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Abstract ArtiSynth (www.artisynth.org) is an open source, Java-based biome-

chanical simulation environment for modeling complex anatomical systems com-

posed of both rigid and deformable structures. Models can be built from a rich set

of components, including particles, rigid bodies, finite elements with both linear

and nonlinear materials, point-to-point muscles, and various bilateral and unilateral

constraints including contact. A state-of-the-art physics simulator provides forward

simulation capabilities that combine multibody and finite element models. Inverse

simulation capabilities allow the computation of the muscle activations needed to

achieve prescribed target motions. ArtiSynth is highly interactive, with component

parameters and state variables exposed as properties that can be interactively read

and adjusted as the simulation proceeds. Streams of input and output data, used

for controlling or observing the simulation, can be viewed, arranged, and edited on

an interactive timeline display, and support is provided for the graphical editing of

model structures.

1 Introduction

The ArtiSynth modeling platform has been developed at the University of British

Columbia for the past several years. Originally created for modeling the mechanics

of speech production, the system has evolved into a general biomechanical simu-

lation environment, with most usage to date focussed on modeling the head and

neck region for research in physiology, medicine, dentistry, and linguistics (Figure

1). Many applications are directed toward understanding and treating pathologies of

the oral cavity and upper airway, including obstructive sleep apnea [19], swallow-
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Fig. 1 ArtiSynth screen shot showing a combined jaw-tongue-hyoid model, with the main viewing

panel (center), component navigation panel (left), probes arranged on the timeline (bottom), and a

panel for adjusting properties (right).

ing disorders [22], and speech pathologies [9], and evaluating the consequences of

surgical interventions [12].

Modeling the head and neck region is challenging because it is a highly complex

area combining both deformable tissue (e.g., tongue, soft palate) and rigid bony

structures (e.g., mandible, hyoid, hard palate). Traditionally, deformable structures

are modeled using finite element method (FEM) techniques [7, 8], while rigid struc-

tures are modeled using multibody approaches [29]. Most commercially available

simulation packages tend to be oriented toward either one approach or the other

(e.g., ANSYS and SIMULA for FEM, SolidWorks and ADAMS for multibody) and

creating hybrid models within either is generally not easy.

In developing ArtiSynth, our goal has been to create a highly interactive simu-

lation environment, tailored to the needs of biomedical researchers, that combines

FEM and multibody methods in a convenient fashion. This contrasts with com-

mercial FEM simulation software that often uses a non-interactive pre-process—

simulate—post-process framework. Writing our own software has allowed us to

implement novel mechanisms for interactivity (Section 3), create custom model-

ing components (such as specialized muscle models or constraints), and incorpo-

rate state-of-the-art methods for simulation (such as fast solvers and new collision

handling techniques) that are not yet available in commercial packages. Finally, by

making ArtiSynth available as an open source project, we are able to provide the

research community a cost effective platform for collaborative development.
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Key features of ArtiSynth include:

• A comprehensive API for creating and interconnecting anatomical models from

rigid bodies, joints, finite element models, point-to-point muscles (including Hill

and other types), particles, etc.

• Tetrahedral, hexahedral, and higher-order FEM elements, along with materials

including co-rotated linear, hyperelastic, viscoelastic, and transverse isotropic.

• Fast simulation using state-of-the-art physics simulation that handles bilateral

and unilateral constraints, contact and friction.

• Inverse simulation capabilities to determine the muscle activations required to

achieve particular tasks.

• A Jython console for dynamic interaction and scripting.

• A highly interactive environment, with GUI support for setting properties, trans-

forming and editing structure, and viewing and editing input and output data on

a timeline.

• Extensibility, with the ability to easily add custom and special purpose compo-

nents or override aspects of the simulation behavior.

Other open source systems for biomechanics have been developed in recent

years. These include: OpenSim [15], which provides a highly accurate multibody

simulator and lumped line-based muscle models for performing musculoskeletal

analysis; FEBio [26], a finite element package that uses a traditional pre-process—

simulate—post-process framework with special support for tissue modeling and

some support for rigid bodies, contact and constraints. Systems geared toward sur-

gical training include Gipsi [11] and Spring [24]. Sofa [2] provides a general soft-

ware architecture in which models can be partitioned into different sub-models for

simulating appearance, behavior, and/or haptic response. ArtiSynth and Sofa both

provide the ability to combine multibody and FEM models, with Sofa targeted

more towards realtime applications such as surgical simulation and ArtiSynth di-

rected more towards precise physiological modeling. Sofa uses a very general scene-

graph arrangement for creating models, while ArtiSynth employs a more traditional

component-based approach. ArtiSynth also supplies a comprehensive simulation en-

gine (Section 4) that can solve any Lagrangian based mechanical system containing

both bilateral and unilateral constraints.

The remainder of this chapter is organized as follows. An overview of ArtiSynth’s

design is given in Section 2, followed by a description of the user interactivity fea-

tures (Section 3), the forward-dynamics physics simulation (Section 4), and inverse

simulation capabilities (Section 5). Section 6 gives a concise overview of some of

the models that have been created to date, and concluding remarks and a discussion

of future work is given in Section 7.
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2 General System Design

A primary design goal of ArtiSynth is to provide the user with comprehensive in-

teractive simulation control, which is achieved using a rich graphical user interface

(GUI). Figure 2 provides a overview schematic of the system’s organization. At the

center are the models, composed of a hierarchy of components. The GUI allows a

user to view and edit the model hierarchy, using one or more OpenGL-based view-

ers, along with selection, navigation, and editing tools that allow components to be

added, modified, or deleted. The properties of selected components can be modified

using property panels. Play controls allow simulation to be started, paused, single

stepped, or reset. Simulation proceeds under the control of a scheduler, which co-

ordinates the actions of the a physics simulator that advances the models through

time. Streams of input and output data (known as probes) can be attached to the

model to control or observe the simulation as it proceeds. Typically, input probe

data consists of external forces, muscle activation levels, or kinematically specified

motions, while output probe data contains simulation results such as positions, ve-

locities, muscle forces, or reaction forces. Probes and their data can be observed,

edited, and temporally arranged using a GUI timeline component. Applications can

also add controllers to preprocess and provide control inputs at the beginning of

each time step, as well as monitors to collect and post-process observed data at the

end of each time step.

  Physics
simulation

  Model 
hierarchy

Timeline

GUI

Viewers &
 edit tools

Property
  panels

SchedulerPlay controls

Input data Output data Probes 

Controllers Monitors

Fig. 2 General organization of the ArtiSynth system.
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2.1 Java implementation and basic component classes

ArtiSynth is implemented in Java. This decision was made to facilitate portability,

particularly for the graphical interface, across various system platforms. While Java

is slower than other languages (typically by a factor of two for optimized code after

just-in-time compilation), this is not too problematic since the major computational

bottleneck is usually the linear solves required by the physics simulator (Section 4).

These linear solves, in turn, are done using direct solvers compiled in native code.

Every ArtiSynth model is formed from a hierarchy of components, each of which

is a Java class that is an instance of ModelComponent (see Figure 3). Each com-

ponent has a number (assigned by its parent and returned by getNumber()), as

well as an optional name returned by getName(). A component’s parent is returned

by getParent(), and the methods connectToParent(parent) and disconnect-

FromParent() are called when the component is added to or removed from the

hierarchy.

