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ABSTRACT: Arylazopyrazoles, a novel class of 5-membered 
azo photoswitches, offer quantitative photoswitching and high 
thermal stability of the Z-isomer (half-lives of 10 and ~1000 
days). The conformation of the Z-isomers of these compounds, 
and also the arylazopyrroles, is highly dependent on the substitu-
tion pattern on the heteroarene, allowing a twisted or planar ge-
ometry, which in turn has a significant impact on the electronic 
spectral properties of the compounds. 

Photoswitchable compounds have diverse applications, from 
photopharmacology and optochemical genetics, to optical data 
storage.1–8 Azobenzenes are easy to synthesize and highly versa-
tile photoswitches. These molecules have high extinction coeffi-
cients and quantum yields, allowing low intensity light to be used 
to elicit photoisomerisation, and are stable to repeated switching 
cycles.9 Photochemical E-Z isomerization induces a substantial 
change in the shape of these molecules, including a significant 
difference in the end-to-end distance.9 This has been exploited, for 
example, in the direct conversion of light into mechanical 
energy.10–12 Generally, the E-isomers are more thermodynamical-
ly stable than the Z-isomers; the notable exception being Temps 
and co-workers’ tricyclic ethylene-bridged azobenzene, which has 
reversed stability due to the ring strain present in the E-isomer.13 

A large array of azobenzenes have been reported, with an as-
sortment of applications, however there are still a number of 
drawbacks that limits their practical use for certain purposes. 
Firstly, incomplete photoswitching is often observed due to over-
lapping absorbances in the irradiation regions of interest.3 Second-
ly, the Z-isomer often rapidly thermally converts back to the E-
isomer. High thermal stability is particularly required for the use 
of photochromic compounds in ultrahigh-density optical data 
storage; an area currently dominated by diarylethylenes.7,8 Since 
the properties of azobenzenes can be varied substantially by alter-
ing the substituents on the aromatic rings, a number of specific 
azobenzenes have been recently reported that address such limita-
tions.14–17 For example, Hecht and co-workers recently reported 
that 2,2’,6,6’-tetrafluoroazobenzene shows near-quantitative pho-
toswitching and the longest thermal half-life reported for an azo-
benzene molecule (~700 days at 25 °C in DMSO).16 

5-Membered azoheteroarenes, and in particular their photo-
chromism, are far less studied. Much of the work on azohete-
roarenes has concentrated on developing donor-π-acceptor sys-
tems with strong nonlinear optic and solvatochromic properties.18–

24 Of the photochromic compounds studied, generally, these het-
eroaromatic compounds have incomplete E-Z conversion and fast 
thermal half-lives (usually under 1 min).19,20,22 Velasco and co-
workers recently exploited this property to develop extremely fast 
photoswitches (t1/2 ~ µs to ns) that tolerate thousands of switching 
cycles without decomposition.25,26 Conversely, for applications 

requiring long half-lives and high E-Z conversion, the arylazoim-
idazoles are the only 5-membered azoheteroarenes reported to 
date to show promise,27–29 with Herges and co-workers demon-
strating the ability to photoswitch 1-methyl-5-phenylazoimidazole 
to a photostationary state (PSS) containing 98% Z-isomer, which 
possesses a thermal half-life of 528 hours.27 However, the best 
PSS for the backswitching only contained 55% of the E-isomer. 
Herein we report a new class of highly promising photoswitchable 
azoheteroarenes, the arylazopyrazoles (Figure 1),30 which we have 
directly compared to the related arylazopyrroles. Our arylazopy-
razoles show high thermal stability in solution at room tempera-
ture (t1/2 up to 1000 days); comparable to the highest known value 
for an azobenzene. A large separation of the λmax of the E- and Z-
isomers allows good to quantitative two-way photoswitching. 
Furthermore, by virtue of their 5-membered rather than 6-
membered aromatic ring, we find that such compounds can access 
a Z-isomer conformation not accessible to azobenzenes; a con-
formation that can be sterically tuned by substitution on the heter-
ocyclic ring. Such conformational properties significantly affect 
the intensity of the n-π* absorbance, and thus it is likely that 
azoheteroarenes will open new avenues in the area of azo pho-
toswitches, through access to photophysical and photochemical 
properties not achievable with the ubiquitous azobenzenes.  
Figure 1. Azoheteroarenes with extended thermal half-lives and 
good photoswitching. 

