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Artistic Edge and Corner Enhancing Smoothing
Giuseppe Papari, Nicolai Petkov, and Patrizio Campisi

Abstract—Two important visual properties of paintings and
painting-like images are the absence of texture details and the
increased sharpness of edges as compared to photographic images.
Painting-like artistic effects can be achieved from photographic
images by filters that smooth out texture details, while preserving
or enhancing edges and corners. However, not all edge preserving
smoothers are suitable for this purpose. We present a simple
nonlinear local operator that generalizes both the well known
Kuwahara filter and the more general class of filters known in
the literature as “criterion and value filter structure.” This class
of operators suffers from intrinsic theoretical limitations which
give rise to a dramatic instability in presence of noise, especially
on shadowed areas. Such limitations are discussed in the paper
and overcome by the proposed operator. A large variety of exper-
imental results shows that the output of the proposed operator
is visually similar to a painting. Comparisons with existing tech-
niques on a large set of natural images highlight conditions on
which traditional edge preserving smoothers fail, whereas our
approach produces good results. In particular, unlike many other
well established approaches, the proposed operator is robust
to degradations of the input image such as blurring and noise
contamination.

Index Terms—Adaptive filters, edge/corner enhancers, image
region analysis, nonlinear filters, painterly image processing,
smoothing methods.

I. INTRODUCTION

S
MOOTHING is an important task in image processing

[1]–[5]. The best known smoothing technique is low-pass

linear filtering. The most widely used filter deploys a Gaussian

kernel, since it has been proved to be very close to the optimality

for noise rejection [6]. However, since linear low-pass filtering

strongly attenuates high-frequency components, not only noise,

but also edges and corners, are smoothed out. Therefore, there

has been a remarkable effort to find a nonlinear operator able to

remove texture and noise, while preserving edges and corners.

In the following, we refer to such an operator as an edge and

corner preserving smoother (ECPS).

Several ECPSs have been proposed in the literature [7]–[12].

The best known ones are based on median filtering [13], mor-

phological analysis [14], [15], bilateral filtering [16], mean shift
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[17], total variation [18], and anisotropic diffusion [19]. The

latter is probably the most popular ECPS, for which much re-

search has been carried out in the last 15 years. However, it is

not computationally efficient since it requires many iterations to

achieve the desired output. A survey of ECPSs can be found in

[20].

In the current work, we are interested in a specific aspect of

ECPSs: their ability to produce images that are visually sim-

ilar to paintings. Not all existing ECPSs are suitable for pro-

ducing such an artistic effect. The class of ECPSs we consider

here stems from the early work of Kuwahara [21], where a fast

and conceptually simple ECPS is introduced. Specifically, in

[21], a symmetric square neighborhood around each pixel of a

gray level image is divided in four square subregions. The value

of the central pixel is replaced by the gray level average over

the most homogeneous subregion, i.e., the subregion with the

lowest standard deviation. Although this operator was not de-

signed for producing artistic images, the obtained effects are

quite interesting.

The Kuwahara operator has been extended in several ways:

by changing the shape of the subregions, from squares to pen-

tagons, hexagons and, more recently, to circles [22], [23], by

allowing overlapping subregions [24], [25], and by replacing

the local averages with Gaussian weighted local averages [25].

In [23], a class of generalized Kuwahara filters, the value and

criterion filter structure is introduced and efficient algorithms

in terms of morphological filtering are provided. A formula-

tion in terms of partial differential equations (PDEs) is given

in [25]. However, all mentioned extensions suffer a common

problem: the output of the operator is not uniquely determined

when the minimum standard deviation is reached in more than

one subregion. This problem is discussed in depth in this paper

and it is shown that it may have dramatic effects in presence

of noise.

In our contribution, we propose a new noniterative ECPS that

generalizes the well known Kuwahara filter without suffering

the related drawbacks. With respect to the proposed approach,

our algorithm makes use of 1) a different set of weighting sub-

regions for computing local averages and 2) a different com-

bination criterion which generalizes the aforementioned min-

imum standard deviation rule and which does not suffer the

above mentioned ill-posedness. The exposition is organized as

follows: after a brief review of the Kuwahara filter and a discus-

sion of its limitations in Section II, we introduce the proposed

operator in Section III. We present and discuss experimental re-

sults in comparison with existing techniques in Section IV, and

we draw conclusions in Section V.