Fig. 3 Basic ArtiSynth component classes.
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Sub-interfaces of ModelComponent include CompositeComponent, which con-

tains child components, and DynamicComponent, which contains state information

such as position and velocity.

A Model is a sub-interface of CompositeComponent and DynamicComponent

that contains the notion of advancing through time and which implements this

with the methods initialize(t0), which initializes a model to time t0, and

advance(t0, t1), which advances a model from time t0 to t1. The most common

instance of Model used in ArtiSynth is MechModel, which implements mechanical

models consisting of a large variety of components and which advances itself using

the physics simulation described in Section 4.

As described in Section 2.4, model components have properties and therefore

implement the HasProperties interface. They are also responsible for reading and

writing their own text file representation, and so also implement the Scannable

interface that supports serialization to and from a text stream. Components that

are capable of rendering themselves to a graphic display must also implement the

Renderable interface, as described in more detail in Section 3.1.

The base classes for the ArtiSynth components are defined in the package

artisynth.core.modelbase.

2.2 The component hierarchy

Broadly speaking, the ArtiSynth model components include dynamic components,

which contain dynamic state, and force effectors and constraint components which

represent interactions between the dynamic components. This provides a general

framework for modeling any kind of mechanical system using a Lagrangian rep-

resentation. Dynamic components include particles, FEM nodes, and rigid bodies.

Force effectors include point-to-point muscles (including Hill and other types) and

linear and nonlinear finite elements. Constraint components include sources of both

bilateral constraints (such as joints and FEM incompressibility), and unilateral con-

straints (such as contact and joint limits).

FEM capabilities include support for tetrahedral, hexahedral, and some higher-

order elements, along with both linear and large deformation behaviors, including

corotated linear [25] and hyperelastic materials. For tissue modeling, transverse

isotropic and viscoelastic materials are also available. The classes for rigid and par-

ticle models are defined in the package artisynth.core.mechmodels, while the

classes for the FEM models are defined in artisynth.core.femmodels.

A partial view of a typical component hierarchy (for a jaw-hyoid model) is shown

in Figure 4. At the top is a special instance of Model known as a RootModel, which

contains all other models, in addition to special components for interacting with the

simulation, such as controllers, monitors, control panels, and probes (Section 3). The

jaw-hyoid model itself is an instance of MechModel named JawHyoidModel, which

contains rigid bodies, axial springs (for the point-to-point muscles), and frame mark-

ers (which are attached to the rigid bodies and serve as muscle anchor points).
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Fig. 4 A partial component hierarchy for a Jaw-Hyoid model. The dashed lines show the references

from the muscle lad to its two attachment markers (other references are omitted for clarity).

Some components are simply composite components containing lists of compo-

nents of identical type (indicated by boxes in Figure 4 and including rigidBodies,

axialSprings, and frameMarkers). These are known as ComponentLists, and

act as simple containers for sub-components that may be added or removed as re-

quired by the modeling application. Component lists themselves are generally fixed

with respect to their parents and cannot be changed or removed by the application.

This is done primarily for organizational convenience, but leads to a deeper hierar-

chical structure in which another level is imposed between a component and what

one might normally consider its “parent”. For example, rigid bodies belonging to

a MechModel are not children of the MechModel itself, but of the ComponentList

rigidBodies, which is in turn a child of the MechModel.

Many components contain references to other components. For example, a point-

to-point muscle references its two attachment points, and a rigid body marker ref-

erences the rigid body to which it is attached. Model components must be able to

report both the components that they refer to, via the method

getReferences (List<ModelComponent> refs);

as well as the components that refer to them, via the method

getDependencies (List<ModelComponent> deps);

The method getReferences() should append referred components to the list

refs, while getDependencies() should append referring components (i.e., de-
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pendencies) to deps. Both getReferences() and getDependencies() are used

by the structural editing software described in Section 3.6. A component’s internal

structures which keep track of references and dependencies should be updated in

connectToParent() and disconnectFromParent() when components are con-

nected and disconnected from the hierarchy.

The names and/or numbers of a component and its ancestors can be used to form

a component path name. This path has a construction analogous to Unix file path

names, with the ’/’ character acting as a separator. Absolute paths start with ’/’ and

begin above the root model. Relative paths omit the leading ’/’ and can begin lower

down in the hierarchy. The absolute path name of the axial spring lad in Figure 4

would be

/RootModel/models/JawHyoidModel/axialSprings/lad

A component can also be addressed by its number (returned by getNumber(), so

that even nameless components always have a valid path name. For example, the the

axial spring lad could also be addressed by the path name

/0/0/1/1

although this would be most likely to appear only in machine-generated output. A

component’s number is assigned when it is added to its parent, and that number

persists until the component is removed, ensuring that path names remain valid as

long as a component is connected to the hierarchy.

2.3 Model creation

At present, ArtiSynth models are usually created in code, typically by declaring a

subclass of the top level RootModel (described above) and then using its constructor

to create the remainder of the component hierarchy. In this sense, the Java code takes

the role of a script that creates the various model components and assembles them.

This idea is used in other systems, such as the .mac file format of ANSYS, which is

essentially a scripting language.

There are several reasons for creating models in code. First, it tends to be more

repeatable, more precise, and (for complex models) easier that using a GUI. Second,

models often require specialized code and classes, which cannot be specified easily

in a file format.

Biomechanical models will usually contain at least one instance of MechModel,

which itself provides methods for adding sub-components in a straightforward fash-

ion. A code fragment to construct the portion of the model hierarchy shown in Figure

4 is:

MechModel jawHyoid = new MechModel ("JawHyoidModel");

RigidBody jaw = RigidBody.createFromMesh (

"jaw", "jawMesh.obj", 1000, 1);

RigidBody hyoid = RigidBody.createFromMesh (
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"hyoid", "hyoidMesh.obj", 1000, 1);

jawHyoid.addRigidBody (jaw);

jawHyoid.addRigidBody (hyoid);

Muscle lgh = Muscle.createPeck ("lgh", 40, 35, 45, 0.0);

FrameMarker lghOrigin = new FrameMarker("lgh_origin");

FrameMarker lghInsertion = new FrameMarker("lgh_insertion");

jawHyoid.addFrameMarker (

lghInsertion, hyoid, new Point3d ( 0.99, 1.69, 7.12));

jawHyoid.addFrameMarker (

lghOrigin, jaw, new Point3d ( 1.99, -33.16, 14.74));

jawHyoid.attachAxialSpring (lghOrigin, lghInsertion, lgh);

addModel (jawHyoid);

First, an instance of MechModel, named JawHyoidModel, is created. The jaw and

hyoid rigid bodies are then generated using createFromMesh(), which is a conve-

nience routine that creates rigid bodies given a name, a mesh file, a density, and a

scale factor. These are then added to the jaw-hyoid model using addRigidBody(),

which inserts them into the rigidBodies component list. The muscle lgh is cre-

ated next, using the convenience routine createPeck() that assigns names and

parameters. Two FrameMarker components are then generated to act as the ori-

gin and insertion points for the lgh muscle on the jaw and hyoid, and are added

to the model using addFrameMarker(), which attaches a marker to a particular

rigid body at a particular location. Finally, the muscle is added to the model using

attachAxialSpring(), which connects it to the specified attachment points and

inserts it into the axialSpring list, and the model itself is added to the RootModel

using addModel().

