it is not always possible to find a fundamental discrim-
inant D with τ−D (f) = 1. For example, by employing Theorem 2.2 and Proposi-
tion 3.1 we can show that for f(x) = ax+1 where a is a product of distinct primes
in the form q ≡ 1 (mod 4), there is no fundamental discriminant D with τ−D (f) = 1.
Another such example is f(x) = x2 + x+ 41 (see [12, Remark 2, p. 119]). So from
a theoretical point of view the success of the above procedure depends on step (2).

Upon finding a fundamental discriminant D with the property τ−D (f) = 1, steps
(1) and (2) produce a polynomial f(x) and an integer g with δg(f) ≈ δ(f) very
close to 1 (note that for square-free g we expect δg(f) = δ(f)). Since the expected
value of �g(f) is δg(f)/(1− δg(f)) (see (1.2)) by choosing δ(f) close to 1 we expect
that �g(f) will be large.

We emphasize that a successful implementation of the above procedure will also
require a moderate size for the leading coefficient (and more generally for the co-
efficients) of the polynomial f(x) given in step (1). It is easy to find polynomials
f(x) of degree n that conjecturally produce infinitely many primes with corre-
sponding δ(f) arbitrarily close to 1. For example, one can consider a polynomial
fy(x) = axn + (a + 2) with a = q1q2 · · · qm, where q1, q2, . . . , qm are all the odd
primes not exceeding y. From the definition of δ(f) in step (1) it is evident that we
can make δ(fy) arbitrarily close to 1 as long as we choose y large enough. However,
as y → ∞ the leading coefficient of fy(x) grows significantly and therefore, even if
we can find a suitable D in step (2), the very large size of the primes produced by
fy(x) will make step (3) of the procedure computationally infeasible.

In conclusion, following our general method, the challenge in the search for pairs
(f, g) with large �g(f) is twofold. On one hand we should be able to generate prime
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producing polynomials f(x) with large δ(f) such that their coefficients are not
significantly large; on the other hand, we need to devise ways to efficiently decide
on the existence of the fundamental discriminants D with the property τ−D (f) = 1
and also be able to generate such D’s.

In the next three sections we surmount some of these difficulties for linear, qua-
dratic, and some cubic polynomials, by calculating the exact expressions for δ(f)
(see (3.1), (4.1), (5.1)) and computing some concrete character sums in these cases.
Similar calculations for polynomials of higher degrees appear to be difficult. More
specifically, Propositions 3.1, 4.1, and 5.6 show that for linear, quadratic, and cer-
tain cubic polynomials f(x) there are only finitely many potential options for a
fundamental discriminant D with τ−D (f) = 1. Using these criteria one can easily

generate many examples of pairs f and D with τ−D (f) = 1. Consequently, follow-
ing our general method, we provide more concrete procedures for linear, quadratic,
and cubic polynomials in order to produce many pairs (f, g) with large �g(f) and
report some of the examples we obtained. Our most impressive findings are for
quadratic polynomials. This is partly due to the fact that the expression (4.1) for
δ(f) together with the known examples of the quadratic fields with the property
that a long string of consecutive primes remain inert in them, allow us to find
prime producing quadratic polynomials f(x) with relatively small coefficients and
δ(f) very close to 1. In contrast, in the linear case maximizing the value of (3.1)
forces us to consider polynomials fy,b(x) = ax + b, with a = q1q2 · · · qm, where
q1, q2, . . . , qm are all the odd primes not exceeding y. Because of the large size of
a (as y → ∞) in the linear examples, our findings in the linear case are modest
compared to the quadratic case (our top linear example has length 6355 while our
top quadratic example has length 37951). In the cubic case the expression (5.1)
allows us to consider cubic polynomials with smaller leading coefficients (we can
assume that the prime factors of the leading coefficients are not congruent to 1 mod
3) and therefore we can find examples of cubics with the Artin prime production
length almost 1.5 times larger than the length of our findings in the linear case (our
top cubic example has length 10011).

3. The linear case

We demonstrate our general procedure by applying it to linear polynomials. Let
f(x) = ax+ b, where (a, b) = 1. By solving the corresponding congruences in (1.1),
we find

(3.1) δ(f) =
∏
q>2

q|(a,b−1)

(
1− 1

q

)∏
q>2

q�a

(
1− 1

q(q − 1)

)
.

Let q > 2. We can easily establish the following character sum identity.

q−1∑
m=0

(
am+ b

q

)
=

{
q
(

b
q

)
if q | a,

0 if q � a.