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. Kuwahara filtering: (a) subregions Q ; i = 1 . . . 4, on which local aver-
ages and standard deviations are computed. (b) The subregion with the smallest
standard deviation (delineated by a thick line) determines the output of the filter.

II. KUWAHARA FILTER AND EXTENSIONS

This section gives a short review of the Kuwahara filter,

points out its theoretical and practical limitations, and presents

an overview of its extensions proposed in the literature.

A. Review of the Kuwahara Filter

Let us consider a gray-level image and a square of

length centered around a point which is partitioned into

four identical square subregions and [Fig. 1(a)]

(1)

where the symbol “ ” denotes the Cartesian product.

Let and be the local average and the local

standard deviation, respectively, computed on each subregion

. For a given point , the output

of the Kuwahara filter is defined as the local average

value that corresponds to the th subregion providing

the minimum local standard deviation value [21]. This

can be formulated as follows:

(2)

where

otherwise
(3)

Fig. 1(b) shows the behavior of the Kuwahara operator in the

proximity of an edge. When the central point is on the

dark side of the edge (point ), the output is equal to , which

is the local average computed on the subregion that completely

lies on the dark side ( in our case). It is the most homogeneous

area, having the smallest local standard deviation among the

four subregions. On the other hand, as soon as the point

moves to the bright side (point ), the output is determined by

another subregion that lies completely in the bright area ( in

our case), since now that subregion has the minimum standard

Fig. 2. (a) Test image (480� 320 pixels) and (b) the output of the Kuwahara
filter. The block structure due to the Gibbs phenomenon is well visible on the
output of the Kuwahara filter, especially on strongly textured areas.

deviation . This flipping mechanism guarantees the preserva-

tion of edges and corners, while the local averaging smooths out

texture and noise.

B. Limitations of the Kuwahara Filter

One limitation of the Kuwahara filter is the block structure of

the output, particularly evident on textured areas (Fig. 2), that is

due to the square shape of the regions through and to the

Gibbs phenomenon [26]. This problem can be avoided by using

different shapes for the subregions and by replacing the local

averages with weighted local averages. We will discuss this in

more detail in Section II-C.

A more serious problem is that the Kuwahara filter is not a

mathematically well defined operator: every time the minimum

value of is reached by two or more subregions, the output of

the Kuwahara operator cannot be uniquely determined, because

it is unclear which subregion should be chosen. As we will il-

lustrate with a simple 1-D example, two subregions with equal

standard deviations can have considerably different

local average values and .

For 1-D signals, the Kuwahara filter is defined as follows:

two local averages and , and two local standard
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Fig. 3. Effect of the indetermination of the Kuwahara operator for a 1-D signal.
(a) Input signal I(x) = x corrupted by very small additive noise, (b) the two
local averages m (x), and m (x); (c) the two local standard deviations s (x)
and s (x), and (d) the output of the Kuwahara filter. The standard deviations
are almost equal and the transitions from m (x) to m (x) and vice versa in the
output occur randomly at the zero crossings of s (x)� s (x).

deviations and are computed on the two intervals

and , respectively, around each point . The

output at is given by the value or , which cor-

responds to the smaller one of and . It is straight-

forward to see that if we consider the input signal ,

the two local averages and are different, with

, while the two standard deviations are

equal, . Therefore, for such an

input signal, the output of the Kuwahara operator is not uniquely

determined. However, in real applications where noise is always

present it is very unlikely that the estimated standard deviations

have the same value; therefore, the algorithm will randomly

choose either or depending on the noise. This in-

stability of the output of the Kuwahara operator is illustrated in

Fig. 3.

Commonly, there are two ways to try to solve this problem

[23]: the first solution is to set the output equal to

for those values of for which the differ-

ence is below a given threshold . This method

is robust to noise but, as pointed out in [23], edges are not very

well preserved. Alternatively, if can

be set to the value of that is closer to

(4)

This latter method results in a better edge enhancement, but it

is more sensitive to noise. Moreover, the indetermination dis-

cussed above would still persist for the input signal ,

since and are equally close to .