As suggested in the above example, model construction code often makes exten-

sive use of geometric file formats. Surface meshes are often used to describe rigid

bodies and can be read in from Alias Wavefront .obj files. Similarly, finite ele-

ment models can be specified using volumetric meshes read in from either Tetgen

or ANSYS .node and .elem files.

Once the model generation code has been written and compiled, it can be loaded

into ArtiSynth by specifying the name of the RootModel subclass in the GUI.

A direct way to do this is to choose "Load from class" from the File menu,

which invokes a dialog allowing the class to be specified. Alternatively, a specific

set of RootModel classes may be assigned “demo” names in the configuration file

.demoModels (located in any directory specified the user’s ARTISYNTH PATH envi-

ronment variable), using entries that look like:

"Spring Mesh" artisynth.models.mechdemos.SpringMeshDemo
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JawLarynx artisynth.models.dynjaw.JawLarynxDemo

The names on the left then appear as entries in ArtiSynth Models menu, allowing

the corresponding models to be loaded with a simple menu select. Models can also

be loaded using the Jython console (Section 3.3).

Models can also be written to (and read from) files. ArtiSynth files are given the

extension .art and use a lightweight text format similar to JSON [14]. This was

chosen over XML as it is more compact, faster to parse, and easier to read. Each

component is responsible for its own serialization through its implementation of the

Scannable interface described in Section 2.1. A section of the file representation

for the model of the above example looks like:

[ name="JawHyoidDemo"

viewerCenter=[ -0.006 -5.3270499 24.842517 ]

viewerEye=[ -0.006 -275.82869 24.842517 ]

models=

[ name="models"

artisynth.core.mechmodels.MechModel

[ name="JawHyoidModel"

gravity:Inherited

stabilization=Local

collisionPointTol=0.70010976

penetrationTol=0.00070010976

particles=

[ name="particles"

pointDamping:Inherited

]

rigidBodies=

[ name="rigidBodies"

[ mesh="src/artisynth/models/mechdemos/jaw.obj"

name="jaw"

axisLength=0

...

]

While it is possible to create a model by directly producing a file, this is generally

too tedious to do manually; usage of model files is generally restricted to saving

(and later reloading) versions of models that have been changed in some way using

the GUI editing methods described in Section 3.6.

The GUI itself can be used to create models directly, but this tends to not be

practical for larger, complex models. Instead, the GUI is used more to tweak and

adjust existing models, rather than creating them from scratch.
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2.4 Properties

ArtiSynth components expose properties, which provide a uniform interface for ac-

cessing their internal parameters and state. Properties vary from component to com-

ponent; those for RigidBody include position, orientation, mass, and density,

while those for Muscle include maxForce, excitation, and damping. Properties

are extremely useful for automatically creating GUI widgets and input and output

probes (Section 2.5). They are also useful in automating component serialization.

Each ArtiSynth component implements HasProperties, which is defined as

interface HasProperties

{

Property getProperty (String name);

PropertyInfoList getAllPropertyInfo ();

}

The method getProperty() returns a Property handle for the named property,

while getAllPropertyInfo() returns information for all properties exposed by

the class. A Property handle, in turn, is defined as

interface Property

{

Object get();

void set (Object value);

Object validate (Object value, StringHolder errMsg);

HasProperties getHost();

PropertyInfo getInfo();

}

where get() and set() access the property’s value, validate() can be used to

determine if a specific value is valid, getHost() returns the component object to

which the property belongs, and getInfo() returns detailed information about the

property.

The code fragment below shows how to use the property interface to obtain the

current excitation value for a Muscle:

Muscle muscle;

...

Property prop = muscle.getProperty ("excitation");

double excitation = (Double)prop.get();

Note, however, that properties are mostly used by generic system code; in an appli-

cation, the above would more be likely be written directly as

double excitation = muscle.getExcitation();

Properties are exposed by a class through code contained in the class definition.

This includes (a) creating a list of property descriptors within a static code block,

and (b) declaring getXXX() and setXXX() methods for each property’s value. The

code to expose the property excitation within Muscle could be as simple as this:
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Fig. 5 Inheritance of a property named stiffness among a component hierarchy. Explicit settings

are in bold; inherited settings are in gray italic.

double myExcitation;

...

static {

myProps.add ("excitation", "muscle excitation",

0.0,"[0,1]");

}

public double getExcitation () {

return myExcitation;

}

public void setExcitation (double e) {

myExcitation = e;

}

Here, myProps is the list of property descriptors for the class, and its add() method

creates and adds an entry with a given name, descriptive comment, default value,

and optional range. Given the property’s descriptor, the access methods are found

automatically using Java reflection.

Properties can be located within the component hierarchy by a path name that

consists of a component path name, followed by a “:” and the property name. For

example, to obtain a property handle for a muscle excitation from a sub-component

of a MechModel, one could use the fragment

Property prop =

mechModel.getProperty ("axialSprings/lad:excitation");

Composite properties are possible, in which a property value is a composite ob-

ject that in turn has sub-properties. A good example of this is the RenderProps

class, which is associated with the property renderProps for renderable objects
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and which itself can have a number of sub-properties such as visible, faceStyle,

faceColor, lineStyle, lineColor, etc.

Properties can be declared to be inheritable, so that their values can be inher-

ited from the same properties hosted by ancestor components further up the compo-

nent hierarchy. Inheritable properties require a more elaborate declaration and are

associated with a mode which may be either Explicit or Inherited. If a property’s

mode is inherited, then its value is obtained from the closest ancestor exposing the

same property whose mode is explicit. In Figure (5), the property stiffness is explic-

itly set in components A, C, and E, and inherited in B and D (which inherit from A)

and F (which inherits from C).

2.5 Probes, controllers, monitors and model advancement

As mentioned at the beginning of this section, it is possible to attach streams of

input and output data, called probes, to a simulation for purposes of controlling it

or recording its results. Input probes may include quantities such as muscle acti-

vation levels or forces acting on a body. Output probes may include items such as

positions, velocities, or reaction forces. Most probes commonly used are instances

of NumericInputProbe or NumericOutputProbe, where the data stream takes the

form of a vector of numbers interpolated over time, and this numeric data is then

mapped onto property values within selected model components.

Every probe is an instance of a Probe object, which implements a method

apply (t)

that is called repeatedly by the system at time t as simulation progresses. For a

NumericInputProbe, apply will set its associated properties to the values of its data

stream at time t. For a NumericOutputProbe, apply will collect the values of its

associated properties and write them to its data stream. Applications can also define

their own probes for special purposes.

In general, probes are associated with a model, and input and output probes being

called, respectively, before and after the model’s advance method. In addition, an

application can define and associate with a model special purpose Controller and

Monitor objects, each of which implements a method

apply (t0, t1)

that is called, respectively, before and after the model’s advance method. Con-

trollers are generally used to control model inputs, while monitors are used to pro-

cess outputs. While most controllers and monitors are defined by the application,

the inverse controller of Section 5 is implemented using a special built-in controller.

