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ABSTRACT
Typical educational robotics approaches rely on imperative pro-
gramming for robot navigation. However, with the increasing pres-
ence of AI in everyday life, these approaches miss an opportunity
to introduce machine learning (ML) techniques grounded in an
authentic and engaging learning context. Furthermore, the needs
for costly specialized equipment and ample physical space are bar-
riers that limit access to robotics experiences for all learners. We
propose ARtonomous, a relatively low-cost, virtual alternative to
physical, programming-only robotics kits. With ARtonomous, stu-
dents employ reinforcement learning (RL) alongside code to train
and customize virtual autonomous robotic vehicles. Through a
study evaluating ARtonomous, we found that middle-school stu-
dents developed an understanding of RL, reported high levels of
engagement, and demonstrated curiosity for learning more about
ML. This research demonstrates the feasibility of an approach like
ARtonomous for 1) eliminating barriers to robotics education and
2) promoting student learning and interest in RL and ML.
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1 INTRODUCTION
Middle school students regularly use artificial intelligence (AI) and
machine learning (ML) technologies through applications such as
virtual assistants, social media algorithms, and game-playing AIs
[5, 34]. Even so, engagement with these everyday technologies
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does not necessarily translate to confirmed understanding—or even
awareness—of AI and ML [22, 23]. Furthermore, the complexity of
the technology can make it intimidating to learn and difficult to
reason about [6]. This public knowledge gap has led researchers
and educators to begin advocating for and studying AI and ML
education for young learners [36, 52]. In addition to supporting
the development of contemporary computational literacy, AI, ML,
and (closely related) data science education can foster critical en-
gagement with data and complement existing programming-centric
computing education tools and curriculum [32].

Robotics is currently a common entry point to computing. With
over 679,000 students in 110 countries participating in FIRST ro-
botics programs in 2019–2020 [27], some U.S. school districts (e.g.,
in the St. Vrain Valley of Colorado) adopting robotics programs
district-wide [31], and numerous robotics kits on the market (e.g.,
Sphero [48], LEGO Mindstorms [51], and Cue Robot [57]), robot-
ics has a proven track record for engaging students in computing.
However, although robotics is widely used in STEM education,
the cost of specialized hardware and kits—often on the order of
thousands of dollars for a classroom set—can inhibit broader reach
[38]. Additionally, learning about robotics with today’s educational
robotics products typically requires purchasing ordinary computers
or tablets in addition to this specialist hardware. This combination
can make robotics too expensive for economically-disadvantaged
communities, exacerbating inequities that already exist in comput-
ing education [38].

Further, while the state-of-the-art in professional robotics makes
heavy use of AI andML (a subset of AI that learns or improves based
on an algorithm), current practice in K–12 robotics education lags
behind this standard, reflecting an era that predates widespread AI.
Integrating ML into robotics programming can enable learners to
create closed-loop, robust systems that are capable of autonomously
navigating new environments without tedious manual changes.

Robotics also presents a domain that is a natural fit for exploring
reinforcement learning (RL), a type of ML in which agents learn
from interactions with their environment that is often leveraged in
robotics contexts (see Section 2.3 for a detailed explanation) [45, 50].
Critically, this type of ML has been less studied in the AI education
space than other ML approaches (e.g., supervised learning), but we
conjecture that it is comparatively easy to understand. Incorporat-
ing RL into educational robotics would contribute to efforts in AI
education to engage learners in rich (i.e., flexible and adaptive) and
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authentic (i.e., reflective of professional robotics) computational
learning experiences while contributing to our understanding of
K–12 education surrounding less-studied types of ML.

In our work, we leverage RL to create a robotics education experi-
ence for middle school students (ages 11–14) that increases student
awareness of AI/ML, addresses barriers to wider implementation,
and tests our conjecture that young learners can develop a con-
ceptual understanding of this type of ML. Specifically, we present
ARtonomous, a youth-friendly, tablet-based tool for learning about
and generating reinforcement learning models for robot navigation.
This system supports use with purely virtual robots, which can fos-
ter users’ engagement with robotics without the startup overhead
of purchasing robotics kits. Further, the autonomous navigation
models are closed-loop, flexible, and abstracted, reflecting the data-
driven approaches of cutting-edge robotics. These models can be
used in our app in concert with user-programmable event callbacks
that interface with the robot, allowing the user to customize robot
behavior at specific navigational waypoints in the program. With
this approach, we introduce young people to additional technical
understanding and competencies for our increasingly technological
world while eliminating the specialized hardware costs of physical
robots.

In this paper we present the following main contributions:
(1) ARtonomous, a low cost, high engagement robotics educa-

tion tool that helps learners explore reinforcement learning
and bridges the gap between educational and professional
robotics

(2) A user study evaluating how such a tool can help students
develop an understanding of reinforcement learning, posi-
tively engage with the content, and build a curiosity toward
machine learning more broadly

Overall, we show that accessible and approachable reinforcement
learning can bridge the gap in data-driven approaches between ed-
ucational and state-of-the-art robotics. Furthermore, implementing
such a system on general purpose hardware using virtual robots
can reduce the cost of participation while still yielding high engage-
ment. Our evaluation demonstrates that ARtonomous effectively
introduces reinforcement learning concepts, supports student en-
gagement, and inspires interest among middle school students in
learning more about reinforcement learning and machine learning.
Finally, we speculate about how the projection of virtual robots
into users’ physical environments using augmented reality (AR)
could further enrich the impact of tools like ARtonomous.