Using this sum we evaluate (2.2) for odd primes q and for f(x) = ax+ b to deduce
that

aq(f) =

{(
b
q

)
if q | a,

0 if q � a.
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Note that ad(f) is multiplicative on odd square free integers d, so if we let D be a
fundamental discriminant and D1 > 1 the largest odd square-free divisor of D, we
get

aD1
(f) =

{(
b
D1

)
if D1 | a,

0 if D1 � a.

The following simple criterion reduces the search for a fundamental discriminant D
with τ−D (f) = 1 to a finite number of steps.

Proposition 3.1. If τ−D (f) = 1, then D | a.

Proof. From Theorem 2.2 and the above formula for aD1
(f) we deduce that if

τ−D (f) = 1, then aD1
(f) cannot be equal to 0 for such D1, and so D1 | a. Now if D

is odd we are done. Otherwise either D = 4D1 and D1 = 4k + 3 or D = 8D1 and
D1 = 2k + 1.

Let D = 4D1 and D1 = 4k+3. Then from (2.1) and the fact that aD1
(f) = ±1,

we conclude that if τ−D (f) = 1, then either α1 = α5 = 0 or α3 = α7 = 0. We assume
that α1 = 0, proofs for other cases are similar. Since α1 = 0, then an+b ≡ 1 (mod 8)
does not have any solutions and so 2 | a. Now since a is even and (a, b) = 1 we
deduce that b is odd and therefore 1− b is even. Since an+ b ≡ 1 (mod 8) does not
have any solutions we have that 4 | a which together withD1 | a imply D = 4D1 | a.

Next suppose that D = 8D1 and D1 = 2k + 1. Now if τ−D (f) = 1, from (2.1) we
deduce that one of α1 = α7 = 0, or α3 = α5 = 0, or α5 = α7 = 0, or α1 = α3 = 0
hold. We assume that α1 = α7 = 0, proofs for other cases are similar. Since α1 = 0
and α7 = 0, then a similar reasoning as above implies that 4 | a. Now suppose that
b = 4k+1, then since an+ b ≡ 1 (mod 8) does not have any solutions we conclude
that 8 | a. Similarly if b = 4k+3, then since an+ b ≡ 7 (mod 8) does not have any
solutions we again conclude that 8 | a. So 8 | a which together with D1 | a imply
D = 8D1 | a. �

We next employ the above proposition together with some results from [11]
and [13] to show that under certain assumptions Conjecture 1.5 holds for linear
polynomials.

Proposition 3.2. Let f(x) = ax + b, a > 0, and (a, b) = 1. Let g be a square-
free integer with the property that all the primes produced by f(x) (except finitely
many) stay inert in Q(

√
g). Then, assuming the generalized Riemann hypothesis

for Dedekind zeta function of number fields Q(e2πi/a, e2πi/d, g1/d) with d square-free,
we have

#{0 ≤ n ≤ x; an+ b = p is an Artin prime for g} =
aδ(f)

ϕ(a)

x

log x
+ o

(
x

log x

)
,

where ϕ(.) is the Euler function and

δ(f) =
∏
q>2

q|(a,b−1)

(
1− 1

q

)∏
q>2

q�a

(
1− 1

q(q − 1)

)
.

Proof. Under our assumptions by [11, Theorem 2] the density δg(f) of Artin primes
produced by f(x) for g exists. Moreover, since all the primes produced by f(x)
(except finitely many) stay inert in Q(

√
g) we conclude that τ−D (f) = 1, where D
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Table 2. Linear polynomials with long Artin prime production lengths

f(x) g �g(f) δ(f)
116431182179248680450031658440253681535x+ 1008420 6355 0.998271

33158669235192590202725416070516726471730038

2007238469666518094547220599513022568322942623865x+ 5 6205 0.998680

11969745093777650688032495128870012351454520519469655612

116431182179248680450031658440253681535x+ 9680 5872 0.998271

24446589597448128439371347196066304497192128

116431182179248680450031658440253681535x+ 19773 5788 0.998271

28924300001697674192118664716361580581665158

116431182179248680450031658440253681535x+ 887040 5749 0.998271

44080845573063550418381985885480043829165318

is the discriminant of Q(
√
g), and so by Proposition 3.1 we have D | a. Therefore

g = 4k + 1, or g = 4k + 2 and 8 | a, or g = 4k + 3 and 4 | a. For all these cases
from [13, Theorem 3] we have

(3.2) δg(f) =
∏

q|(a,b−1)

(
1− 1

q

)∏
q�a

(
1− 1

q(q − 1)

)(
1−

(g
b

))
.