The calling sequence for model advancement is summarized as follows:

for (each input probe p) {

p.apply (t1);

}
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for (each controller c) {

c.apply (t0, t1);

}

model.advance (t0, t1); // advance from time t0 to t1:

for (each monitor m) {

m.apply (t0, t1);

}

for (each output probe p) {

p.apply (t1);

}

If the model is a mechanical model (such as MechModel), then its advance method

will call the physics engine described in Section 4. If the model is a RootModel,

then its advance method will invoke the above advancement sequence for each of

its sub-models. Probes, controllers and monitors that are not explicitly associated

with a model are assumed to be associated with the RootModel and are invoked

before and after the advance of the RootModel. Advancement of the RootModel

itself is controlled by the scheduler, with the size of the advance step (i.e., t1-t0)

determined from the application as well as maximum step size information returned

by the sub-models.

3 Interacting with Models and Simulations

ArtiSynth provides numerous ways for interacting with models and their simula-

tions. A typical usage workflow is shown in Figure 6. More details on the user

interface can be found in the ArtiSynth User Interface Guide [5].

3.1 Viewers and rendering

Interaction with an ArtiSynth model is centered around one or more viewing panels,

generally known as viewers. A main viewer is provided in the center of the main

display (Figure 1), and other viewers can be opened in separate windows.

Viewers are based on the GLViewer class (located in the rendering utility pack-

age maspack.render). Graphic rendering is done using OpenGL via the JOGL

bindings. As mentioned in Section 2.1, components which are renderable must im-

plement the interface Renderable (Figure 3). The two most important methods of

this interface are

prerender (RenderList list);

render (GLRenderer renderer);

render() is responsible for the actual 3D rendering of the component to the GL

canvas, using resources provided by the renderer (which include interfaces to GL
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Fig. 6 Typical ArtiSynth usage sequence.

and GLU, along with a large number of generic drawing routines). Because graphic

rendering takes place in a separate thread from the simulation, there arises a prob-

lem of data consistency, since state information used in rendering (position, in par-

ticular) may be modified simultaneously by the simulation. To avoid inconsistent

results, components must create a copy of the relevant state information for use in-

side render(). This copying is done in the method prerender(), which is called

in advance of the render step and in sync with the simulation. More details are given

in [6].

Viewers provide the usual interactive ability to adjust the viewpoint and choose

between orthogonal and perspective viewing. They also provide the ability to create

reference grids, which can be turned into clipping planes or clipping slices that

provide an convenient way to restrict the visual field and inspect a model’s internal

structure (Figure 7).
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Fig. 7 A viewer grid (left), turned into a clipping plane (center) and a clipping slice (right).

3.2 Navigation and selection

Fig. 8 The ArtiSynth selection manager.

Model components in ArtiSynth may be inspected and selected in a variety of

ways. A navigation panel (Figure 1, left), exposes the entire component hierarchy

and allows the selection of one or more components. Components that are rendered

in the viewer may be selected with a left mouse click, and large numbers of com-

ponents may be selected with a drag selection. Drag selections may be restricted to

specific class instances by means of a filter. Another widget, the selection display,

is located below the main viewer and shows the path name of the most recently

selected component. The display also enables component selection, either through

typing a path name into it, or by using a parent button that successively selects a

component’s parent.



ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit 17

Selection is managed by means of a SelectionManager (Figure 8), which noti-

fies all selecting agents of a change in selection by any one of them, and maintains

the current selection context (i.e., the set of all selected components).

3.3 Jython and MATLAB interfaces

ArtiSynth has a Jython console that allows access to its operational and compo-

nent classes through a Jython interface. To start the console, choose "Show Jython

console" from the View menu.

Fig. 9 Jython console with sample command sequence.

The Jython console has a number of built-in functions and variables to help load

models and run a simulation. Models can be loaded using loadModel(). The vari-

able main refers to the central ArtiSynth coordinating object, which is an instance

of the class Main and contains references to software components such as the se-

lection manager, viewers, and timeline. The variable sel is an array containing the

current selection context. The function root() returns the currently loaded root

model. Components within the root model can be located using find(). Simulation

can be controlled using run(), pause(), waitForStop(), reset(), and step().

Waypoints and breakpoints (Section 3.7) can be added using addWayPoint() and

addBreakPoint().

The built-in script() executes a script file within the console, as in the follow-

ing example:

>>> script ("testscript.py")

Using a MATLAB interface to ArtiSynth is straightforward because ArtiSynth

is written in Java. Any Java object can be created in the MATLAB workspace by
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calling the constructor for that class1. ArtiSynth can be launched from MATLAB by

first adding ArtiSynth classes to MATLAB’s classpath. The ArtiSynth Main class

can then be instantiated as follows:

>> main = artisynth.core.driver.Main;

and other ArtiSynth objects can then be accessed through main:

>> main.loadModel(’Spring Mesh’);

>> rootmodel = main.getRootModel();

As with the Jython console, the MATLAB interface is a convenient way to script

multiple simulations. It is also a powerful way to interface with user defined MAT-

LAB scripts and functions for pre-processing input probe data and for plotting and

analyzing output data from simulations.

3.4 Transforming geometry

A variety of graphical manipulators, similar to those used in 3D geometric modeling

applications such as Maya, are available to move, rotate, and scale the geometry of

selected ArtiSynth components (Figure 10).

Fig. 10 Graphical manipulators for translation, rotation, and combined translation/rotation.

These tools can act on any component that implements the interface Transform-

ableGeometry, which declares the method

public void transformGeometry (AffineTransform3dBase X);

that applies an arbitrary affine transformation to a component’s geometry. When

applied to a composite component, the transformation is recursively applied to its

sub-components.

1 For further details refer to: http://www.mathworks.com/help/techdoc/matlab_external/
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3.5 Editing properties

A user can edit the properties of one of more components by selecting them and

then choosing "Edit properties ..." from the context menu (invoked by a right

mouse click). This will bring up a property panel such as that shown in Figure 11,

which provides a set of widgets for editing individual properties. Render properties

are set through a separate panel invoked by choosing "Edit render props ...".

If more than one component is selected, the property panel presents properties which

are common to all components.

Fig. 11 Property editing panel for a rigid body.

An application may also create its own custom property panels, known as control

panels. Control panels may be created from the GUI by choosing "Add control

panel" in the Edit menu. Property-editing widgets may then be added by selecting

properties in specific components. Alternatively, control panels may be created in

code, as exemplified by the following fragment (possibly located in the initialization

code for a root model):

ControlPanel panel = new ControlPanel ("options", "");

panel.addWidget (this, "attachment");

panel.addWidget (this, "collision");

panel.addWidget (this, "models/msmod:integrator");

panel.addWidget (this, "models/msmod:maxStepSize");

addControlPanel (panel);

This creates a ControlPanel named "options" and then populates it with widgets

using addWidget(). Each widget is specified by simply giving the path name of

the property relative to the root model. The first two properties, attachment and
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collision, are properties of the root model itself, while the next two belong to

descendant components. The appropriate widgets are created automatically using

information about the properties’ type. When finished, the panel is added to the root

model using addControlPanel().

A wide variety of widgets for graphically setting different quantities are defined

in the package artisynth.core.gui.widgets.

3.6 Structural editing

Fig. 12 Sequence of operations involving the editor manager.

The graphical interface supports other editing capabilities, including structural

edits involving the addition, deletion, and duplication of model components. These

capabilities are organized around the current selection context.