2 RELATEDWORK
Over the past several decades, there have been countless physical
robotics tools ranging from modular kits to pre-constructed robots
geared at introducing middle-school students to computing via a
hands-on, project-based approach [7, 10]. While these tools are
successful in introducing users to programming, they do present
cost challenges and very few offer access to the autonomy that is
increasingly present in professional robotics technologies. Here
we describe the potential for virtual robots in addressing these
cost challenges, opportunities for machine learning in robotics
education, and existing efforts and open avenues of inquiry in
middle school machine learning education.

2.1 Addressing Cost Constraints with Virtual
Robotics

With a typical robotics kit costing in the hundreds of dollars and
a classroom set in the thousands (see Table 1), the cost of robotics
tools can present a barrier to entry for educational institutions
[14], especially for learners of lower socio-economic status. These
robotics tools also usually need to be accompanied by tablets or
computers used to write the code to control the bots and enough
dedicated physical space in which to operate them [25], further
increasing barriers to implementing robotics tools into school cur-
riculum.

Prior work demonstrates that educational robotics tools need
not necessarily be expensive. Some research has shown how very
motivated learners with expert teachers can re-purpose surplus
technology to support robotics education [9]. Further, lower priced,
maker-oriented robotics tools can also provide entry points to ro-
botics (e.g., Sparkfun’s micro:bot system), though with fewer ca-
pabilities than more expensive products. Nonetheless, the high
cost of common educational robotics products leads us to wonder
if new robotics education technologies that heavily leverage the
capabilities of general purpose computing devices [4] can lower
economic barriers to entry while cultivating interest and knowl-
edge development that could scaffold [43] deepened participation
over time.

Virtual approaches for educational robotics remove the need for
costly peripherals on top of the required computer or tablet, thereby
making robotics more accessible while still successfully engaging
students with key ideas in STEM [8, 21, 24, 56]. AR functionality
has the potential to take this engagement and learning even further
[13, 16], yet AR-robot integration to date focuses on entertainment
[41], communication [53, 54], or debugging features for physical
robots [2, 12], rather than on hardware alternatives for education.
We therefore aim to lower the cost barrier to educational robotics
while still encouraging high engagement by incorporating virtual
robots driven by general purpose computing devices.

2.2 Autonomy in Robotics Education
Typical robotics kits utilize motor-powered wheels for movement
(e.g., mBot [37] and LEGO Mindstorms Robot Inventor [51]). These
systems allow users to specify specific amounts of time or distances
to move, but using these products on different surfaces (e.g., carpet
or tile) can lead to substantially different distances actually traveled
due to varying degrees of friction. Users can address these inconsis-
tencies by modifying their code for use in different environments,
but this approach allows for only short-term fixes and remains
inflexible to changes in route.

Critically, this environmental rigidity is inconsistent with state-
of-the-art robotic systems that automatically adapt to changing
environments, presenting an opportunity for the introduction of
machine learning techniques. To date, navigation of unknown set-
tings in educational robotics relies on information gathered from
sensors, but few educational robotics tools enable learners to cre-
ate autonomous navigation control systems. The DJI RobotMaster
S1 uses an on-board camera to acquire location information (e.g.,
distance from a potential barrier) and will continue to move un-
less within a specified distance of an obstacle. The S1 can then
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Cost per Unit Cost for Classroom Set (12) Cost for 5 Sets
Makewonder Dash $149.00 $1,788.00 $8,940.00
Sphero Bolt $149.00 $1,788.00 $8,940.00
Sphero RVR $249.00 $2,988.00 $14,940.00
LEGO Spike Prime $359.95 $4,319.40 $21,597.00
LEGO Mindstorms Robot Inventor $359.99 $4,319.88 $21,599.40
DJI RoboMaster S1 $549.00 $6,588.00 $32,940.00

Table 1: The price for individual and classroom sets of popular educational robotics kits in U.S. dollars. 12 units per classroom
was selected based of the average middle school class size (24.9) in the United States for teachers in departmentalized instruc-
tion [26] and the assumption of students working in pairs. This would be a bare minimum and require disassembly between
class periods. The last column shows cost for a teacher with five classes who does not want to lose time to disassembly.

rotate, attempting to locate a safe direction to head, although this
decision-making is still contingent on user programming [19].

We envision new educational tools that empower learners to
create even more autonomous systems, with projects that get from
point A to point B without relying on fine-grained, route-specific
programming of the steps in between. Robotics tools that enable
novices to build autonomous navigation systems with ML can in-
crease the resiliency and authenticity of what they can create, sup-
port AI education (e.g., about RL), and offer rich contexts to inte-
grate ML with programming (such as to respond dynamically to
events that arise during a robot’s autonomous navigation).

2.3 Middle School Machine Learning Education
In recent years, researchers have begun to explore introducing K–
12 students to machine learning topics and to develop curricular
objectives to this end [36, 52]. From these K–12 AI literacy objec-
tives, we can identify the importance of supporting learners in
building a mental model of the algorithm’s inputs, representations,
and decision-making processes and understanding what learning
means for a machine, including the role of data and of the human
[36, 52].