We observe that in all the cases
(
g
b

)
= −1. For example, if g = 4k + 3 and 4 | a,

then for a prime in the form an+ b we have

−1 =

(
D

an+ b

)
=

(
D

Da1n+ b

)
=

(
D

b

)
=

(g
b

)
.

So in (3.2) we have
(
g
b

)
= −1 and thus δg(f) = δ(f). �

We now give a procedure for finding linear Artin prime producing polynomials
of large length.
Linear procedure.

(1) Select an integer a > 0 which is the product of many small primes.
(2) Select an integer B such that (a,B+1) = 1 and, moreover, either (a,B) = 1

or a and B only have very large common prime divisors.
(3) Form f(n) = an+ b where b = B + 1.
(4) Search through divisors D of a that are fundamental discriminants and

find ones satisfying τ−D (f) = 1, then select g such that Q(
√
g) has the

fundamental discriminant D.
(5) Compute �g(f).

Note that the conditions on a and b in steps (1) and (2) ensure that δ(f) given
in (3.1) is large, and step (4) guarantees that the hypothesis of Conjecture 1.5 hold,
so that δ(f) = δg(f). So it is very likely that �g(f) is very large.

We have implemented the above procedure and produced many examples of Artin
prime producing linear polynomials of large length. In particular, we found a linear
polynomial that has 1008420 as a primitive root for the first 6355 primes produced
by the polynomial. We present a sample of our results in Table 2. In the second
example in Table 2 we have a =

∏
3≤q≤127 q and in all others a =

∏
3≤q≤101 q.
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4. The quadratic case

In [12] a method for generating integers g and quadratic polynomials f(x) with
large �g(f) is presented and reported that Yves Gallot by implementing that method
has found the quadratic f(x) = 54151x2 + 160744427648x + 119471867164612830
of negative discriminant and g = 17431902 with �g(f) = 31082. Here we give a
modification of the method presented in [12] to include a different range of quadratic
polynomials. We then employ our modified method to find quadratics with large
Artin prime production lengths. The three quadratic f(x) of negative discriminant
and integers g with �g(f) > 31082 found in our search are presented in Table 3.
We will make use of the following result.

Proposition 4.1 (Moree). Assume that f(x) = ax2 + bx + c produces infinitely
many primes and that the primes produced by f(x) are uniformly distributed among
allowable congruence classes. Let d = b2 − 4ac be the discriminant of f(x). Let
aD1

(f) be as defined in Theorem 2.2. Then

aD1
(f) =

(
c

(D1, a, d)

)(
a

D1/(D1, a, d)

) ∏
q|D1
q�ad

−1

q − 1−
(

d
q

) .

Moreover, if τ−D (f) = 1, then D | 24ad. (Note that the first two factors in the
formula for aD1

(f) are Kronecker symbols.)

Proof. See [12, Propositions 2 and 3]. �

Our procedure for quadratic polynomials is the following.
Quadratic procedure.

(1) Select an integer Δ where
(

Δ
q

)
= −1 for many consecutive primes q ≥ 3.

(2) Select an even b and express it as b = 2b′.
(3) Factor −Δ+ (b′)2 into a(c− 1) such that a > 0, (a, b, c) = 1, 2 � (a+ b, c),

b2 − 4ac is not square and, moreover, a does not have small odd prime
factors.

(4) Form f(n) = an2 + bn+ c.
(5) Search through divisors D of 24a(b2 − 4ac) that are fundamental discrim-

inants and find ones satisfying τ−D (f) = 1, then select g such that Q(
√
g)

has the fundamental discriminant D.
(6) Compute �g(f).

We briefly explain why this works. By employing (1.1) for the polynomial con-
structed with our method we obtain
(4.1)

δ(f) =
∏
q|a

q|(b,c−1)

(
1− 1

q

)∏
q|a
q�b

(
1− 1

q(q − 1)

)∏
q�a

⎛
⎝1−

1 +
(

4(b′)2−4a(c−1)
q

)
q
(
q − 1−

(
4(b′)2−4ac

q

))
⎞
⎠ ,

where q ranges over the odd primes. Since
(

4(b′)2−4a(c−1)
q

)
=

(
Δ
q

)
= −1 for many

small q, and a does not have small prime factors, the value of δ(f) will be close to
1. Therefore this polynomial will produce a high proportion of Artin primes for g
given in step (5) of the procedure.
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Table 3. Quadratics of negative discriminant with long Artin
prime production lengths

f(x) g �g(f) δ(f)
x2 + 108656x+ 2038991585917703148 29823674796 37951 0.999553

x2 + 609932x+ 2038991675970432720 70882491394 36041 0.999553

x2 + 172676x+ 2038991590420421808 122605515633473715037016 31801 0.999553

Finding Δ is a crucial step in this method. Such Δ is related to finding quadratics
with a large prime producing constant. Algorithms for finding many examples of
such Δ can be found in [6].