Fig. 4 shows the effect of such a problem for a 2-D input

signal consisting of a blurred circle corrupted by a very low-

power Gaussian noise [Fig. 4(a)]. Though the noise in the test

image has a very low level, it has a considerable effect on the

Fig. 4. Effect of the indetermination of the Kuwahara filter for a 2-D signal.
(a) Input image. Output of the Kuwahara filter (b) without and (c) with the ad-
ditional criterion (4), and (d) output of the operator proposed in this paper. Un-
perceivable additive noise in the input image has a strong effect on the output of
the Kuwahara filter and its modification according to the additional criterion (4)
brings only a small improvement. The approach proposed here is much more
stable in this respect.

output of the Kuwahara filter [Fig. 4(b)]. On the shadowing

corona around the circle, the four values are al-

most equal to each other and their differences are due only to the

noise. Therefore, we obtain an output which varies randomly as

the selection jumps from one subregion to another, thus pro-

ducing the instabilities shown in Fig. 4(b). Fig. 4(c) shows the

small improvement brought by the additional criterion (4), but

the filtered image is still noisier than the input. For comparison,

Fig. 4(d) shows the result obtained with the operator that we will

introduce in Section III.

C. Generalizations of the Kuwahara Filter

Over the last two decades, several extensions of the Kuwahara

operator have been proposed by changing the number and the

shape of the subregions and by replacing local averages with

weighted local averages. In [22], the square subregions are

replaced by pentagons and hexagons. More recently, in [24],

circular subregions are considered, and, in [23] and [25], a

larger set of overlapping subregions is taken into account. In

[25], the local averages are replaced by Gaussian weighted

local averages in order to avoid the Gibbs phenomenon [26]

(Gaussian Kuwahara filtering). All these extensions can be

unified in the following general framework: weighted local

averages and standard deviations are de-

fined by the following convolutions of the input image with

weighting functions

(5)
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The Kuwahara filter is a special case of this class of filters, with

if , and ; otherwise,

.

For each point , the output is obtained by the

minimum standard deviation criterion (MSDC) expressed by

(2) and (3). Therefore, all these methods suffer the indetermi-

nation problem discussed in Section II-B.

A computationally appealing algorithm is obtained from (5),

when all the weighting functions are translated versions of

a given function . In this case, the filter can be implemented

by using only two convolution operations, independently of the

number of subregions [23]. For this reason, all the possible

translated versions of the function in a given neighborhood

of the central pixels are considered in [23] and [25]. This class

of filters is called value and criterion filter structure (VCFS).

When the weighting function is Gaussian one gets the so

called Gaussian Kuwahara filter [25].

III. PROPOSED OPERATOR

The approach we propose is a generalization of the VCFS.

The main contribution of the present study is a new combina-

tion criterion that does not suffer the limitations of the MSDC,

and the use of different weighting functions which are more

suitable for preserving corners and edges. In this section, we

first introduce the proposed operator for gray level images, and

then we present a straightforward extension to color images.

A. Gray Level Images

We divide a circular region around each pixel in equal sec-

tors , over which we compute weighted local

averages and local standard deviations. Let be the fol-

lowing 2-D Gaussian kernel:

(6)

The sectors are defined by the following cutting functions

, expressed in polar coordinates:

otherwise
(7)

The weighting functions are defined as products between the

Gaussian mask and the cutting functions

(8)

Fig. 5 shows the weighting functions (8) for the case

sectors. Note that

(9)

Fig. 5. Eight weighting functions w used in the proposed operator.

Fig. 6. Sector selection in various situations: (a) homogeneous (texture) area,
(b) edge, (c) corner, and (d) sharp corner. The sectors selected to determine the
output are delineated by a thick line.

Once and are computed according to (5), the mathe-

matical expression of the proposed combination criterion is still

the linear combination (2) where the discontinuous functions

(3) are replaced by the following functions:

(10)

where is a parameter. Thus, the output is given by

(11)

where the explicit dependence on has been omitted

for simplicity of notation. According to (11) the filter output

is a weighted average of the local averages ,

with weights equal to . For positive values of , more

importance is given to the values of that correspond to

smaller values of .

For reduces to the arithmetic mean of

. Taking into account (9), for , the proposed op-

erator is equivalent to a linear Gaussian filter. On the opposite

extreme, for the functions of (10) reduce to

the functions of (3), thus obtaining MSDC.