Existing machine learning education tools for K–12 tend to focus
on the use [40, 42] or construction [1, 20, 33, 61, 62] of classifiers. In
cases where students create their own classifiers, they typically do
so via supervised learning, and once created, these classifiers can
be used within code in common block-based programming environ-
ments [1, 20, 33, 61] or operate independently from programming
tools altogether as standalone tools for gesture recognition [62].
While using these systems, some learners enacted engineering
practices that distinctly encapsulated modeling and programming
practices: separately writing code and training models, then inde-
pendently testing each type of product, before integrating their
models and code within their Scratch games [61]. Those results
inform a key aim of the present system and study: creating new
tools that can help students learn to recognize and apply the com-
plementary capabilities of ML and programming within robotics
systems.

Few tools for K–12 AI education exist that go beyond using
or creating supervised learning classifiers, although those that do
explore the teaching of k-means clustering, a form of unsupervised
learning [55] or generative adversarial networks (GANs) [3].

Reinforcement learning (RL) is another genre of machine learn-
ing in which computational agents learn from interactions with

their environment [50]. Like in supervised learning, RL agents re-
ceive feedback as they learn. However, the kind of feedback they
receive differs. In supervised learning, ML algorithms are provided
with correct information about what they should have predicted,
typically coming from a human-annotated dataset. In RL, the learn-
ing algorithm still receives feedback, but rather than gaining in-
formation about what the system’s correct action (i.e., prediction)
should have been, the system receives only a positive or negative
reward that it uses to inform future decisions.

Critically, RL is frequently used in research on autonomous sys-
tems, including in robotics [45], self-driving cars [46], and game-
playing AIs [47]. At every step, these agents choose an action to
take from the action space given the current input, receive some
reward or penalty from their environment based on that action,
and learn how to take better actions in the future based on the
reward/penalty that they received [50].

Despite the importance of robotics to middle school comput-
ing education and the role of RL in state-of-the-art robotics, little
research to date has described tools and methods for introducing
RL to middle school students, in the robotics context or other-
wise, although some such systems exist for adult users [35, 39].
Notably, Zhang et al. recently published an RL robotics system that
shares in our goal of helping students better understand and train
robots [59, 60]. This work includes a pilot assessment of student
engagement and learning that demonstrates satisfactory learning
outcomes [60]. However, unlike our platform, this tool focuses on
training physical robots (LEGO Spike Prime; see Table 1 for cost)
and targets high school students as users [60].

We view the training of robotic control systems and the integra-
tion of those RL models with code as essential practices for future
robotics education. Therefore, building on prior work, we add RL to
middle school students’ robotics construction toolbox in a manner
that develops students’ understanding of RL, inspires engagement,
and motivates curiosity to learn more.

3 SYSTEM DESIGN & IMPLEMENTATION
We developed ARtonomous, an iPad application to bring RL into
middle school robotics. This two-part learning tool allows students
to first train RL models for autonomous virtual robot navigation
and then write imperative code that interfaces with these models
to handle specific events.
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Figure 1: Left: From the track dashboard, students can create new tracks, test on an existing track, train on an existing track,
or select a track to view training details. Right: On the training detail page users can view overlays showing the paths and end-
points of each episode on the selected track, along with a list of episodes and their overall reward. Users can select individual
episodes to replay.

3.1 Design and Learning Objectives
Based on prior work and our aforementioned research objectives,
we aimed to create a low-cost, high engagement robotics experience
that helps learners explore AI/ML. Our system design therefore
needed to 1) leverage virtual robots to run entirely on a general-
purpose device (i.e., an iPad) and eliminate the cost of peripherals
and 2) support the creation of RL autonomous navigation models
to introduce key ideas in machine learning. Additionally, we aimed
to make it easy to get started with this autonomous navigation
approach by creating introductory teaching materials that we used
within this study to orient participants.

Similarly, based on prior ML education systems research [20, 62]
and curricular frameworks [36, 52], we aimed to support learning
objectives pertaining to developing understanding of and curiosity
for RL. Specifically, students should:

• develop a fundamental understanding of RL (e.g., understand-
ing episodes, rewards, and penalties) while also engaging
with coding fundamentals

• use a combination of quantitative performance metrics and
qualitative observations to find problems with individual
models and generate ideas for how to fix them

• be able to identify which problems in robotics might be
solved with code and which might be solved with RL

• use their experiences to develop a broader understanding or
curiosity around RL and ML systems outside robotics

3.1.1 From Vision to Prototype. In our present work, we created
a system to investigate the feasibility, usability, and excitement
generated by the core ideas of these design and learning objectives:
individual students use a tablet to trace a route for a robot, itera-
tively train an RL model for a virtual robot to navigate that route,
and then write code to control how the virtual robot behaves at way-
points along its route. The complete system has two components,

the ARtonomous model training application and the ARtonomous
programming tool.

3.2 ARtonomous Model Training Application
With the ARtonomous model training application, users train RL
models for virtual autonomous vehicles through an iPad-based
interface that connects to a remote server for model training.