Selected components can be deleted by choosing "Delete" from the context

menu. Applied directly, this could cause an infeasible component structure by re-

moving components that are refereed to by other components. To prevent this, the

system uses the components’ getDependencies() method (Section 2.1) to expand

the deletion list so that all dependent components are removed as well. For exam-

ple, deleting a marker to which a point-to-point muscle is attached will cause the

point-to-point muscle to also be deleted.

Selected components can also be duplicated if they implement the Copyable

interface, which contains methods to ensure that duplication also results in the du-

plication of additional components needed to preserve a feasible component struc-
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ture. For example, when duplicating a point-to-point muscle the points to which the

muscle is attached are also duplicated.

Other editing operations, particularly those involving the addition of compo-

nents, operate under the control of an EditorManager, which coordinates the ac-

tions of various Editor objects which serve to perform different editing tasks. When

the user invokes a context menu (via a right mouse click), the editor manager cre-

ates an action map that lists the editing actions and associated editor objects that

are appropriate for the current selection context (Figure 12). If the user selects one

these actions, the editor is asked to perform the action, which may (optionally) in-

volve creating a persistent EditingAgent (which is usually a dialog panel). Editing

agents are typically used for operations, such as adding components, that require

parameters to be set or items or locations to be selected in the viewer. An editing

agent for adding rigid bodies is shown in Figure 13.

Fig. 13 Editing agent dialog for adding rigid bodies.

Structural changes to the component hierarchy may result in the invalidation

of component data, particular cached data that has been precomputed for compu-

tational efficiency. Hence a mechanism is provided to notify ancestor objects of

changes below them in the component hierarchy. In particular, methods which ef-

fect such changes can create a ComponentChangeEvent and propagate it up the hi-

erarchy. Ancestor components will then have their componentChanged() method

called, which can clear any cached data and propagates the change event upward.
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3.7 The timeline

Fig. 14 Timeline with probes expanded to show data.

A GUI object known as the timeline allows for temporal control of the simulation,

through a set of play control buttons and a time cursor. It also allows the temporal

arrangement of probes (Section 2.5) to be displayed and adjusted graphically. Figure

14 shows a timeline with one input and two output probes, with two of the probes

expanded to show their numeric data. Options exist for adjusting a probe’s time

interval, editing the numeric data, changing how it is interpolated, creating a large

data display, or saving or reading the data from files. Via the timeline, probe data

can be examined or adjusted on the “fly”.

Probes can be created either graphically or in code. To create a probe graph-

ically, the user chooses "Add input probe" or "Add output probe" from the

Edit menu. This will invoke a dialog that allows the user to indicate numeric-type

properties in various components to which the probe should be connected. Prop-

erty information is used to automate much of the process, such as determining the

required size for the probe’s data vector.

Similarly, probes can be created in code. Within the constructor for a root

model, probes can be declared and then added to the root model using either

addInputProbe or addOutputProbe:

NumericOutputProbe probe =

new NumericOutputProbe (

model, "particles/7:position", "springMeshOut.txt",0.01);

probe.setStartStopTimes (1, 10);

addOutputProbe (probe);

The above snippet creates an output probe which collects the position of particle 7

once every 0.01 seconds, attaches the probe to a file called springMeshOut.txt,

and sets its start and stop times to 1 and 10 seconds.
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The timeline can also be used to set simulation waypoints and breakpoints. A

waypoint is a time location where state is saved when the simulation passes through

it, enabling the system to reset itself to that time later using the play control buttons

(one cannot normally set the system to an arbitrary time since this requires physical

simulation from a known state). A number of uniformly spaced waypoints can be

used to create an animation of the simulation. A breakpoint is simply a waypoint at

which simulation is also halted.

4 Physical Simulation

Physical simulation is required to advance ArtiSynth models forward in time. In

particular, the advance method for the top-most mechanical model in the hierarchy

needs to solve the second-order ordinary differential equation (ODE) that results

from the physics of the mechanical system. How that is done is the focus of this

section. Much of the material is taken from [37].

As mentioned in Section 2.2, ArtiSynth components can be roughly divided into

dynamic components, force effectors, and constraints. At present, there are only two

types of dynamic component: a six DOF RigidBody, and a three DOF Particle

(the nodes of finite element models are subclasses of Particle). Other types of

dynamic components, such as reduced coordinate FEM models, may be added in

the future.

4.1 The mechanical system ODE

In this section we present the ODE associated with the mechanical system2. Let q

and u be the generalized positions and velocities of all the dynamical components

in the model hierarchy, with q̇ related to u by q̇ = Qu (Q generally equals the

identity, except for components such as rigid bodies, where it maps angular velocity

onto the derivative of a unit quaternion). Let f(q ,u , t) be the force produced by all

the force effector components (including the finite elements), and let M be the com-

posite mass matrix. For FEM models we currently use a lumped mass model, which

ensures that M is block diagonal and makes it easier to interconnect FEMs with

mass-spring and rigid body components. By representing rigid body velocity and

acceleration in body coordinates we can also ensure that M is constant. Newton’s

second law then gives

Mu̇ = f(q ,u , t). (1)

In addition, bilateral and unilateral constraints give rise to locally linear constraints

on u of the form

2 Since the ODE contains algebraic constraints, it is technically a differential algebraic equation,

or DAE.
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G(q)u = 0, N(q)u � 0. (2)

Bilateral constraints include rigid body joints, FEM incompressibility associated

with the mixed u-P formulation [20], and point-surface constraints, while unilateral

constraints include contact and joint limits. Constraints give rise to constraint forces

(in the directions G(q)T and N(q)T ) which supplement the forces of (1) in order

to enforce the constraint conditions. In addition, for unilateral constraints, we have

a complementarity condition in which Nu > 0 implies no constraint force, and a

constraint force implies Nu = 0. Any given constraint usually involves only a few

dynamic components and so G and N are generally sparse.

4.2 Solving the ODE by trapezoidal integration

Solving the equations of motion requires integrating (1) together with (2). ArtiSynth

provides a number of integrators, both explicit and implicit, for doing this. When

deformable bodies are present, the mechanical system is usually stiff, implying the

need for an implicit integrator to obtain efficient performance. One of the more

commonly used implicit integrators supplied by ArtiSynth is a semi-implicit second-

order Newmark integrator [23], with γ = 1/2 and β = 1/4, known more generally

as the trapezoidal rule.

Letting k denote the index of values at a particular time step, and h denote the

time step size, this leads to the update rules

u k+1 = u k +
h

2
(u̇ k + u̇ k+1), q k+1 = q k +

h

2
(Q ku k +Q k+1u k+1), (3)

subject to

G k+1u k+1 = 0, N k+1u k+1 � 0. (4)

Since G and N tend to vary slowly between time steps we can approximate (4)

using

G ku k+1 = g k, N ku k+1 � n k, (5)

where g k ⌘ �hĠ
k
u k and n k ⌘ �hṄ

k
u k. Likewise, we use the approximation

Q k+1 ⇡ Q k + hQ̇
k
. For u̇ k+1, recalling that M is constant, an estimate of the (un-

constrained) value of u̇ k+1 can be obtained from u̇ k+1 ⇡ M�1f k+1, with f k+1 ap-

proximated by the first-order Taylor series

f k+1 ⇡ f k +
∂f k

∂u
∆u +

∂f k

∂q
∆q .

