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ARVESON NESTS AND OPERATOR FACTORIZATION
ALONG COMMUTATIVE SUBSPACE LATTICES

JOHN DAUGHTRY AND RONALD JOHNS

(Communicated by John B. Conway)

Abstract. Similar commutative subspace lattices (CSL's) are shown to be uni-

tarily equivalent if certain sublattices (which may be taken to be nests!) are

unitarily equivalent and a technical condition is satisfied. This result provides a

connection between existing results for arbitrary similarities of countable CSL's

and similarities of general CSL's by operators near the identity. One conse-

quence is the generalizaton to CSL's of a theorem of David Pitts on the rela-

tionship between similarity and unitary equivalence of nests he calls "injective."

H denotes a separable Hubert space with real or complex scalars. B(H) is

the space of all bounded, linear operators on H. The word "projection" always

refers to an operator of orthogonal projection. For any A in B(H), rp(A)

denotes the projection of H on the closure of the range of A . R(A) is the

range of A , and / is the identity operator.

If <P is a linear operator on 7(7/) satisfying

(i) for all X G B(H) such that X > 0, <J>(X) > 0,
(ii) <D(A"*) = 0(A")* for all XgB(H),

(iii) O is idempotent, and

(iv) <P(X)Q>(Y) = <P(X(<t>(Y)) for all X and Y in B(H),

then O is a conditional expectation from B(H) onto 7(0).

Remarks. 1. (ii) is a consequence of (i) when the scalars are complex.

2. The identity ®(X)<S>(Y) = 0(<D(A')F) is easily derived from (iv) and (ii).

3. 7(0) is the set of fixed points of <P.

4. [11; Chapter II] is a good reference for the properties of conditional

expectation operators.

Let W c 'V C 7(7/). A function O from "V into itself is ^-homogeneous

if <&(CX) = C<&(X) and ®(XC) = $>(X)C for all C in W and X in "V.

(Thus we do not require any linearity or continuity.) Of course, conditional ex-

pectation operators are examples of homogeneous maps, and the significance of
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the following work depends upon previously known results about the existence

of conditional expectation operators of 7(7/) onto certain subalgebras.

'V denotes a von Neumann subalgebra of B(H) throughout the following

exposition. A lattice 7 of projections in B(H) is complete if the least upper

bound and greatest lower bound of each subset of 7 is in 7 . A complete lattice

of projections which contains 0 and / is a subspace lattice. A subspace lattice

7 which satisfies PQ = QP for all 7 and Q in 7 is a commutative subspace

lattice (CSL). A subspace lattice which is linearly ordered is a nest.

Let £P be any set of projections in 7(7/), and let 7 be an invertible element

of 7(7/). x& denotes {rp(TP): 7 g &>}. Alg&> denotes {A G 7(7/): A

leaves invariant the ranges of the elements of SP\. The diagonal of & , denoted

3(&), is alg^3 n (alg^)*. If 3s c "V, the relative diagonal &{&>) n "V is

denoted 3¡7 (¿P). Let 7 be a CSL. A nest N c 7 is an Arveson nest for 7 if

N1 = L'. (The prime denotes the commutant.) A nest N c L is a T-Arveson

nest for L if N' - l! and (tJV) = (t7)' . Every CSL in a separable Hubert

space has an Arveson nest [2; p. 482]. (The maximality of the Abelian von

Neumann algebra generated by the CSL, which is assumed there, is not used in

this part of Arveson's proof.) In addition, we have the following

Lemma. Let L be a CSL. Then L contains a nest which is a simultaneous

T-Arveson nest for every invertible operator T suchthat xL is commutative.

Proof. Start with a countable dense sublattice & of 7, S? = {7,, 72,7,, ...} .