3.2.1 iPad Model Creation. We developed the iPad application in
Swift for iOS 14. In the app, students begin by creating a robot (i.e.,
a model) and giving it a name (e.g., School Bus). From the main
track dashboard, students can draw tracks on which they can both
test their current robot model and train their robot model for a
specified number of episodes (see Figure 1, Left). Using those tracks,
students engage in a process of iterative model improvement by
training their robot model on a selected course, testing that robot
on the target course, identifying points for improvement based on
that testing, and training again on another track to address those
key points. Users can also select an individual track to replay sim-
ulations of past training episodes, view visualizations of training
progress over time (see Figure 1, Right)—including on-course over-
lays of the robot’s path in prior episodes and endpoints for every
episode—or select an episode to see overlay visualizations just for
that run. We included these visualizations to aid the development
of mental models of the algorithm’s decision making processes
(e.g., state, action, and reward), and we envisioned the iterative
model development process would highlight the impact and role of
humans in model training [36, 52].

3.2.2 Reinforcement Learning Environment and Model. Whenever
the student elects to train the robot model, the iPad application
communicates with a model training server. This server sets the
training environment to the track the student selected and runs
a reinforcement learning algorithm to update the model, sending
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Figure 2: The ARtonomous programming tool’s joint model-code interface allows participants to view their objective and
function library, write code, and run simulations that call that code all in one place.

training information (e.g., path of the robot and action/reward for
each time-step) back to the iPad as episodes are completed.

We created the RL capabilities of the system using an adaptation
of the OpenAI car racing environment [11], with modifications to
decrease training time and improve comprehensibility [58]. This
modified environment has a discrete action space with five possible
actions (accelerate, brake, left, right, and no change), added func-
tionality for custom tracks, and a new reward function. In addition,
we included a simplified scalar grayscale observation space and
an expansion to that observation space to include multiple frames
(to see velocity and acceleration, not just position), although these
changes are purely to speed up model training and are not visi-
ble in the user-facing rendering of training or simulations. Model
training used the PPO2 algorithm from StableBaselines with a CNN
policy, modified to include an episode termination callback that
sent episode information via the server back to the iPad application
[30].

3.3 ARtonomous Programming Tool
We envision a future of machine learning integrated into robot-
ics education, creating an experience where student activity is a
synthesis of programming and machine learning model creation.

Therefore, while students use machine learning to train models that
drive the robot, they can also practice their coding skills to mod-
ify other parts of the robot’s behavior. At any point in the model
training process, users can switch to a programming interface to
write event-driven code for their bot. This ability to switch back
and forth between model creation and programming captures the
iterative modeling and programming engineering concepts and
practices we aimed to foster, including recognizing and applying
the complementary capabilities of ML and programming within
robotics systems.

The ARtonomous programming tool was built for Swift Play-
grounds, a development environment for iPadOS and macOS that
supports custom tutorials. For example, Lego and Sphero offer Play-
ground “books” that allow users to program educational robots like
the Lego Mindstorms EV3 and Sphero. We similarly built on top of
Swift Playgrounds, developing a model-code interface and function
library for ARtonomous using Playgrounds’ built-in code compiler
and code editor.

This ARtonomous programming tool automatically loads the
most up-to-date version of the user’s model (retrieving it from
the server), allows them to select a course to run their model on,
and provides an interface for writing code to run in tandem with
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the model. The models integrate with Swift code via two types of
callbacks: built-in callback functions and user-defined waypoints.
Built-in callbacks are functions we have included in the Playground
Book (onStart(), onStep(), and onEnd()) that are called at their
respective times in model simulation execution. These functions
allow students to set up or clean up their robot environment (e.g.,
set the color of the car at the start of the run) or run repeating or
time-specific commands (e.g., flash lights on and off at every step).
User-defined waypoints, on the other hand, allow users to specify
specific locations on the course and then run a callback whenever
their agent reaches one of these waypoints. Finally, when writing
callback functions, users have access to a custom function library
we have created for these virtual robots. Using this library, students
can change the car’s color, beep the horn, flash its lights, load or
unload passengers, pause and resume driving, and more.

4 EVALUATION
We conducted a study to assess how well ARtonomous achieves
our learning and design objectives. Since this research occurred
during the COVID-19 pandemic, we conducted testing remotely
to protect the health of our participants. Therefore, using a virtual
robotics experience, we sought to answer the following research
questions pertaining to students’ developing understanding of RL,
engagement with the system, and curiosity about machine learning
more broadly:

(1) RQ1-Developing Understanding Does this virtual robot-
ics experience help students develop an understanding of
reinforcement learning?

(2) RQ2-Developing Understanding How do students using
this system learn to identify problemswith individual models
and generate ideas for how to fix them?

(3) RQ3-Developing Understanding Do the joint modeling
and coding capabilities build intuition around which prob-
lems in robotics might be solved with code and which might
be solved with reinforcement learning?

(4) RQ4-Engagement How engaging do students find the ex-
perience of using ARtonomous?

(5) RQ5-Curiosity After using ARtonomous, do students want
to learnmore about machine learning or reinforcement learn-
ing?