Our method is similar to the one originally presented in [12]. In [12], Moree
considered polynomials of the form f(x) = 2αd1x

2 ± 2αd2 +1 where d1d2 = Δ and

α ∈ Z+, where
(

Δ
p

)
= −1 for many consecutive primes q ≥ 3. The form that we

use allows us to vary over b in the family f(x) = ax2 + bx+ c. In [12] it is reported
that Yves Gallot has found the quadratic f(x) = 64d1(x+ 728069)2 − 64d2 + 1 of
positive discriminant with d1 = 230849, d1d2 = Δ = 4472988326827347533 (taken
from [6, Table 4.3]) and g = 66715361 with �g(f) = 25581. We also implemented
the method given in [12] and using d1 = 373, Δ = 2430946649400343037 (taken
from [6, Table 4.6]) we found f(x) = 32d1(x + 4685199)2 − 32d2 + 1 of positive
discriminant and g = 675 with �g(f) = 26187. By using the same method we also
found f(x) = x2+3543608x+13598861653501886604 of negative discriminant and
g = 69870828 with �g(f) = 35521.

5. The cubic case

In this section we study Artin prime producing polynomials of the form f(x) =
ax3 + b. The following proposition plays an important role in our investigations.

Proposition 5.1. Let q be a prime number not dividing the integer m. The de-
composition of x3 −m modulo q is as follows.

(1) If q ≡ 2 (mod 3), then x3 −m = (x− u)(x2 + ux+ w) in Fq[x].

(2) If q ≡ 1 (mod 3) and m(q−1)/3 ≡ 1 (mod q), then x3 − m = (x − u1)(x −
u2)(x− u3) in Fq[x], where u1, u2, and u3 are distinct elements of Fq.

(3) If q ≡ 1 (mod 3) and m(q−1)/3 �≡ 1 (mod q), then x3 − m is irreducible in
Fq[x].

(4) If q = 3, then x3 −m = (x− a)3 in Fq[x].

Proof. See [4, Proposition 6.4.14]. �
5.1. Proportion of primitive roots. We evaluate δ(f) for f(x) = ax3 + b with
(a, b) = 1 by computing the number of solutions to the following two congruence
equations using Proposition 5.1:

#{s (mod q)| f(s) q≡ 1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if q � a, q | (b− 1), (a)
1 if q � a, q = 3, (b)
1 if q � a, q ≡ 2 (mod 3), (c)

3 if q � a, q ≡ 1 (mod 3), (a2(b− 1))
q−1
3 ≡ 1 (mod q), (d)

0 if q � a, q ≡ 1 (mod 3), (a2(b− 1))
q−1
3 �≡ 1 (mod q), (e)

q if q | a, q | (b− 1), (f)
0 if q | a, q � (b− 1), (g)
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#{s (mod q)| f(s) q≡ 0} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if q � a, q | b, (A)
1 if q � a, q = 3, (B)
1 if q � a, q ≡ 2 (mod 3), (C)

3 if q � a, q ≡ 1 (mod 3), (a2b)
q−1
3 ≡ 1 (mod q), (D)

0 if q � a, q ≡ 1 (mod 3), (a2b)
q−1
3 �≡ 1 (mod q), (E)

0 if q | a. (F )

Then the cubic version of (1.1) is

δ(f) =
∏

(a),((B) or (C))
(b),((A) or (B))

(c),((A) or (C))

(
1− 1

q(q − 1)

) ∏
(a),(D)

(
1− 1

q(q − 3)

) ∏
(a),(E)

(
1− 1

q2

)

∏
(d),(A)

(
1− 3

q(q − 1)

) ∏
(d),(D)

(
1− 3

q(q − 3)

) ∏
(d),(E)

(
1− 3

q2

) ∏
(f),(F )

(
1− 1

q

)
,(5.1)

where q ranges over the odd primes. The letters in the subscripts of the products
refer to the conditions in the number of solutions of congruences modulo q. For
example, (a), ((B) or (C)) indicates that q either satisfies the conditions (a) and
(B) or it satisfies the conditions (a) and (C).