For finite positive values of , the proposed operator is an

intermediate case between a Gaussian and a value and criterion
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Fig. 7. Effect of the different choices of the space color on the smoothing process. From left to right: input images (375� 480 pixels) and outputs of the proposed
operator for the color spaces RGB, YC C ;L a b . The differences between the different outputs are minimal.

filter, since it behaves like a Gaussian filter in homogeneous and

textured regions, and like a value and criterion filter around con-

tours and corners of objects. Thus, since Gaussian filtering is

more suitable for noise rejection and value and criterion filtering

is more suitable for preserving edges, we get the advantages of

both. The parameter controls the sharpness of the transition

between the linear Gaussian-like behavior and the VCFS-like

behavior. This is illustrated in Fig. 6. On areas that contain no

edges (case ), the values , are very similar to

each other; therefore, the output is close to the average of

the values. The operator behaves very similarly to a Gaussian

filter, thus texture and noise are averaged out and the Gibbs phe-

nomenon is avoided. On the other hand, in the presence of an

edge (case ), the sectors that cross it give higher values than

the other sectors. If is sufficiently large (for instance, ),

the sectors intersected by the edge give a negligible

contribution to the value of . Similarly, in presence of corners

(case ) and sharp corners (case ), only those sectors which fall

inside the corner ( for case and for case ) give an

appreciable contribution to the value of , whereas the other

sectors have a negligible effect.

The choice of using circular sector shaped regions

for computing the local averages is particularly suitable for

preserving edges and sharp corners. The combination rule

expressed by (11) allows us to, for each pixel, automatically

select the sectors which provide the best coverage of either the

edge or the corner under analysis. Finally, we point out that our

combination criterion does not suffer the indetermination of the

Kuwahara operator, since no hard selections are involved. Only

theoretically, the righthand side of (11) would be undefined if

some is equal to zero, but the indetermination can easily be

removed by using the well known De l’Hospital rule. Moreover,

since the regions on which the weighting functions are not

zero slightly overlap, the case can occur only in regions

where the input signal is constant.

B. Color Images

The generalization of the discussed method for color images

is straightforward: let be the

color components in a given color space. The local averages

and the local standard deviations,

, are computed according to (5) for each

component . Afterward, the output is computed

similarly to (11) as follows:

(12)

with

(13)
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Fig. 8. (a)–(b) Output of the proposed operator for the test image shown in Fig. 2(a), with (a) � = 1:5, (b) � = 3. Results of (c) morphological structural closing
[14], (d) morphological area open-closing, (e) median [13], and (f) bilateral filtering [16].

Note that this is not equivalent to apply the operator to each color

component independently, since the coefficients

are the same for all three color components. If the three compo-

nents was treated separately, the coefficients would be different

for each color component and spurious colors would be intro-

duced on borders of areas with very different chrominance. An

analogous effective strategy for avoiding color artifacts has been

proposed in [16].

Equation (12) can be applied to any color space. We found

that the choice of a color space does not significantly affect the

final result. In fact, from (11), we see that the operator output

is determined by 1) the color averages and 2) the stan-

dard deviations . The colors are indepen-

dent on the color representation only if the transformation rules

between different color spaces are linear. However, for suffi-

ciently homogeneous regions, these differences are not very

pronounced also for nonlinear color transformations. Since, in

(12), the major contribution is given by the most homogeneous

regions, we conclude that the color averages are not sig-

nificantly influenced by a specific choice of a color space, un-
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Fig. 9. Comparison of the proposed operator with morphological area open-closing [15] First row: input images (555� 347 pixels); second row: output of
the proposed operator; third and fourth row: output of area opening with A = 50 and A = 100. In these examples, area opening does not produce
artistic effects.

lessimages with very low signal to noise ratio are taken into

account.

Formally, the standard deviations depend on the color

space choice, as well. However, for natural images, it is
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Fig. 10. Example of the effect of the indetermination of the Kuwahara filter on natural images: (a) Test image (160� 270 pixels), and the outputs of (b) the
Kuwahara, (c) the Gaussian Kuwahara, and (d) the proposed filter. The arrows point at some of the discontinuities introduced by the Kuwahara-like operators.
Such discontinuities are not present with the proposed approach.