4.1 Participants
Two researchers conducted this study remotely via video conferenc-
ing softwarewith 15 participants aged 11–14 (M = 12.73, SD = 1.03;
6 female, 9 male). The researchers followed the same script and alter-
nated roles of facilitator and note-taker between participants. Each
session lasted 90 minutes. Participants were recruited from a school
for students with reading-related learning differences (N = 1), a
hardware and robotics camp in Colorado (N = 2), a lower-income
middle school in Southern California (N = 5), and via an email
list to employees at a large tech company (N = 7). We chose these
sites to recruit participants with a range of geographic, economic,
and personal backgrounds, while also deliberately recruiting from
schools/camps with robotics programs or mailing lists for families
involved in robotics. To be more inclusive of participants who did
not have iPad (N = 5) and/or Mac (N = 10) hardware at home,

while also socially distancing due to the COVID-19 pandemic, we
used screensharing and remote control features to provide virtual
access to the hardware as needed. That is, we shared an iPad sim-
ulator or a Mac screen with participants who did not have those
devices at home, and gave them remote control over our mouse and
keyboard to interact with the interfaces directly. In this way, we
were able to remotely run this study for participants on a computer
running any operating system, regardless of whether they owned
an iPad, without compromising the experimental procedure.

All participants had prior experience with programming and
exposure to hardware/robotics (e.g., via FIRST Lego League or in-
school robotics classes). When asked what they thought machine
learning was at the start of the study, 40.0% talked about a machine
getting better on its own, but only 33.3% discussed the use of expe-
riences or data to drive this improvement, and just one participant
(6.7%) mentioned the machine’s ability to approach novel situations.
That is, the majority of participants did not know what machine
learning was, and those that did had a limited understanding.

4.2 Objective
In the study, we gave participants an objective in which they needed
to get a School Bus robot to navigate its route (a prescribed course
called Bus Route), stop at three bus stops to pick up passengers,
and then stop again at the school to drop all of those passengers
off. Therefore, using RL, participants trained a virtual robot to
navigate around the bus route course. Then, in the programming
interface, they handled events to turn the car yellow at the start
(onStart()); stop, flash lights, and pick up a passenger at each
bus stop (atPickup()); and stop, flash lights, wait, and unload all
passengers at the school (atDropoff()).

4.3 Procedure
Every participant completed a four-step study procedure, which
included phases for introduction, RL model training, programming,
and reflection.

4.3.1 Introduction. During the introduction phase, we first walked
participants through the app setup process. For those who owned
iPads, we guided them through installing ARtonomous’s RL train-
ing application via iOS Ad-Hoc distribution (an over-the-air install
triggered by scanning a QR code shared via video conferencing
screenshare) and, for those who owned a Mac, we guided them
through installing Swift Playgrounds and downloading our Play-
ground Book onto their machines. Although the Playground book
works on an iPad as well, we chose to have participants use the Play-
ground Book on a computer to ease typing out code and standardize
the experience for all participants.

After ensuring the participants could use both of the applica-
tions, whether locally or via screenshare, we collected information
through verbal interviewing on their programming backgrounds
and existing understanding of machine learning. We then showed
a 5 minute introductory animation to explain the basics of RL, first
via a dog training example followed by an explanation of how these
concepts might apply to robot navigation. Finally, we introduced
participants to the school bus objective.
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Figure 3: The seven rapid training tracks a participant could choose from during the study. Visually similar tracks (e.g., Track
1 and Track 2) go in opposite directions.

4.3.2 Reinforcement Learning Model Training. Upon opening the
RLbot model training app, the experimenter briefly described the
starting state of the robot and the constraints for the study. Specifi-
cally, the starting robot was partially pretrained but still not very
good at navigating, and the participant was permitted to test their
robot (i.e., run a simulation with the current model without training
it) as many times as they wanted, but could only train the robot
three times.

The experimenter then provided the participant a series of tasks
to complete, with necessary prompting along the way to keep the
participant on track:

(1) Recreate the bus route track from the one shown in the
objective (see right side of Figure 2)

(2) Test your robot on the bus route track and identify any
problems it may still have

(3) Create a training track to help your robot gain experience
to address that problem

(4) Train your robot on that track
(5) Describe what your robot learned (or didn’t learn) based on

that training

Participants repeated steps 2–5 three times, completing this process
once for each of their training opportunities. They were permitted
to ask questions at any time.

Critically, to address the long (i.e., multi-hour) duration of RL
model training in conjunction with the constrained timespan of
the study, when participants initiated training at step 4, they were
prompted to select a track from a list of seven existing “rapid train-
ing” tracks (see Figure 3) and asked to explain the reasoning behind
their decision. The first six of these tracks were selected because
they each target a specific kind of turn the participant might want
to direct training toward, whereas Track 7 serves as a more general-
purpose training track. We told participants we could train very
quickly on these seven tracks and would train just the last ten
episodes on the track they had created. In reality, we had pre-
trained models for all permutations of these seven tracks; we would
load up the appropriate model and run 10 simulations to display
as training replays using this next model. In this way, participants
could see the progression of training a model even within the time
of the user study session and we could gain a deeper understanding
of what specific features participants were hoping to train their
models on based on their rapid training track choice and subsequent
discussion about that choice. Of course, in practice we imagine a
user could switch back and forth between model development and

coding while training occurred, or set training to run overnight or
between class periods.

4.3.3 Event Handling Code. After three rounds of training, par-
ticipants moved over to the ARtonomous programming interface
to write event handling code. Here we loaded up the target Bus
Route track and its requisite bus stops, reminded participants of
their objective, and pointed out the function library before allowing
them to jump into programming. The experimenter was able to
answer any questions the participant asked and could prompt them
to re-read the objective or sections thereof, but did not otherwise
assist with the coding.

4.3.4 Reflection and Feedback. Participants concluded the study
with about 10 minutes of reflection and feedback, described in detail
in section 4.4.