Observe that for f(x) = ax3 + b we have

C(f) =
1

3

∏
(E) or (F )

(
1 +

1

q − 1

)∏
(D)

(
1− 2

q − 1

)
,

where q ranges over the odd primes. For f1(x) = ax3 +(b− 1) note that if C(f1) is

large, then we expect that (a2(b − 1))
q−1
3 �≡ 1 (mod q) for many small consecutive

primes q where q � a and q ≡ 1 (mod 3). Considering this fact in (5.1) shows that
if (a, b − 1) does not have small odd prime divisors, then δ(f) will be more likely
to be large. So the problem of finding f(x) = ax3 + b with large δ(f) is related to
finding integers a and b such that f1(x) = ax3 + (b− 1) has large C(f1).

5.2. A formula for aD1
(f). In order to find an expression for τ−D (f) for cubic

polynomials we need to compute some special character sums. For prime q ≡ 1
(mod k) the Jacobsthal sum φq,k(E) and its associated sum ψq,k(E) are defined as

φq,k(E) =

q−1∑
u=1

(
u

q

)(
uk + E

q

)
and ψq,k(E) =

q−1∑
u=1

(
uk + E

q

)
.

For odd k it is known that

ψq,k(E) =

(
E

q

)
φq,k(E),

where E is the modular inverse of E mod q (see [8, page 104, equation (5)]). For
k = 3 this latter identity in combination with the definition of ψq,k(E) implies

(5.2)

q−1∑
m=0

(
m3 + E

q

)
=

(
E

q

)
(1 + φq,3(Ē)).

Note that φq,3(E) can be explicitly evaluated. We will describe its computation in
the next section.
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Lemma 5.2. Let q be an odd prime. Then

q−1∑
m=0

(
am3 + b

q

)
=

⎧⎪⎪⎨
⎪⎪⎩
q
(

b
q

)
if q | a,

0 if q � a and ( q | b or q = 3 or q ≡ 2 (mod 3) ),(
b
q

)
(1 + φq,3(ā

2b̄)) if q � a, q � b, q ≡ 1 (mod 3).

Proof. If q | a, then
q−1∑
m=0

(
am3 + b

q

)
=

q−1∑
m=0

(
b

q

)
= q

(
b

q

)
.

If q = 3 or q ≡ 2 (mod 3), then the map x → x3 from Fq → Fq is one-to-one (see
[10, Theorem 4.13]). So if q � a we have(

a2

q

) q−1∑
m=0

(
am3 + b

q

)
=

q−1∑
k=0

(
k3 + a2b

q

)
= 0.

Finally, assume that q � a and q ≡ 1 (mod 3). Then from (5.2) we have(
a2

q

) q−1∑
m=0

(
am3 + b

q

)
=

q−1∑
k=0

(
k3 + a2b

q

)
=

(
b

q

)
(1 + φq,3(ā

2b̄)). �

Recall from Theorem 2.2 that for odd square-free d the multiplicative function
ad(f) is defined by

ad(f) =

∑
r (mod d)

(
f(r)
d

)
#{r (mod d)|(f(r), d) = 1} .

We next find a formula for aq(f) for odd prime q.

Lemma 5.3. Let q be an odd prime and f(x) = ax3 + b where (a, b) = 1.

aq(f) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
b
q

)
if q | a,

0 if q � a and ( q | b or q = 3 or q ≡ 2(mod 3)),
( b

q )(1+φq,3(ā
2b̄))

q−3 if q ≡ 1 (mod 3), a2b is a cubic residue mod q,
( b

q )(1+φq,3(ā
2b̄))

q if q ≡ 1 (mod 3), a2b is a cubic non-residue mod q.

Proof. The result follows from a straightforward application of Lemma 5.2 and
Proposition 5.1. Note that when q ≡ 1 (mod 3), E is a cubic residue mod q if and

only if E
q−1
3 ≡ 1 (mod q) (see [10, Theorem 4.13]). Also since q is a prime in the

form 3k + 1, then k = (q − 1)/3 is even, so −a2b is a cubic residue mod q if and
only if a2b is a cubic residue. �

The following proposition is a simple consequence of Lemma 5.3 and the multi-
plicativity of ad(f) for odd values of d.

Proposition 5.4. Let D1 be an odd square-free integer. If D1 has a prime divisor
q such that q � a and one of the conditions q | b, q = 3, or q ≡ 2 (mod 3) holds,
then aD1

(f) = 0. Otherwise

aD1
(f) =

(
b

(D1, a)

) ∏
q|D1,q�a

(1)

(
b
q

)
(1 + φq,3(ā

2b̄))

q − 3

∏
q|D1,q�a

(2)

(
b
q

)
(1 + φq,3(ā

2b̄))

q
,
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where (1) is the condition that q ≡ 1 (mod 3) and a2b is a cubic residue mod q and
(2) is the condition that q ≡ 1 (mod 3) and a2b is a cubic non-residue mod q.