Fig. 11. Comparison of different methods for an image that contains blurred regions: (a) test image (508� 409 pixels), and outputs of (b) the proposed operator,
(c) bilateral [16] operator, and (d) median [13] filter. The proposed method succeeds in restoring the blurred edges, while the other two fail.

very unlikely that the region homogeneity is affected by the

employed color space used to represent the image. Therefore,

in (12), a higher weight is given to more homogenous regions

independently of the deployed color space. Fig. 7 illustrates

that the choice of the color space does not affect substantially

the results.
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IV. EXPERIMENTAL RESULTS

In this section, we present some experimental results illus-

trating the ability of the proposed operator to generate artistic

images. Specifically, in Section IV-A, we compare it with other

existing ECPS algorithms. The influence of the parameters

and is discussed in Section IV-B.

A. Comparison With Existing Approaches

We compare the proposed approach with Kuwahara [21],

Gaussian Kuwahara [25], median [13], bilateral [16], and mor-

phological [14], [15] filters, which are the most common ECPSs

encountered in the literature. As for the Gaussian Kuwahara

filtering, in our work we have implemented a simplified version,

by using only four translated Gaussian kernels, centered on the

points .

The images presented here, Figs. 8–14, are rendered at re-

duced resolution. Full size images, together with a larger set

of examples, are available under an URL.1 Unless differently

stated, we use the parameter values according to Table I.

Fig. 8(a) and (b) shows the outputs of our operator for the

test image shown in Fig. 2(a) for two different values of the

smoothing parameter defined in (6). By

comparing them with Fig. 2(b), we can see the improvement

achieved by our operator with respect to the Kuwahara filter:

the blocking effect due to the Gibbs phenomenon is no longer

present. The overall effect of the proposed operator is more sim-

ilar to a painting than the effect obtained by the application of

the Kuwahara filter [Fig. 2(b)].

Fig. 8(c) shows the output of a structural morphological

closing with a disk as a structuring element. Morphological

filtering is able to smooth out texture and noise while preserving

edges and corners, but the filtered image presents many unde-

sired spots, having the shape and size of the structuring element.

Morphological area open-closing [15] does not introduce spots

and in some cases it can produce nice painting-like images

[Fig. 8(d)]. However, in several other cases, its output does not

substantially differ from the input image, as illustrated by Fig. 9.

Moreover, due to its flattening property, area open-closing may

produce effects that are visually similar to a nonlinear distortion

of the input image (see, for instance, the change in the brightness

of the forehead of the man in Fig. 9, third and fourth row, second

column with respect to the input image).

Fig. 8(e) and (f) shows the output of bilateral and median fil-

tering, respectively. Although these techniques have very good

performance in smoothing texture while preserving edges and

corners, from a perceptual point of view, the obtained result is

more similar to texture blurring or defocusing rather than to a

painting.

In Fig. 10, we see the effect of the VCFS ill-posedness on a

real image that presents slow and gradual luminance changes in

presence of noise [Fig. 10(a), on the right side of the hurricane].

In the presence of shadowing, the Kuwahara operator introduces

spurious discontinuities [marked by arrows in Fig. 10(b)]. These

1http://www.cs.rug.nl/~imaging/artisticsmoothing

discontinuities are reduced but not completely eliminated by the

Gaussian Kuwahara filter [see the arrows in Fig. 10(c)]. How-

ever, edge preservation is worse, as we can see, for instance, on

the right side of the hurricane. In contrast, our operator smoothes

out texture and noise, and enhances edges without introducing

spurious discontinuities.

Besides preserving edges, the proposed operator sharpens

edges that are blurred in the original image. We can observe this

effect, for instance, by comparing the right side contour of the

hurricane in Fig. 10(a) and (d). This property has a noticeable

contribution to achieving a painting-like effect. It is worth

pointing out that, in general, preserving shadowed areas is the

hardest task for operators aimed to sharpen blurred edges, since

spurious discontinuities tend to be introduced. In this respect,

our operator performs well as illustrated by Fig. 10(d).

The aforementioned edge enhancing property makes our

operator robust when acting on blurred images as depicted in

Fig. 11, where it is shown how the proposed operator performs

in comparison with other well established edge preserving

smoothers, like the bilateral [Fig. 11(c)] and the median filters

[Fig. 11(d)]. Specifically, bilateral and median filtering can

preserve an edge that is already sharp in the original image but

they are not able to sharpen blurred edges.

The robustness of our operator to blurring can be exploited

in order to obtain large high-quality pictures with a painting-

like effect when small input images are used, as shown in Fig.