Placing this into the expression for u k+1 in (3), multiplying by M , noting that

∆q = h/2(Q ku k +Q k+1u k+1) and ∆u = u k+1 �u k,
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and incorporating the constraints (5), we obtain the mixed linear complementarity

problem
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0  z ? w � 0, (6)

where w is a slack variable, λλλ and z give the average constraint impulses over the

time step, and

M̂
k
⌘ M �

h

2

∂f k

∂u
�

h2

4

∂f k

∂q
Q k+1 and f̂

k
⌘ f k �

1

2

∂f k

∂u
u k +

h

4

∂f k

∂q
Q ku k.

The complementarity condition for unilateral constraints is enforced by 0  z ?
w � 0. A more detailed explanation of this formulation can be found in [27].

A single solve of (6) is required to determine u k+1 for each semi-implicit inte-

gration step. A fully implicit integrator (not currently implemented in ArtiSynth)

would require (6) to be applied iteratively at each time step.

It should be noted that other integration schemes can result in same system as

(6), only with different values for M̂
k

and f̂ k. For example, for the first order semi-

implicit Euler scheme, we have

M̂
k
⌘ M �h

∂f k

∂u
�h2 ∂f k

∂q
Q k+1 and f̂

k
⌘ f k �h

∂f k

∂u
u k,

while for the explicit forward Euler scheme we have M̂
k
⌘ M and f̂

k
⌘ f k.

For finite element models, the localized stiffness and damping matrices are em-

bedded within ∂f k/∂q and ∂f k/∂u , which means that for models dominated by FEM

components M̂ will have an FEM sparsity structure.

4.3 Friction, damping, and stabilization

Coulomb (dry) friction can be added to system (6) by including extra constraints that

create frictional forces along directions tangent to the contact points. A linearized

friction cone [4, 27] can be created that provides an arbitrarily accurate friction

approximation (depending on the number of facets in the cone), but results in a sys-

tem of equations that is no longer positive-semidefinite and must be solved using

techniques such as Lemke’s algorithm [13] which are difficult to implement in a nu-

merically robust way. Box friction [21] is a more approximate model that assumes

the magnitudes of the contact normal forces are known a-priori (typically from the

previous solve step), but adds at most two extra constraints per contact point to (6)

and can be solved using relatively robust pivoting methods such as Keller’s algo-
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rithm [21]. Since Coulomb friction effects in our models tend to be small, ArtiSynth

currently implements the numerically simpler box friction, applying it as a post-hoc

correction to u k+1 (in a manner similar to [30]), using a simplified version of (6),

with M instead of M̂ .

Different forms of viscous damping are available, including translational and ro-

tary damping applied directly to particles and rigid bodies, and damping terms em-

bedded in point-to-point springs and muscle actuators. For FEM models, Rayleigh

damping is available, which takes the form

D F = αM F +βK F ,

where M F is the portion of the (lumped) mass matrix associated with the FEM

nodes and K F is the (instantaneous) FEM stiffness matrix. D F is then embedded

within the overall system matrix ∂f/∂u .

In addition to solving for velocities, it is also necessary to correct positions to ac-

count for drift from the constraints, including interpenetrations arising from contact.

This can be done at each time step using a modified form of (6) which computes an

impulse δq that corrects the positions while honoring the constraints:

0

B

@
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k
�G kT �N kT

G k 0 0

N k 0 0

1

C

A

0

@

δq

λλλ
z

1
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0

@

0

0

w
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A ,

0  z ? w � 0, (7)

where δδδg and δδδn are the constraint displacements that must be corrected. If the

corrections are sufficiently small, it is often permissible to use M in place of M̂
k
,

which improves solution efficiency since M is constant and block-diagonal.

While such stabilization can sometimes be incorporated directly into (6) [3], we

prefer to perform the position correction separately as this (a) allows for the possibil-

ity of an iterative correction in the case of larger errors, and (b) explicitly separates

the computed velocities from the impulses used to correct errors.

4.4 System solution and complexity

For notational convenience, in this section we will drop the k superscripts from M̂ ,

G , N , g , n , and f̂ in (6) and assume that these quantities are all evaluated at time

step k.

System (6) is a large, sparse mixed linear complementarity problem [13] that is

not particularly easy to solve, given the unilateral constraints and the fact that M̂

is not block diagonal. If M̂ is symmetric positive definite (SPD), it is equivalent to

a convex quadratic program. If there are no unilateral constraints (N = /0), then it

reduces to a linear Karush-Kuhn-Tucker (KKT) system.
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Generally, M̂ is symmetric (unsymmetric terms sometimes arise from rotational

effects but these are usually small enough to ignore) and hence will also be SPD for

small enough h (since M is SPD). However, the resulting system is still harder to

solve than non-stiff multibody systems where M̂ = M . This is because M̂ , while

still sparse, is not block-diagonal. Multibody systems are often solved using the pro-

jected Gauss-Seidel method [21]. However, this involves a sequence of iterations,

each requiring the computation of G iM̂
�1

G T
i or N iM̂

�1
N T

i , which is easy to do

for a block-diagonal M but much more costly for M̂ .

At present, ArtiSynth solves (6) by using a Schur complement to turn it into a

dense regular linear complementarity problem

N̄A�1N̄
T

z + N̄A�1b �n = w

0  z ? w � 0 (8)

where

A ⌘

✓

M̂ �G T

G 0

◆

, N̄ ⌘
�

N 0
�

, b ⌘

✓

Mu k +hf̂

g

◆

.

which is solved using Keller’s algorithm [21]. u k+1 and λλλ can then be obtained

using back-substitution:

✓

u k+1

λλλ

◆

= A�1
⇣

b + N̄
T

z
⌘

. (9)

Keller’s algorithm is a pivoting method with an expected complexity of O(m3),
where m is the number of unilateral constraints. In addition, forming (8) and back-

solving (9) requires m+ 1 solves of a system involving A . This is done using the

Pardiso sparse direct solver [28], and entails a once-per-step factoring of A , plus

m+1 solve operations. Experimentally, we have determined that the complexity of

factoring A (using Pardiso) for 3D FEM type problems is roughly O(n1.7), where n

is the size of A . Similarly, we have also determined that the complexity of solving

a factored A is roughly O(n1.3). Hence we can expect the overall complexity for

solving (6) to be

O(m3)+mO(n1.3)+O(n1.7).

This works well provided that the number of unilateral constraints m is small. To

help achieve this, we can sometimes treat the unilateral constraints arising from

contact as bilateral constraints (i.e., entries in G ) on a per-step basis, as described

further in Section 4.7.

4.5 Attachments between bodies

In creating comprehensive anatomical models, it is often necessary to attach various

bodies together. Most typically, this is done by connecting points of one body to
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Fig. 15 Simulation results of bodies falling under gravity illustrating the effect of node-based

dynamic attachments between bodies.

specific locations on another body. For example, particles or FEM nodes may be at-

tached to particular spots on a rigid body, or to other nodes or elements of a different

FEM model (Figure 15).

To facilitate this, ArtiSynth provides the ability to attach a dynamic component

to one or more master components3. Let the set of attached components be denoted

by β, and the remaining set of unattached active components be denoted by α. In

general, the velocity u j of an attached component is related to the velocities uα of

the active components by a locally linear velocity constraint of the form

u j +G jαuα = 0. (10)

G jα will be sparse except for entries corresponding to the master components to

which j is attached. Letting Gβα denote the matrix formed from G jα for all attached

components, we have

Iuβ +Gβαuα = 0

for the constraints that enforce all attachments.