Let Ln denote the (finite) subspace lattice generated by {PX,P2, ... , Pn} . Then

construct a finite nest Nn c Ln with (Nf) = (Ln)' and Nn c Nn x for n —

1,2, ... , as in [2; p. 482]. For every invertible operator 7 such that t7 is

commutative, there exists a unitary operator U such that U PU* - rp(TP)

for all 7 in Ln . (This is a reformulation of Theorem 2 of [4].) Therefore,

(iNn)' = (xLn)'. Let N denote the strong operator closure of the union of the

Nn's. N is a nest with the same commutant as 7, and (tN)' = (xL)'.   □

Proposition 1. Let T g'V be invertible, and let ¿P a'V be a commutative

set of projections. Assume that {rp(TP): 7 g £P) is commutative, JÍ c 3?,

y/'n^ = ¿P1 n "V, and U is a unitary operator in V such that UPU* =

rp(TP) for all Pel. Let O be any 3Sj,\¿P)-homogeneous map of 'V into

W. If 0(7_17) G 37,(&>) and is one-to-one, then R(UP) D 7(77) for all
PG&>.

Proof. rp(U*TP) = U*rp(TP)U commutes with rp(U*TQ) = U*rp(TQ)U

for each 7 g 3s and Q G Jf. Thus, by the hypothesis on U, rp(U*TP)

belongs to Jf' n 'V = &' n T for each 7 g & . Then

70)(7"lL7)c/*77 = 7O(7"V)r/7(7*77)f7*77

= $>(PT~lUrp(U*TP))U*TP

= ®(T~iUrp(U*(TP))U*TP = <!>(T~lU)U*TP.
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Thus, <t>(7 U)U*T leaves invariant the ranges of all of the projections in £P .

The facts that 0(7~ U) commutes with such projections and 0(7~ U) is one-

to-one imply that U*T G alg^ . Thus for all 7 G &>, R(UPU*) D 7(77).    D

Corollary. Let T g'V be invertible, and let ¿P be a commutative set of projec-

tions. Assume that {rp(TP): 7 G ¿P} is commutative, J£ c 3°, Jt n V =

£P' n °V, and U gV is a unitary operator such that UPU* = rp(TP) for all

7 g J?. Assume that there exists an expectation O of' V onto 3ST(¿P) which

is multiplicative on Tnalg^#. Then R(UP) D 7(77) for all 7 G& .   D

Proof. The hypothesis on rp(TP) implies that U*T and T~XU belong to

5^nalg^#. Then 0(7~ U) is the inverse of 0(C/* 7), so the desired conclusion

follows from Proposition 1.    D

Theorem 1. Let T gV be invertible and let ¿P c V be a commutative set of

projections. Assume that xSP is commutative, Jt c 3P, Jf' n V — 3°' D V,

(xJf)'p\V = (x&fn'V, and U isa unitary operator in V such that UPU* =

rp(TP) for all 7 g JÍ. Let O be any ^^(¿Pyhomogeneous map of V into

V. If<t>(U*T) and 0(7_17) belong to 3¡7/\3P) and are one-to-one, then

R(UP) = 7(77) for all PgS0 .

Proof. Directly from Proposition 1, we have R(UP) D R(TP) for all 7 G 3s .

Now we wish to apply Proposition 1 with x¿P and t\/# in the place of 3s

and ,#, and U* and T~] in the place of U and 7. Define ¥ by V(X) =

U®(U*XU)U* for any X g'V . Choose C in 37(x5P) = Vn(x3°)'. U*CU

belongs to [U*(tJt)U]' n T = Jt' C\V = &' f)V, so V(CX) = CV{X) and
¥(*<:) = 4/(X)C.  By the hypothesis on ®(U*T), *Y(TU*) is contained in

U(9¡7,(3P))U* = (U3>u*)' nV = (Ujfu*)' nV = (xj?)' nV = (x&>)' nV =

3¡7(x3°). To apply Proposition 1, we need *F(77*) one-to-one, which is

provided by the hypothesis that <P(t/*7) is one-to-one. We conclude that for

any Qgx3° , R(U*Q) dR(T~[Q). Thus, for any Pg^, R(U*TP) d 7(7),

or 7(77) D 7(77).    D

Definitions. A nest N c V is a subdiagonal nest in V if there exists an

expectation O of ^ onto the commutant of N such that 3> is multiplicative

on 2^ n alg N. A conditional expectation O on 2^ is faithful if the only

element X in the kernel of í> satisfying X > 0 is X = 0. Ois normal if it

is continuous with respect to the strong operator topology.