12. The test image (221 150 pixels) shown in Fig. 12(a) has

been upsampled by a factor of 2 using a standard technique, thus

obtaining the blurred image shown in Fig. 12(b).

The output of the proposed operator, shown in Fig. 12(c), is

a sharp-edged high-quality image with a painting-like effect.

In contrast, the Gaussian Kuwahara operator [Fig. 12(d)] pro-

duces a worse result with many discontinuities (like, for in-

stance, the ones on the red grapes). Another case is presented in

Fig. 13, where a very small image [102 93 pixels, Fig. 13(a)]

has been upsampled by a factor of 6, thus obtaining the blurred

and low quality image shown in Fig. 13(b). Nevertheless, the

proposed operator produces a good quality painting-like picture

[Fig. 13(c)].

Finally, Fig. 14 shows the watercolor effect achieved by the

proposed operator with large values of . Fig. 14(b) shows the

output of our operator with for the test image of Fig.

12(a). Such an effect cannot be achieved by other existing edge-

preserving smoothers, like, for instance, the Gaussian Kuwahara

filter with the same value of [Fig. 12(c)].

B. Influence of the Parameters

In this section, we discuss the influence of the values of the

parameters and on the performance of the proposed

operator.

The value of controls the size of the brush stroke used for

the painting: as increases, the brush touches become coarser

(Fig. 15).

Concerning the number of sectors , Fig. 16 shows the

output of the proposed operator applied to a synthetic noisy
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Fig. 12. Example of enlargement: (a) original image (222� 150 pixels), (b) image enlarged by a factor 2 and outputs of (c) our and (d) the Gaussian Kuwahara
operators with the same value of � = 3.

Fig. 13. Another example of enlargement: (a) original image (102� 93 pixels), (b) upsampled image by a factor of 6, and (c) the output of the proposed operator.
The painting-like effect in the output does not suffer the blur of the enlargement.

image [Fig. 16(a)], for [Fig. 16(b)–(d)]. We can see

that, for these values of , edge preservation is not significantly

influenced by the number of sectors. On the other hand, when

higher values of are used the corners are better preserved,
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Fig. 14. Example of the watercolor effect achieved by our operator with a large value of � : (a) test image (369� 568 pixels) and the outputs of (b) our filter and
(c) the Gaussian Kuwahara filter for � = 12.

TABLE I
VALUES OF THE INPUT PARAMETERS OF THE STUDIED ECPS

especially the sharper ones, because narrower sectors better fit

sharp corners [see Fig. 6(b)]. Noise rejection is not significantly

influenced by the value of . In our experiments, with a large

number of images, we found that gives satisfactory

results.

Fig. 17 shows the output of the proposed operator, applied

on the test image of Fig. 16(a), for different values of

. For , all the coefficients ,

are equal [see (10)], so that the proposed operator reduces to a

Gaussian smoother. As we see in Fig. 17(a), noise is smoothed,

but edges and corners are blurred. As increases, edges and

corner are better preserved [Fig. 17(b)–(d)]. However, beyond a

certain value of , we observe that there is no further improve-

ment in the edge preservation and, on the other hand, noise re-

jection is worse. This can be easily explained as follows. The

case corresponds to the standard minimum variance cri-

terion; thus, noise is averaged only over one sector. Conversely,

the case corresponds to the Gaussian smoother and noise

is averaged over an area that is times larger than in the case

. Consequently, for , noise rejection is times

more efficient than for .

Fig. 18 plots the noise reduction ratio as a function of .

is defined as the ratio between the noise levels after and before

the filtering. As we see, remains rather constant for small

values of , and increases substantially for larger values. We

observe that the cases [Fig. 17(c)] and [Fig. 17(d)]

give rise to the same performance in terms of edge and corner

preservation, but there are about 4.5 dB of difference in terms

of noise rejection in favor of the case . In our experiments

with natural images, we found that is a good compromise

between noise and texture reduction and edge preservation.