4.4 Metrics and Collected Data
Through both qualitative description and quantitative metrics, we
evaluated participants’ developing understanding of RL, their en-
gagement with the ARtonomous experience, and their curiosity
to learn more. We collected saved track and model data for all
participants, recorded video and audio of the study sessions, and
transcribed answers to the questions asked in the introduction and
reflection portions of the study. We asked all questions to partic-
ipants verbally, while also screensharing a slide with the written
question for the participant to read and refer to. Three researchers
collaboratively developed the coding schema used to analyze these
quotes and together scored 20% of participants, discussing and re-
solving differences. The first author then independently scored
the remaining participants according to the agreed upon scoring
system.

4.4.1 RQ1-Developing Understanding: What is RL. To examine if
participants developed an understanding of reinforcement learning
through this experience, we evaluated their knowledge at the end
of the session. Similar to evaluative methodology in prior work on
educational technology [17], we asked participants to describe what
reinforcement learning is, how they used reinforcement learning
during the session, and to provide a novel example of reinforcement
learning. We looked for key response elements for each answer, and
we report percentages of participants who included each element
alongside representative quotes to lend further insight.

4.4.2 RQ2-Developing Understanding: New Track Scenario. To see
if and how participants developed an ability to identify and solve
issues with individual models, as part of the reflection and feedback
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section we presented them with a novel track scenario and a failing
robot. This robot successfully followed a wide right turn before
failing to turn when that wide right turn transitioned into a very
tight left turn. We asked the participants what kind of training
track they would create to train this robot; we were looking for
participants to specify a tight turn, a left turn, or a transition from a
right turn to a left turn. We report on the content of these responses
in terms of percentage of participants that included each correct
element.

4.4.3 RQ3-Developing Understanding: RL or Code Scenarios. To
probe participants’ understandings of the strengths and limitations
of RL, we provided them with a series of eight scenarios in robotics
(e.g., stop at a stop sign or navigate around an unexpected obstacle)
and asked them if the scenario is better solved with RL or program-
ming. We scored their responses against our answer key; four of
the scenarios were intended to be solved with RL and four with
code.

4.4.4 RQ4-Engagement. Tomeasure participants’ engagementwith
the ARtonomous experience, we used the Giggle Gauge, a self-
report engagement metric developed for children [18]. This metric
was originally created for use with a bifurcated 4-point scale appro-
priate to the cognitive limits of children as young as four years old.
However, given our older participants, we used the same prompts
with a 7-point Likert-type response to allow for more gradation in
answers.

4.4.5 RQ5-Curiosity: Content Analysis of Questions. To qualita-
tively describe participants’ curiosity about RL after this experience,
we showed them a short video of a self-driving car driving along
surface streets and a highway. We then asked, “What questions
would you like to ask the creator of this self-driving car?” We report
a brief content analysis of these questions to understand where
participants’ curiosities lie.

4.4.6 RQ5-Curiosity: Desire to Learn More. We quantitatively mea-
sured participants’ curiosity about RL after this experience by ask-
ing them to respond on a 7-point scale the extent to which they
would like to learn more about RL.

4.5 Limitations in Study Design
We note and explain one deliberate choice that contributes to a
limitation in this study design: the constrained time. We chose to
limit our study to 90 minutes because we imagine long term us-
age of this system would accompany more complex design and
programming tasks; students might kick off model training and
then switch over to programming while waiting for that training to
finish. That is, we imagine a child using this system in a classroom
setting might interact directly with the model creation interface
for short spurts, interspersed with other learning activities (e.g.,
using the programming interface). Our research questions, though,
did not focus heavily on the coding portions of this app. Therefore,
we chose to forego a complex coding task that would have further
limited our recruitment to students with greater familiarity with
Swift. Furthermore, implementing rapid training and condensing
these separate interactions into a single experience simplified re-
cruitment and remote study participation for both researchers and

for participating families (e.g., for parents who had to give up a
work computer for their child to call into the session).

5 RESULTS
We report findings regarding understanding of RL, engagement,
and curiosity across all 15 participants. All participants completed
all three rounds of model training and wrote code that met the
objective.

5.1 RQ1-What is RL
Participants reported a definition of RL, the way they used RL
in the experience, and a novel example of RL. While only 13.3%
(n = 2) of participants explained that RL was a form of ML (perhaps
perceived as an out-of-scope response given the context of the
question), 60.0% (n = 9) described an agent getting an input, 73.3%
(n = 11) described an agent choosing an action and receiving
rewards or penalties, and 93.3% (n = 14) discussed an agent that
learned from rewards, penalties, or experiences for future new
situations. Participant 11 was one of 6 participants who included
all of inputs, actions, rewards, and improvements in their response:

“It’s when you have some something do something.
And it takes your input, and it does an action, and
then you give it like—like points, or not points or
whatever, um, so that it knows when it did something
wrong and when it did something right. So that it can
try to do the right thing next time.” –P11, age 12

When considering how they used RL in the activity, 86.7% (n =
13) of participants explained that they used it to train a robot to
navigate, but only 40.0% (n = 6) spoke about creating targeted
training tracks to help it learn and just 20% (n = 3) discussed
identifying problems in the models, the robot receiving rewards
or penalties, or the robot’s improvement based on the training.
Interestingly, though, 26.7% (n = 4) of the participants mentioned
their own learning as a form of reinforcement learning. For instance,
they described that during the process of coding they could run
their code to see when the robot did “good things” or “bad things”
and use that to adjust their code for the next run:

“I had to look at the track to see if it was doing what I
was supposed to do in the objective. And then I used
what it did on the track the first time...to change or
keep the run in the second time. And then in the end
I ended up doing what the objective wanted me to do.”
–P5, age 13

Finally, when describing a new example of reinforcement learn-
ing, 93.3% (n = 14) participants provided a novel example about
learning some kind of behavior or material, 66.7% (n = 10) explicitly
discussed a reward or penalty, and 73.3% (n = 11) explained how
gaining experiences might change future outcomes.