We could simply add these constraints to (6) and solve the resulting system,

but this would increase both the system size and solution time. Instead, we can

exploit the special form of (10) to actually reduce the size of (6). Consider first

the subsystem involving only bilateral constraints. As in Section 4.4, we drop the

k superscripts from M̂ , G , g , and f̂ in (6) and assume that these quantities are all

3 The case of multiple masters arises if we connect a particle to an FEM element, in which case

each of the elements’ nodes acts as a master of the particle.
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evaluated at time step k. Letting b ⌘ Mu k + hf̂ and partitioning the system into

active and attached components yields
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The identity submatrices make it easy to solve for uk+1
β and λλλβ:
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and hence reduce the system to
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where

M̂
0
⌘ PM̂P T , G 0 ⌘ GP T , b 0 ⌘ Pb , with P ⌘

⇣

I �GT
βα

⌘

.

Similarly, unilateral constraints can be reduced via N 0 = NP T . The reduction

operation can be performed in O(n) time and results in a system that is less sparse

but generally faster to solve than the original.

4.6 Kinematic control

It is possible to control selected dynamic components kinematically, so that their

velocities are explicitly specified by an external source (such as a probe). The forces

acting on kinematically controlled components then become the unknowns that are

solved for. This is useful in situations where certain parts of a system’s movement

are known a priori and we wish to determine the response of the rest of the system.

In particular, it provides an easy way to include experimentally recorded kinematic

data in a simulation. A dynamic component can be made kinematic by setting its

dynamic property to false.

The solution for a system containing kinematic components is arranged as fol-

lows. Let the set of active components be denoted by α, and the let the kinematic

components be ρ. As in Section 4.5, we consider first only bilateral constraints, and

partition (6) between α and ρ to obtain:
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Since vρ is given, we can reduce the system to
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Gα 0
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=
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.

and then solve for fρ as

fρ = Mραvα +Mρρvρ +GT
ρ λλλ

A similar reduction can be applied to unilateral constraints, and an analogous,

though more complex, formulation works in the presence of attachments.

4.7 Contact handling

t = 0s t = 0.25s t = 0.5s

Fig. 16 Time sequence of contact handling between two deformable models falling under gravity,

showing the intersection contours (yellow) and the contact normals (green lines).

Collision detection can be enabled between any combination of rigid or de-

formable bodies. It is assumed that the bodies in question contain a triangular sur-

face mesh that is both closed and manifold. A bounding-box hierarchy is used to

determine if any two surfaces meshes intersect. If they do, then a tracing algorithm

(similar to [1]) is used to compute all the intersection contours between the two

meshes as shown in Figure 16. Such contour tracing can be done relatively quickly

but does require the use of robust geometry predicates similar to those in [16]; this

is particularly true because collision conditions tend to drive the contacting surfaces

into degenerate mesh configurations.
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Determining the intersection contour allows us to create a set of constraints for

correcting the interpenetration and preventing interpenetrating velocities. For rigid

bodies, this is done by fitting a plane to each contour, projecting the contour onto

this plane, and then sampling the vertices of the projection’s 2D convex hull to

create individual contact points, using the planar normal as the contact normal. For

deformable bodies, contact constraints are generated for each interpenetrating node

as described in [37]. The intersection contour can also provide an estimate of the

contact area, which can be used for determining contact pressure.

As mentioned in Section 4.4, the solution time of (6) can be greatly improved if

some contact constraints can be temporarily treated as bilateral constraints within

a particular time step. By default, ArtiSynth does this for contact involving de-

formable bodies, since such bodies have many degrees of freedom and their con-

tact constraints tend to be somewhat decoupled. To prevent sticking, each contact’s

vertex-face pair is stored between time steps, and if it reappears in the next step, it

is used as a contact constraint only if its corresponding λλλ value computed in (6) is

� 0, implying that there is no force trying to make it separate. This is effectively an

active set method, with the active set used to solve (6) being updated between steps.

4.8 Physics engine summary

The ArtiSynth physics engine, using the trapezoidal integrator, is summarized be-

low. It is applicable to most second-order mechanical systems which use a La-

grangian representation of component state. For other ArtiSynth integrators, the

structure is similar.

1. Compute contacts (as per Section 4.7) and the bilateral and unilateral con-

straint matrices G k and N k.

2. Correct positions q k to remove interpenetration and drift errors, using (7).

3. If necessary, adjust G k and N k to reflect changes in q .

4. Solve for u k+1 using (6).

5. Adjust velocities u k+1 for dry friction, as described in Section 4.3.

6. Compute new positions: q k+1 = q k +h/2(Q k+1u k+1 +Q ku k).

4.9 Interfacing the physics engine to ArtiSynth

The physics engine is implemented by the class MechSystemSolver, which is in-

voked by the advancemethod of mechanical models (Section 2.5) to advance them-

selves forward in time.

To communicate with the solver, these models must implement the interface

MechSystem (Figure 17), which provides the quantities needed for computing the

simulation, including those found (6), and then setting the resulting state. Simulation
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quantities include state, mass, forces, force Jacobians, and constraint information.

The MechSystem interface provides a clean separation between the physics simu-

lation and the ArtiSynth component structure, allowing the possibility for new and

different simulation mechanisms to be used in the future.

Fig. 17 ArtiSynth mechanical models, such as MechModel and the basic FEM model FemModel,

must implement MechSystem, shown partially here.

5 Inverse simulation

ArtiSynth provides inverse simulation capabilities that compute muscle activations

required for a forward-dynamics model to track a prescribed kinematic task. This is

a useful feature as it is often difficult to reliably measure muscle activations experi-

mentally, or to estimate activations by hand for a particular model. In our trajectory-

tracking formulation, muscle activations are determined using a quadratic program

that minimizes the errors for a desired movement goal while resolving motor re-

dundancy at each integration time step. The description here is based on material in

[31], Chapter 4.

For inverse simulation, the mechanical system forces are divided into passive and

active components, so that

f = f p(q ,u , t)+ f a(q ,u ,a(t))
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where q and u are the position and velocity state vectors and a is a vector of muscle

activation levels (bounded between 0 and 1). We assume that f a is locally linear with

respect to a (which is true for a standard Hill-type muscle model), so that

f a = Λ(q ,u)a ,

where Λ is a matrix.

At present, inverse simulation in ArtiSynth is currently only supported for sys-

tems with bilateral constraints4. The velocities u k+1 and constraint impulses λλλ can

be determined from (6), which reduces to a linear system since we are not consider-

ing unilateral constraints:

 

M̂
k
�G kT

G k 0

!

✓

u k+1

λλλ

◆

=

 

Mu k +hf̂
k
+hΛka

g k

!

. (12)

We wish to determine a at the beginning of each forward-dynamics integration

time step so as to track a movement goal. The movement goal is specified by a target

velocity v ⇤ in a target velocity space v that is related to the system velocities u via

a Jacobian matrix J m, so that v = J mu . For time step k+ 1, it is easy to see from

(12) that u k+1 is linear with respect to a , so that

u k+1 = u 0 +H ua ,

where u 0 is the solution of u k+1 for (12) with a set to zero, and each column j of

H u is the solution of u k+1 for (12) with a right hand side of

✓

Λke j

0

◆

, e j ⌘ elementary unit vector. (13)

We minimize the velocity tracking error kv ⇤�J mu k+1k, which can be expressed in

quadratic form as

φm(a)⌘
1

2
kv̄ �H mak2, (14)

with

v̄ ⌘ v ⇤�J mu 0 and H m ⌘ J mH u.