If there exists a faithful, normal conditional expectation O of V onto the

commutant of N, then TV is a subdiagonal nest with <I> the multiplicative

expectation [1]. In particular, it is an elementary fact that every countable nest

is subdiagonal. We now arrive at the promised generalization of Theorem 5.8

of [11] to CSL's:

Theorem 2. Let L be a CSL contained in V, a von Neumann subalgebra

of 7(7/). Suppose that there exists a faithful, normal expectation of V onto

3¡7 (L).  If T g V is invertible, then there exists a unitary operator U gV
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such that UPU* = rp(TP) for all 7 in 7 if and only if xL is a CSL and there

exists a faithful, normal expectation of V onto ^7,(xL).

Proof. Let O be the faithful normal expectation on Ü^.-(7), and assume that

t7 is a CSL and there exists a faithful, normal expectation of V onto 31^, (xL).

Let N be a 7-Arveson nest for 7. By Theorem 5.8 of [10], there exists a uni-

tary operator U G V such that UPU* = rp(TP) for all 7 in N. 0> is

multiplicative on algNnV, so 0(7*7) and 0(7~ U) are inverse to each

other. We may now apply Theorem 1 with 3s = 7 and y% = N to obtain

UPU* = rp(TP) for all 7 in 7.

For the converse, suppose that U is a unitary operator in V such that

UPU* = rp(TP) for all 7 in 7. Then xL is clearly a CSL, and *F(X) =

UQ>(U*XU)U* is the desired faithful normal expectation onto 2i7/-(xL).   □

As the hypothesis about the existence of a faithful, normal expectation is

satisfied for every countable CSL, the condition that xL is commutative is

necessary and sufficient for the existence of the unitary U such that UPU* =

rp(TP) for all 7 in 7 when 7 is countable (cf [4; Theorem 2]).

Results such as those above are often expressed as results about operator

factorization. For example, an immediate consequence of Theorem 1 (proved

by letting U — TA~ ) is the following:

Corollary. Let T G V be invertible and let L c V be a CSL such that xL is

commutative. Let N beany T-Arveson nest for L and assume that there exists

A gV such that A is invertible and T*T — A*A with A and A~ in algiV.

Let 0 beany ¡37 (L)-homogeneous map of V into V. If <&(A) and <S>(A~ )

belong to 2¡7 (L) and are one-to-one, then A and A~   belong to alg7.

Theorem 1 yields not only results about similarity of special CSL's, but also

results about similarity (or operator factorization) of general CSL's by operators

"close to the identity." We state the operator factorization form of the most

important consequence:

Theorem 3 (cf. [5]). Let L be a CSL contained in V, a von Neumann subal-

gebra of 7(7/). Let S be an invertible, self-adjoint element of V with S > 0.

Assume that S — I - K with K an element of Macaev's ideal. Then a neces-

sary and sufficient condition that S = A* A with A and A~ in algL ¿s that

{rp(S P): P G L} is commutative.

Proof. The commutativity condition is necessary by Theorem 1 of [3].

Now assume the commutativity of {rp(S 7): 7 G 7}. By the lemma,

there exists an S '"-Arveson nest N for 7 . The theory of [8] as summarized on

pp. 101-102 of [7] yields a factorization S = (I+V*)D(I+V) with D G N'nV

and V in the Jacobson radical of algN. We claim that A = DX'2(I + V) has

the desired properties. There exists a conditional expectation O of V onto

L' n V(= N' n V) constructed by the standard technique of averaging with

respect to the action of the group of unitary operators in 7" . (See [11; p. 137],
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for example.) $>(A) = D1' because O is /V'-homogeneous and the kernel of

O contains the radical of algN. V is quasinilpotent, so (/ + V)~ = I + W

with W in the radical of alg/V. Thus <S>(A~l) = D ' . The preceding corollary

now applies with T = Sl    .   D
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