  
The properties of some 5-membered azoheteroarenes were 

studied computationally at the B3LYP/6-31G(d,p) and CAM-
B3LYP/6-311G(2df,2p) levels for geometry optimisation and 
TDDFT spectral predictions respectively (see SI). Altering the 
electronics and sterics of the rings, by changing the heteroarene 
and its substituents, was predicted to change the position and in-
tensities of their absorption maxima. Four compounds (Scheme 
1), predicted to have interesting optical properties due to differing 
electronic and steric effects, were prepared for this study. 

The N-heterocyclic compounds chosen were all N-methylated 
to prevent rapid Z-E thermal isomerisation through a tautomerisa-
tion-isomerisation mechanism.29,31 Arylazopyrroles 2 and 5 and  



 

 
Figure 2: UV/vis spectra of azoheteroarenes in acetonitrile. Inset: repeated photoswitching cycles of azopyrazole 11. The Z-2 and Z-5 spec-
tra are determined as described in the SI. 

 
the fully substituted arylazopyrazole 11 were prepared using 
standard diazo coupling methods. Arylazopyrrole 8 was prepared 
from 4-amino-1-methylpyrazole and nitrosobenzene, via a modi-
fied Mills reaction (Scheme 1) in a modest unoptimised yield, in 
line with the highly substrate-dependent literature yields for such 
a reaction.32 The scope for this method has previously included 
various aminopyridines and aminoquinolines,32,33 however, our 
study demonstrates it is also suitable for the preparation of azo 
compounds containing 5-membered heteroarenes, of which few 
syntheses exist.25,27,34 

The UV/vis spectra of azoheteroarenes 2, 5, 8 and 11 are shown 
in Figure 2. The pyrroles in 2 and 5 are better π-donors to the 
electron withdrawing azo function (σp

 = +0.39),35 resulting in a 
red-shifted π-π* λmax. This is consistent with π-deficient 
azopyridines, having a blue-shifted π-π* λmax compared to azo-
benzene.36 The other notable difference in the spectra of the E-
isomers was that the E-pyrazoles (8 and 11) showed a weak n-π* 
absorbance, well separated from the π-π*, whereas E-2 and E-5 
had a slight shoulder on their π-π*, due to a weak n-π*, poorly 
separated from the π- π* absorbance. The separation of the n-π* 
and π-π* λmax is qualitatively consistent with the TDDFT calcula-
tions (see SI). 

Scheme 1: Synthesis of photoswitches 

 
Reagents and conditions. (a) conc. HCl, aq. NaNO2, acetone/H2O, 
0 °C, then add to Na2CO3, N-methylpyrrole, acetone/H2O, 0 °C – 
rt, 52%; (b) conc. HCl, aq. NaNO2, H2O, 0 °C; then 2,4-
dimethylpyrrole, MeOH/pyridine, 0 °C, 71%; (c) NaH, MeI, THF, 
0 – 60 °C, 58%; (d) K2CO3, MeI, MeCN, rt ; (e) Pd/C, H2, MeOH, 
rt, 58% from 6; (f) nitrosobenzene, 40% aq. NaOH/pyridine, 
80 °C, 33%; (g) conc. HCl, aq. NaNO2, AcOH, 0 °C; then add to 
NaOAc, acetylacetone, EtOH/H2O, 0 °C – rt, quant.; 
(h) NH2NHMe, EtOH, reflux, quant. 

Exciting the π-π* transition of azopyrazoles E-8 and E-11 at 
355 nm using monochromatic light achieved complete pho-
toswitching (>98% Z-isomer in both cases). Near-quantitative 
switching was also achieved with broadband 330-400 nm light 
(see SI). To our knowledge, the only azo compound for which 
~100% E-Z photoswitching has been achieved is the ethylene-
bridged azobenzene reported by Temps and co-workers.13 Z-11 
has a stronger n-π* absorbance than E-11, while the n-π* absorb-
ance of Z-8 was similar to that of E-8 (Table 1). Irradiating the tail 
of the n-π* absorbance of azopyrazole Z-11 at 532 nm switched it 
back to >98% E-isomer. Thus 11 can be quantitatively switched 
in both directions, a result which surpasses the state-of-the-art 
ethylene-bridged azobenzene,13 and the 2,2’6,6’-
tetrafluoroazobenzene reported by Hecht and co-workers.16  