5.3. Computing the Jacobsthal sum φq,3(E). The formula for aD1
(f) given in

Proposition 5.4 will be useful only if we can compute the Jacobsthal sum φq,3(E)
for q ≡ 1 (mod 3). In this section we obtain formulas to compute φq,3(E). If q ≡ 1
(mod 3) then there are integers A and B uniquely defined by

q = A2 + 3B2, A ≡ −1 (mod 3), B > 0.

(See [2, Theorems 3.0.1 and 3.1.1] for a proof.) The following proposition provides
convenient formulas for φq,3(E) in terms of the representation q = A2 + 3B2.

Proposition 5.5. Let E be an integer not divisible by prime q ≡ 1 (mod 3), then

φq,3(E) =

⎧⎨
⎩

−1 + 2A if E(q−1)/3 ≡ 1 (mod q),
−1−A− 3B if E(q−1)/3 ≡ (A−B)/2B (mod q),
−1−A+ 3B if E(q−1)/3 ≡ (−A−B)/2B (mod q).

Proof. See [2, Theorem 6.2.10]. �

Formulas given in Propositions 5.5 can be used in the implementation of our
upcoming cubic procedure.

5.4. Condition for τ−D (f) = 1. We employ Proposition 5.5 to find a condition on

the possible values of D with τ−D (f) = 1.

Proposition 5.6. Assume that f(x) = ax3 + b produces infinitely many primes
and that the primes produced by f(x) are uniformly distributed among allowable
congruence classes. Then τ−D (f) = 1 implies D | 56a.

Proof. From the definition of αj in Theorem 2.2, we conclude that (α3+α7 −α1 −
α5), (α3 + α5 − α1 − α7), and (α5 + α7 − α1 − α3) are at most 1 and at least −1.
Thus from (2.1) we deduce that if τ−D (f) = 1, then aD1

(f) = ±1, where D1 > 1 is
the largest odd square free divisor of D.

Let q be a divisor of D1 such that q � a. From Lemma 5.3 we know that the only
possible non-zero values of aq(f) are

either
( bq )(1 + φq,3(ā

2b̄))

q − 3
or

( bq )(1 + φq,3(ā
2b̄))

q
.

In the former case q ≡ 1 (mod 3) and a2b is a cubic residue mod q and in the latter
case q ≡ 1 (mod 3) and a2b is a cubic non-residue mod q.

From Proposition 5.5 we know that if a2b is a cubic residue mod q, then (1 +
φq,3(ā

2b̄)) is equal to 2A. So in this case aq(f) = ±1 implies∣∣∣( b
q

)
(1 + φq,3(ā

2b̄))
∣∣∣

q − 3
=

∣∣∣( b
q

)
(2A)

∣∣∣
q − 3

= 1.

Since |A| ≤ √
q (recall that q = A2 + 3B2), from the above identity we conclude

that 2
√
q ≥ q − 3 and so 4q ≥ (q − 3)2. Because q ≡ 1 (mod 3), this is only true if

q = 7.
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Next if a2b is a cubic non-residue modulo q, then from Lemma 5.3 we conclude
that if aq(f) = ±1, then

(5.3)

∣∣∣( b
q

)
(1 + φq,3(ā

2b̄))
∣∣∣

q
= 1,

which implies |1 + φq,3(ā
2b̄)| = q. From Proposition 5.5 we know that 1 + φq,3(ā

2b̄)
is equal to −A ± 3B. So |1 + φq,3(ā

2b̄)| = | − A ± 3B| = q. Since |A| ≤ √
q and

|B| ≤ (1/
√
3)
√
q (recall that q = A2+3B2) we have q = |−A± 3B| ≤ (1+

√
3)
√
q.

Because q ≡ 1 (mod 3), this is only true if q = 7.
In summary if q � a and aq(f) = ±1, then q = 7. This shows that if aD1

(f) = ±1,
thenD1 | 7a. Finally, since D is a fundamental discriminant, 8 is the greatest power
of 2 that divides D. This implies that if τ−D (f) = 1, then D | 56a. �

The above result gives us a convenient way to find a D such that τ−D (f) = 1.

5.5. The cubic procedure. We are ready to present our algorithm for finding
prime producing cubic polynomials f(x) = ax3 + b and integers g with large δ(f)
and �g(f).
Cubic procedure.