“If you...don’t do your homework one day then your
teacher punishes you, then the next day you’re going
to do your homework because the teacher punished
you for not doing your homework.” –P15, age 13
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5.2 RQ2-New Track Scenario
All participants described one of the three reasonable training tracks
for the failing robot, with 86.7% (n = 13) describing a tight turn and
26.7% (n = 4) suggesting a left turn track (note: some participants
included both descriptions in their answer). Additionally 13.3%
(n = 2) specified that the track should go from one turn into another
to specifically target the failing scenario of not transitioning from
a right turn to a left turn.

5.3 RQ3-RL or Code Scenarios
Participants were successfully able to distinguish which robotics
scenarios might be best solved with reinforcement learning and
which with code. Out of eight scenario prompts, participants on
average answered 85% correctly (SD=18%). A single-tailed t-test con-
firms these scores are significantly above chance, t(15) = 7.90,p <
0.001.

5.4 RQ4-Engagement
We evaluated participant engagement with the ARtonomous expe-
rience using a modification of the Giggle Gauge [18] with a 7-point
Likert-type response. Overall we found reasonably high levels of
engagement (M = 5.99, SD = 1.02), with all items scoring above 6
on average except aesthetics (M = 5.63, SD = 1.23) and challenge
(M = 5.53, SD = 1.19). Notably, if we drop data from one partici-
pant who experienced an early bug that led to a multi-second UI
delays, we see average engagement increases to 6.17 (SD = 0.77).

5.5 RQ5-Inspired Curiosity
5.5.1 Content Analysis of Questions. We categorize the questions
participants would want to ask the the creator of a self-driving car
into questions about RL, questions about broader machine learning,
and non-ML related questions. Most questions fall into the first
two categories, indicating a curiosity about machine learning and
its applications. Specifically, 40% (n = 6) of the participants asked
about reinforcement learning (e.g., How many episodes did it take
to drive so smoothly?) and another 40% (n = 6) about machine
learning. Half of machine learning questions related to computer
vision or object detection (e.g., How do you program your camera
to recognize objects nearby?) and half related to machine decision
making (e.g., How does the car deal with something unexpected on
the road, like if there’s a big rock?). Of the remaining participants,
6.7% (n = 1) asked about user experiences/design (i.e.,Why is there a
steering wheel if the car drives itself?), 6.7% (n = 1) listed categories
they might discuss (i.e., the complexity of real life compared to
simulation) without directly stating a question, and 6.7% (n = 1)
stated that they had no questions.

5.5.2 Desire to Learn More. When asked on a scale from one to
seven if they would like to learn more about reinforcement learning,
participants unanimously reported that they would. All participants
responded with a score of 5 or higher, for a mean score of 6.47
(SD = 0.74).

6 DISCUSSION
We began this project with concerns about how the gap between
state-of-the-art robotics and educational robotics widens with ad-
vancements in machine learning. Further, with educational robotics
placing a heavy emphasis on mechanical engineering, the high cost
of robotics kits designed for youth can present barriers to participa-
tion. By addressing cost and constraints with virtual robots and by
building upon new machine learning based conceptual infrastruc-
tures, ARtonomous is a more financially and physically accessible
educational robotics tool reflective of the types of data-driven ap-
proaches used in professional robotics today.

Our evaluation demonstrates that participants were able to de-
velop an understanding of reinforcement learning through the
ARtonomous experience (i.e., what it is, how it fails, and when
it applies), that they were highly engaged with the application, and
that they were curious to learn more about reinforcement learning
and its real-word uses. All participants could suggest reasonable
training tracks for a novel track scenario and were able to—at least
in part—explain reinforcement learning, its usage, and an example
thereof. Participants reported high levels of engagement with the
app and an even higher desire to learn more about the subject ma-
terial. Collectively, these results demonstrate ARtonomous’ success
in addressing our key research objectives: 1) creating low cost, high
engagement robotics education tools that help learners explore re-
inforcement learning and 2) bridging the gap between educational
and professional robotics to develop student understanding of rein-
forcement learning, support positive engagement with the content,
and build student curiosity toward machine learning more broadly.

6.1 Low-Cost and High Engagement with
Virtual Robotics

Surveying the landscape of educational robotics tools, the cost of
specialized hardware can inhibit broad reach. In the United States
in particular, economic disadvantage is strongly correlated with
race and ethnicity. Consequently, expensive tools can contribute to
the maintenance of racist barriers to educational equality.