For some applications, such as computing muscle activations to generate a pre-

scribed bite force with a dynamic jaw model (as done in [33]), we may also wish

to specify a constraint force target ξξξ that is related to the constraint impulses λλλ via

a Jacobian matrix, J c, so that hξξξ = J cλλλ. We minimize the constraint force tracking

error khξξξ�J cλλλk, which can be expressed as

φc(a)⌘
1

2
kλ̄λλ�H cak2, (15)

4 The addition of unilateral constraints leads to a more complex mathematical programming prob-

lem with complementarity constraints (MPCC).
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with

λ̄λλ ⌘ hξξξ�J mλλλ0 and H c ⌘ J cH λ,

where λλλ0 and H λ are computed in a similar manner as described for u 0 and H u.

To resolve activation redundancies, we also include a weighted l2�norm regu-

larization term, 1
2
a T Wa , where W is a diagonal weighting matrix.

Combining the movement and constraint force goals, regularization, and muscle

activations bounds, we arrive at the following quadratic program:

min
a

wmφm(a)+wcφc(a)+
wa

2
a T W�1a

subject to 0  a  1, (16)

where wm, wc, and wa are weights used to trade off between cost terms. This for-

mulation can be extended to include optimizations over other biologically relevant

variables, such as stiffness or metabolic energy.

The optimization program (16) is solved at the beginning of each time step, using

a special built-in Controller (Section 2.5), in order to determine the activations to

be used in the forward dynamics simulation. The ArtiSynth system solver is used

to compute v̄ , H m, λ̄λλ, and H c. The resulting quadratic program is dense but tends

to be small since its dimension is the size of a , i.e. the number of activations being

solved for. The quadratic program is also convex, which means it can be solved as a

linear complementarity problem, which is done using the ArtiSynth implementation

of Keller’s algorithm [21].

The inverse simulation tools in ArtiSynth have been used to investigate muscle

driven muscular-hydrostat motions in 3D models of an idealized tentacle and a hu-

man tongue [34], as illustrated in Figure 18.

6 Biomechanical Models in ArtiSynth

ArtiSynth has been used to produce a number of biomechanical models and associ-

ated studies, mostly focused on the oral and upper airway region.

6.1 Coupled Face-Jaw-Tongue-Hyoid models

One of the first models to be created in ArtiSynth was a 3D multibody jaw-hyoid

model used to study dynamics and joint loading during chewing [17] (Figure 19,

left). The model was also used to simulate surgical resection and reconstruction of

the jaw and investigate post-operative deficits [18] and rehabilitation strategies [33]

(Figure 19, center). The jaw-hyoid model was adapted with medical imaging data

and combined with a 3D FEM tongue model [10] to create a dynamically coupled

jaw-tongue-hyoid model representing the anatomy of a specific subject [37] (Fig-
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t = 0s t = 0.5s t = 1s

Fig. 18 Time sequence of forward-dynamics simulation results for bending motion of a tentacle

(upper panels) and elevation of the anterior tongue (lower panels) created using the tracjectory-

tracking controller. Cyan spheres indicate the target motion of nodes at the model’s tip. Output

muscle fiber activation levels are indicated by line color (white = 0%, red == 100%).

Fig. 19 Craniomandibular models in ArtiSynth: multibody jaw-hyoid model (left), reconstructed

hemimandibulectomy model (center), coupled jaw and FEM tongue model (right).

ure 19, right). This model was used to simulate stress and strain within the tongue

during speech postures (Figure 20), in order to investigate the biomechanical ba-

sis for categorical speech articulation variability in the context of English /r/ pos-

tures [32].
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Fig. 20 Strain plots of tongue deformation during simulation of speech postures with the coupled

jaw-tongue-hyoid model.

An extension of the jaw-tongue model to include the face and lips is currently in

progress [36] and is being used to create forward-dynamics simulations of speech

articulation [35] (Figure 21, see also www.artisynth.org/orofacial/).

Fig. 21 Oblique (upper panels) and sagittal cut-away (lower panels) views of dynamic simulation

of face-jaw-tongue movements for speech vowel postures.
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6.2 Comprehensive upper airway model

Efforts are continuing to create a comprehensive, integrated model of upper airway

anatomy, including the soft palate, pharynx, and larynx, for a variety of medical and

research purposes. Preliminary versions of these models are depicted in Figure 22

and further details can be found at www.artisynth.org/opal.

Fig. 22 Comprehensive upper-airway models under development with ArtiSynth: front and back

views of a hyolaryngeal model with FEM models of the extrinsic laryngeal muscles (left, center),

an FEM model of the soft-palate coupled to the tongue and skull (right).

6.3 Dental contact models

Our original multibody jaw-hyoid model used simple planar tooth contact [17]. We

are working on more detailed models of tooth contact (Figure 23) using the mesh-

based contact handling in ArtiSynth, as discussed in Section 4.7.

6.4 Whole-body and limb musculoskeletal models

While our modeling efforts to date have primarily targeted head and neck anatomy,

where the need for tight coupling of rigid and deformable tissues is readily appar-

ent, the simulation techniques in ArtiSynth are generally applicable to a wide range

of biomechanical systems. Figure 24 shows a simple lower limb musculoskeletal

model from the OpenSim platform [15] that has been loaded in ArtiSynth. One of

our primary research directions is to use the ArtiSynth toolkit to expand the state-
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Fig. 23 Contact detection and handling in ArtiSynth for dynamic simulation of tooth contact with

digital dental casts (left); close up view of tooth contact (right). Magenta lines show the contours

of contact regions and blue lines show reaction forces.

of-the-art in whole-body musculoskeletal models with rigid (or small deformation)

skeletal structures coupled with large deformation FEM muscle and tendon models.

7 Future Directions and Conclusion

Development of ArtiSynth is ongoing in several areas. We continue to work on the

physical simulation, with a focus on finding faster solution methods for (6); one

possible approach involves using a hybrid direct-iterative solver. We also intend

to expand the set of available components to include shell elements, new materials,

and Lagrangian fluid simulation based on smoothed particle hydrodynamics. Further

work is also planned for the inverse simulation, extending it to include more general

targets such as desired stiffnesses and FEM surfaces.

ArtiSynth provides the biomedical research community with a highly interactive

platform for creating models of anatomical structures that combine multibody and

FEM models, together with contact and constraints. The open source framework

allows for the easy introduction of novel custom components and the integration

of cutting edge simulation algorithms. The system’s effectiveness has been demon-

strated for a variety of applications centered on the functional anatomy of the oral

region and upper airway. Expected future applications include the development of

general musculoskeletal models and a comprehensive model of swallowing behav-

ior.

The system is freely available for research purposes from www.artisynth.org,

and new collaborations with other parties are welcome.
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t = 0s t = 0.5s t = 1s

Fig. 24 Arm26 model from OpenSim [15] implemented in ArtiSynth, showing flexion simulation

with activation of biceps brachii long head (denoted in yellow).
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2. Jérémie Allard, Stéphane Cotin, Francois Faure, Pierre-Jean Bensoussan, Francois Poyer,
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