(1) Select coprime integers A > 0 and B such that:
(i) The smallest prime factor of B is large.
(ii) 3 and many consecutive primes q ≡ 2 (mod 3) divide A.

(iii) For many consecutive primes q ≡ 1 (mod 3) we have (A2B)
q−1
3 �≡ 1

(mod 3).
(2) Set a = 2αA, b = 2αB+1, and choose α such that (a, b) = 1 and a2b is not

a perfect cube. Then form f(x) = ax3 + b.
(3) Search through divisors D of 56a that are fundamental discriminants and

find ones satisfying τ−D (f) = 1. Then select g such that Q(
√
g) has funda-

mental discriminant D.
(4) Compute �g(f).

We briefly explain why this works. Recall that our aim is to make δ(f) in
(5.1) as close as possible to 1. In order to do this we need to ensure that #{s
(mod q)|f(s) ≡ 1 (mod q)} is zero for as many small primes q as possible. For q = 3
and q ≡ 2 (mod 3), the equation f(n) ≡ 1 (mod q) has no solutions only if q | a and
q � b − 1. Now because of our choice of A, we have that many such small primes
(i.e., 3 and odd primes q ≡ 2 (mod 3)) divide A. Since (a, b − 1) = 2α(A,B) = 2α

we conclude that such q does not divide b−1. Thus #{s (mod q)|f(s) ≡ 1 (mod q)}
is zero for such small prime q as we required. For q ≡ 1 (mod 3), we have

(a2(b− 1))
q−1
3 = (2q−1)α(A2B)

q−1
3 ≡ (A2B)

q−1
3 (mod q).

Since A and B are such that (A2B)
q−1
3 �≡ 1 (mod q) for many small q ≡ 1 (mod 3),

the expression in (5.1) shows that such a q does not reduce the value of δ(f). So we
expect a large value for δ(f). So for this f and g found in step (3) of the procedure
we expect to obtain a large �g(f).

We implemented this procedure and found many examples of cubics f(x) and
integers g with large δ(f) and �g(f). A sample of our findings is given in Table 4.
Note that these polynomials are all in the form a(x + d)3 + b for integers b and d
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Table 4. Cubic polynomials with long Artin prime production lengths

f(x) g �g(f) δ(f)

16735790906636782452200520x3 +41975422096126566714360524823960x2+

35093173864667750962440687534348342360x+ 11045 10011 0.999103

9779777390330230394129958282301374167637377

16735790906636782452200520x3 +35691015460148108446082064160320x2+

25371743542186406147283249113774999040x+ 3380 9938 0.999103

6012020691773711636910512621335820375159417

16735790906636782452200520x3 +13889869662963197596203821574000x2+

3842632442258768614989787238447100000x+ 45 9472 0.999103

354354755050296112445641546505463407638457

16735790906636782452200520x3 +8188671868499217922819644631320x2+

1335547815736616945558115580434398040x+ 1445 8499 0.999103

72607947367731671323230658940703008348417

16735790906636782452200520x3 +39188360629071623422248215626800x2+

30587691121809274229767399743186204000x+ 10125 8243 0.999103

7958203517101930938186782840516375938678457

and

a = 23 × 3×
∏

5≤q≤113
q≡2 (mod 3)

q.

6. Concluding remarks

In this paper we focused on the problem of maximizing δ(f), as defined in (1.1)
for any prime producing polynomial f(x), when f(x) varies over prime producing
polynomials of fixed degrees. We note that δ(f) is well defined for any polynomial
f(x) with the property that Nq(f) �= q for any primes q ≥ 3. From the above
investigations we speculate that

sup
f, deg(f)=n

δ(f) = 1,

for n = 1, 2, or 3. More generally, one can ask the following question:

Question 6.1. Is it true that supf,deg(f)=n δ(f) = 1 and inff,deg(f)=n δ(f) = 0?

It turns out that the answer to the infimum question for the linear, quadratic,
and cubic polynomials is simple. We need only to consider the term∏

q>2

q|(a,b−1)

(
1− 1

q

)

that is present in equations (3.1), (5.1), and in (4.1) for f(x) = ax2 + b. Since∏
q>2(1−1/q) = 0 by defining integer a as a product of consecutive primes starting

from 3 and setting b = a+ 1, we find f(x) = axn + b with δ(f) arbitrarily close to
0. So inff, deg(f)=n δ(f) = 0, for n = 1, 2, or 3.