These concerns validate core premises of the ARtonomous vision:
that we can use general purpose computing devices to simulate
robotic systems and visualize interaction between those systems
and the surrounding environment. Our research illustrates that
training and programming simulated robots is engaging and edu-
cational for participants. This result is consistent with prior work
on virtual robotics [8, 21, 56], with the additional inclusion of ML
model training.

Looking ahead, we foresee that augmented reality (AR) function-
ality has the potential to take this engagement and learning even
further [16], still without requiring specialized (and potentially
cost-prohibitive) hardware. We built prototype functionality of AR
integration that allows robot training—including replays, test simu-
lations, and overlay visualizations—to appear in the physical-virtual
space (see Figure 4). Although we chose to forego testing of the AR
components within this tool, instead prioritizing the geographic
and economic diversity of our participant pool, a large body of
prior work shows that AR educational experiences can improve
learning and engagement [16, 44]. We look forward to future work
exploring AR’s potential in robotics education contexts.
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Figure 4: Prototype augmented reality features allow users
to view their track, robot, and training overlay details in
physical space.

6.2 Bridging the Gap Between Educational and
Professional Robotics

All fields of disciplined human endeavor involve representational
infrastructures—tools that participants in those fields use to frame,
communicate about, and accomplish work [29, 49]. Learning a field,
whether robotics, archaeology, or policing [28], is fundamentally
about learning to see and do as those already within that field do.
As we discuss above, the rapid advancement of ML in professional
robotics combined with the relative absence of ML in educational
robotics is progressively relegating educational robotics into a less
and less authentic enterprise. The representational infrastructure of
educational robotics is generally lacking methods of ML, including
RL, and norms that emphasize the contemporary importance of
autonomy. Our findings show 1) that RL (and ML) can be a part
of how students learn robotics and 2) that the representational
infrastructure gap between robotics and educational robotics is
closable via new systems like the one we present here.

Our research illustrates how new systems can foster approaches
to teaching and learning that place more emphasis on the computer
science of ML and programming. The iPad-based ARtonomous ex-
perience we evaluated involves several representational practices
that are lacking or uncommon in today’s most common educational
robotics platforms and experiences, including creating idealized
contexts (i.e., training and simulation environments) for robot op-
eration, identifying specific examples of problematic or successful
robotic behavior from simulations within those contexts, noting
patterns in aggregated replays of multiple simulations, drawing
focused training scenarios to address problematic patterns, eval-
uating ML model improvement over time, juxtaposing code with

simulations of RL-based model execution, and observing and de-
bugging the execution of programs that are combinations of RL
models and user-defined code.

Some of these representational practices have analogues in to-
day’s physical robotics education experiences. For example, partici-
pants might sketch arenas that they wish for their robots to execute
within and then draw the trajectories that they want their robots to
follow within those arenas. They might video record their robots
in action and replay those later in order to share their successes
or document opportunities for improvement. Virtual robotics plat-
forms, such as the Virtual Robotics Toolkit [15], also afford the
ability to capture and replay simulations.

However, the essence of this work—iteratively training an ML-
based navigation model using a series of training environments de-
signed in light of past model performance and then integrating the
ML model with user-authored code—involves a set of practices that
are not available in other tools but are reflective of broader AI educa-
tion objectives [36, 52]. Moreover, ML could enable young people to
create robotic systems that are currently difficult, if not impossible,
for them to do with programming alone (e.g., create autonomous ve-
hicles that navigate model cities without pre-programmed routes).
We further envision future RL education platforms formiddle school
learners that introduce additional aspects of model training (e.g.,
observation space, exploration rate, or reward function) in similarly
engaging and accessible ways. The approachability of ML practices,
as evidenced by our findings, raises an essential question for ro-
botics education: What are the most important learning goals for
robotics education in a world where authentic robotics practice
involves a data-driven synthesis of ML and programming in order
to create autonomous systems? This work suggests that the skills
of creating, assessing, and integrating ML models should and could
be among those goals.

7 CONCLUSION
We presented ARtonomous, a tablet-based application that intro-
duces middle school students to reinforcement learning through
virtual autonomous robotics. We address cost constraints in ed-
ucational robotics while still maintaining high engagement by
leveraging a virtual robot approach. Further, we aim to close the
gap between educational and professional robotics through the
introduction of machine learning techniques. Through a 90-minute
evaluation study with middle school aged students (ages 11–14)
we demonstrated the efficacy of ARtonomous in achieving these
design goals. Specifically, ARtonomous supported participants in
developing an understanding of reinforcement learning, led to high-
levels of self-reported engagement, and inspired curiosity among
participants for further learning about RL. Having demonstrated
that RL can be made accessible and approachable for middle school
students and that it can integrate into robotics education, our work
highlights opportunities for robotics educators, HCI and education
researchers, and product developers to reassess the most important
learning goals in educational robotics and to consider making space
for RL or ML via virtual simulation methods.
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8 SELECTION AND PARTICIPATION OF
CHILDREN

Youth were recruited from a school for students with reading-
related learning differences, a hardware and robotics camp in Col-
orado, a middle school in Southern California serving a lower-
income community, and via an email list to employees at a large
technology company. We chose these sites to recruit participants
with a range of geographic, economic, and personal backgrounds.
All youth provided verbal assent to participate in the study and to
be video recorded, and youth and parents signed consent forms
prior to video and audio data collection. Families were told they
could choose to end the study at any time and still receive a gift
card; families received a $25 gift card in exchange for participating.
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