In contrast, varying the substitution pattern or heterocycle re-
sulted in less complete photoswitching, demonstrating the value in 
surveying a range of heteroaromatic scaffolds. Azopyrazole Z-8 
only reached a PSS containing (70 ± 3)% E-isomer after excita-
tion with 532 nm irradiation, due to overlap of the Z- and E-
isomer n-π* absorbances. Irradiation of azopyrroles E-2 and E-5 
with 415 nm light led to PSSs containing (84 ± 2)% and 
(85 ± 3)% Z-isomer respectively (Figure 2). Similar to the azopy-
razoles, azopyrrole Z-5 had a relatively intense n-π* absorbance 
compared to Z-2 and E-5 (Table 1). Excitation of the n-π* transi-
tion of azopyrrole Z-5 using 532 nm irradiation led to quantitative 
(>98%) photoswitching to the E-isomer. Prolonged irradiation of 
the tail of the n-π* absorbance of Z-2 at 532 nm led to a PSS con-
taining (82 ± 3)% E-isomer. Quantum yields were determined 
where possible (Table 1 and SI). All compounds were pho-
toswitched 20 times in each direction and no significant degrada-
tion was observed, demonstrating high fatigue resistance (see SI).  

For the arylazoimidazoles, Herges and co-workers have report-
ed that both isomers have a weak n-π* absorbance and are calcu-
lated to adopt a conformation in which the heteroarene and azo 
function are co-planar.27 In our calculations, all E-isomers are 
predicted to be planar. For azopyrazole Z-8 and azopyrrole Z-2 
(without two “ortho” methyl groups on the heterocycle) a con-
formation with the phenyl ring approximately orthogonal to the 
planar heteroarene-azo functionality is calculated, while the two 
methyl groups in azopyrazole Z-11 and azopyrrole Z-5 are pre-
dicted to force these species into a twisted conformation. TDDFT 
predicts low intensity n-π* absorbances for all E-isomers and for 
Z-2 and Z-8 (with the heteroarene and azo group coplanar – oscil-
lator strengths of 0.0023 and 0.0026 respectively), as is seen in 
the experimental spectra. Conversely, the twisted azopyrazole Z-
11 and azopyrrole Z-5 are calculated and observed to have large 
n-π* absorbances. 
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of 5 with a para-electron withdrawing group, push-pull 
azopyrrole systems can be generated with rapid thermal isomeri-
sation rates. Many such compounds have been reported, the fast-
est rate being for a pyrrolyl azobenzathioazole compound, with a 
thermal half-life of 70 µs in ethanol.25 

In conclusion, we have demonstrated that the underexploited 5-
membered azoheteroarenes, hold significant potential in compari-
son to their more common azobenzene counterparts. Specifically, 
we have found that azopyrazoles are readily accessible syntheti-
cally, and provide highly exciting properties for further study. For 
example, azopyrazole 11 can be quantitatively photoswitched in 
both directions; to the best of our knowledge, this ability is supe-
rior to all the other azobenzenes reported to date.13,16 Furthermore, 
azopyrazole 8 has a very long thermal half-life (~1000 days), 
which is comparable to some of the slowest azo photoswitches 
published to date, and positions this compound class excellently 
with respect to photochromic compounds used in optical storage 
devices.16,43  

More generally, we report that the Z-isomers of such 5-
membered azoheteroarenes can access a conformation with a co-
planar heteroarene-azo function approximately orthogonal to the 
phenyl group. This conformation results in a dramatic reduction 
of the n-π* absorbance intensity, on symmetry grounds. The Z-
isomer of a corresponding azobenzene photoswitch cannot access 
such a conformation due to the increased ring size (6-membered 
rather than 5-membered). This conformation effect for 5-
membered azoheteroarenes is readily tuned, using steric interac-
tions alone, by a judicious choice of the substituents on the het-
eroaromatic ring. We believe, therefore, that the azoheteroarene 
photoswitches will provide unique opportunities in terms of the 
applications of these molecules, through access to photophysical 
and photochemical properties not achievable in the more com-
monly used parental azobenzenes. 
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