The answer to the supremum question for polynomials of degree n is positive.
In order to see this, for y > 0 let q1, q2, . . . , qm be all the odd primes not exceeding
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y. Let a = q1q2 . . . qm. Take an integer b such that b ≡ 2 (mod a). Note that
(a, b) = (a, b− 1) = 1. Form fy(x) = axn + b. From (1.1) we have

δ(fy) =
∏
q>y

(
1− 1

q(q −Nq(fy))

)
,

where Nq(fy) �= q. It is clear that δ(fy) → 1 as y → ∞.
We also note that it is possible to construct quadratic polynomials fy(x) =

x2 + bx + c with b �= 0 and δ(fy) arbitrarily close to one. In order to do this let

Δ be an integer with the property that
(

Δ
qi

)
= −1 for i = 1, . . . ,m (the existence

of such Δ is a consequence of the law of quadratic reciprocity, see [9] for details).
Choose integers b′ �= 0 and c such that

(b′)2 −Δ = c− 1,

and set b = 2b′. Now for fy(x) = x2 + bx+ c from (4.1) we have

δ(fy) =
∏
q>y

⎛
⎝1−

1 +
(

Δ
q

)
q
(
q − 1−

(
Δ
q

))
⎞
⎠ .

It is clear that δ(fy) → 1 as y → ∞.
We can also consider the following question.

Question 6.2. Is it true that for any polynomial f(x) we have 0 < δ(f) < 1?

For linear f(x) the answer is yes by (3.1) and the fact that we have

0 <
∏
q

(
1− 1

q(q − 1)

)
= A < 1.

In [12, Proposition 4], it is proved that δ(f) < 1 for quadratic polynomials.
The next question is motivated by Question 6.1 and the relation (1.2) between

δg(f) and �g(f).

Question 6.3. Is it true that sup
g∈Z

f, deg(f)=n

�g(f) = ∞?

In [12, Theorem 2] it is conditionally proved that for quadratic polynomials the
answer to the above question is positive. It appears that the proof extends to prime
producing polynomials of the form axn + b.

Another question motivated by the size of the leading coefficients a(f) of poly-
nomials f(x) in our findings in this research is the following.

Question 6.4. Is it true that sup
g∈Z

f, deg(f)=n

�g(f)

a(f)
= ∞?

Following the procedure described in this paper one may speculate that for linear
polynomials f(x) = ax + b the quantity �g(f)/a(f) is bounded. Note that for a
prime producing polynomial fy(x) = ax+ b, where a is the product of all the odd
primes ≤ y and (a, b− 1) = 1, and a suitable g coming from τ−D (fy) = 1, the ratio
of the expected value of �g(fy) by a(fy) can be estimated as

δ(fy)

a(fy)(1− δ(fy))
=

∏
q>y

(
1− 1

q(q−1)

)
(∏

3≤q≤y q
)(

1−
∏

q>y

(
1− 1

q(q−1)

)) ≈ 1− 1/y log y

ey(1/y log y)
.
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It is clear that the latter expression approaches zero as y → ∞. So motivated by
this observation we may speculate that the answer to the above question for linear
polynomials is negative. In contrast, our investigations for the quadratic case leave
open the possibility of the existence of sequences of quadratics fn and integers gn
with the property that �gn(fn)/a(fn) → ∞ as n → ∞.

Finally, problems similar to the one discussed in [12] and this paper can be
considered for primes generated by a family of polynomials. For example, for two
polynomials f1(x) and f2(x) and a fixed integer g, we can consider integers n where
both f1(n) and f2(n) are prime. Then the Artin prime production length �g(f1, f2)
is the number of such n in a row where both primes have g as a primitive root.
One can develop procedures, in line with the one developed in this paper for the
case of a single polynomial, for finding integers g and polynomials f1(x) and f2(x)
with large �g(f1, f2). We have done some preliminary experiments for the case of
two quadratic polynomials. We present a sample of our results in Table 5.

Table 5. Pair of quadratics with long Artin prime production lengths

f1(x), f2(x) g �g(f1, f2)
x2 + 77851376x+ 9829839069358873548

x2 + 77851376x+ 5695745484831292308 7203 11966

x2 + 24444296x+ 9828473241074334108

10597x2 + 259036204712x+ 1583526759288000168 108 10724

x2 + 65043728x+ 13599916185850506684

x2 + 65043728x+ 6850377136300469580 21675 10043

x2 + 64233308x+ 13599889993676627904

x2 + 64233308x+ 6850350944126590800 48 9340

x2 + 4206728x+ 13598862938352588684

x2 + 4206728x+ 6849323888802551580 3468 9247
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