V. DISCUSSION AND CONCLUSION

Several ECPSs are commonly deployed in image processing

applications in order to smooth out noise and texture while

preserving or enhancing edges and corners. The ability to

sharpen blurred edges, rather than only preserve the already

sharp edges in the original image, gives a noticeable contribu-

tion to achieving a painting-like effect in the output images. In

this paper, we demonstrated that some very common ECPSs,

like bilateral [16] or median [13] filtering, are not suitable to

accomplish this task, since they are not able to sharpen blurred

edges. Moreover, in some cases, the resulting smoothing effect

looks more like diffusion or blurring of the texture, rather than

a painting-like effect [Fig. 8(e)–(f)]. We showed that structural

morphological opening and closing, well known ECPSs, do

not give appreciable results either, since the output image

presents spots with approximately the same shape and size as

the one of the used structuring element. More sophisticated

morphological filters based on area open-closing do not suffer
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Fig. 15. Influence of � on the output of the proposed operator. (a) Test image (830� 623 pixels) and (b), (c), (d) output of the proposed operator for � = 2; 4; 8,
respectively.

Fig. 16. Influence of the number of sectors N on the output of the proposed
operator. (a) Noisy synthetic test image (770� 340 pixels), and output of the
proposed operator for (b) N = 4, (c) N = 6, and (d) N = 8. The values of
the other parameters are � = 4 and q = 8.

from the mentioned spot problem and in some cases they are

able to produce painting-like images. However, such methods

Fig. 17. Output of the proposed operator, applied on the test image of Fig. 15
a, for: (a) q = 0, (b) q = 2, (c) q = 8, and (d) q ! 1. Noise reduction is
better visible in the electronic version of the paper.

are not robust to blurring and in some cases they do not change

appreciably the input image.
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Fig. 18. Noise rejection ratio R of the proposed operator, as a function of q.

A more suitable class of ECPSs for artistic imaging is the

value and criterion filter structure [23] that stems from the

early work of Kuwahara [21] and its subsequent generaliza-

tions. These nonlinear filters are able to smooth out texture

while enhancing, not only preserving, edges and corners, and

they produce images quite similar to paintings. However, we

showed in this paper that such filters are not mathematically

well defined operators and give rise to instability in presence of

shadowed areas.

In this contribution, we proposed a new EPCS that does not

suffer the mentioned limitations. The proposed operator is based

on similar principles as the Kuwahara filter but it is mathemati-

cally well defined. The chosen form of the weighting functions

is particularly suitable for preserving edges and sharp corners

and, at the same time, for achieving the same texture rejection

level as the Gaussian filtering on edgeless areas.

It is worth pointing out that that our operator, introduced in

(11), has some similarity to bilateral filtering [16], defined as

(14)

In [16], is the Gaussian kernel (6) and the range distance

is proportional to , where is an input pa-

rameter. Thus, in the weighted average (14), the major contribu-

tion is given by those pixels which are spatially closer to point

and whose gray levels are closer to . The proposed operator

has a similar structure: in (11), the weighted sum is over the

regions instead over the pixels, and the weighting coefficients

are determined by the degree of homogeneity of each re-

gion, instead of the range distance between each gray level and

the central value . The spatial term does not appear

explicitly in (11), but is taken into account by the convolutions

(5).

The novelty of bilateral filtering was that the local average

(14) is mainly determined by those pixels for which the range

distance is sufficiently high. This fact makes the filter an

ECPS. However, its main limitation is that the pixels for which

the term is high are spatially unrelated to

each other. The factor only limits the average (14) on a

local neighborhood of . The proposed approach overcomes

this limitation by averaging over regions instead over pixels.

From the computational point of view, the proposed oper-

ator is more demanding than the VCFS because the weighting

windows , are not shifted versions of the same

window . Therefore, the number of required convolutions is

instead of 2.

To summarize, the most significant differences of our ap-

proach to previous approaches are: 1) new weighting windows

for computing local averages and local standard deviations, 2) a

new combination rule which overcomes the ill-posedness of the

Kuwahara filter, and 3) adaptive and automatic selection of the

of sectors that give a non negligible contribution to the weighted

average (11), according to the local pattern around each pixel.

Regarding the latter point, all sectors will be used in a homo-

geneous texture, while a single sector may be needed at a corner.

The experiments we performed on a wide set of natural im-

ages show the effectiveness of the proposed approach in com-

parison with the above mentioned existing ECPS. We demon-

strated that the proposed operator produces a very interesting

painting-like effect and that it is robust to image degradation

like blurring. We also showed the ability of the proposed oper-

ator to produce large high-quality painting-like images starting

from small input images.
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