
As-Rigid-As-Possible Shape Manipulation

Takeo Igarashi
1, 3

 Tomer Moscovich
2
 John F. Hughes

2

1
The University of Tokyo

2
Brown University

3
PRESTO, JST

Abstract
We present an interactive system that lets a user move and deform

a two-dimensional shape without manually establishing a skeleton

or freeform deformation (FFD) domain beforehand. The shape is

represented by a triangle mesh and the user moves several vertices

of the mesh as constrained handles. The system then computes the

positions of the remaining free vertices by minimizing the

distortion of each triangle. While physically based simulation or

iterative refinement can also be used for this purpose, they tend to

be slow. We present a two-step closed-form algorithm that

achieves real-time interaction. The first step finds an appropriate

rotation for each triangle and the second step adjusts its scale. The

key idea is to use quadratic error metrics so that each

minimization problem becomes a system of linear equations.

After solving the simultaneous equations at the beginning of

interaction, we can quickly find the positions of free vertices

during interactive manipulation. Our approach successfully

conveys a sense of rigidity of the shape, which is difficult in

space-warp approaches. With a multiple-point input device, even

beginners can easily move, rotate, and deform shapes at will.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques – Interaction Techniques; I.3.3 [Computer Graphics]:
Picture/Image Generation – Display algorithms; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling –
Geometric algorithms.

Keywords: Shape Manipulation, Deformation, Image Editing,
Mesh Editing, Animation, Interaction

1 Introduction

With a 2D image or drawing at hand, a user might want to

manipulate it—move, rotate, stretch, and bend it. The primary

application we have in mind is an editing tool for drawing or

image-editing systems, but our interactive shape manipulation

technique is also useful in various applications such as real-time

live performance [Ngo et al. 2000] and enriching graphical user

interfaces [Bruce and Calder 1995].

One popular approach for shape manipulation is to use a pre-

defined skeleton. The user manipulates the skeleton configuration

and the system adjusts the overall shape relative to the skeleton.

However, defining a skeleton structure for a shape is not a trivial

task [Lewis et al. 2000] and is not effective for objects, such as

jellies, that lack an obvious jointed structure. Another popular

method is free-form deformation (FFD) [MacCracken and Joy

1996] in which the user explicitly divides the space into several

domains and manipulates each domain by moving control points

defining it. But setting FFD domains is tedious and the user must

laboriously manipulate many control vertices.

This paper presents an interactive system that allows the user to

manipulate a shape without using a skeleton or FFD. The user

chooses several points inside the shape as handles and moves each

handle to a desired position. The system then moves, rotates, and

deforms the overall shape to match the given handle positions

while minimizing distortion. By taking the interior of the shape

into account, our approach can model its rigidity (i.e., internal

resistance to deformation), making the result much closer to the

behavior of real-world objects than in space-warp approaches as

in [Barrett and Cheney 2002; Llamas et al. 2003].

We use a two-step closed-form algorithm for finding the shape

configuration that minimizes distortion. The typical approach is to

use a physically based simulation or nonlinear optimizations

[Sheffer and Kraevoy 2004], but these techniques are too slow for

interactive manipulation. A key aspect of our approach is the

design of a quadratic error metric so that the minimization

problem is formulated as a set of simultaneous linear equations.

Our system solves the simultaneous equations at the beginning,

and can therefore quickly find a solution during interaction.

Ideally we would like a single quadratic error function that

handles all properties of a shape, but no such function exists (see

Appendix A). We therefore split the problem into a rotation part

and a scale part. This divides the problem into two least-squares

minimization problems that we can solve sequentially. This

method can be seen as a variant of the method proposed by

Sorkine et al. [2004].

Our technique can be useful in standard dragging operations with

a mouse, but it is particularly interesting when using a multiple-

point input device such as a SmartSkin touchpad [Rekimoto 2002]

(Figure 1). With such a device, one can interactively move, rotate,

and deform an entire shape as if manipulating a real object using

both hands. This is difficult with existing shape deformation tools

because most allow only local modification while the overall

position and orientation of the shape remain fixed.

Figure 1: Shape manipulation using a SmartSkin touchpad. The user can

interactively move, rotate, and deform the shape using both hands as if

manipulating a real object.

2 Related Work

Shape manipulation techniques fall roughly into two categories.

One is to deform the space in which the target shape is embedded;

the other is to deform the shape while taking its structure into

account.

Deformation using skeletons, FFD, and other space-warp

approaches belong to the first category. With skeletons, each point

in the shape is associated with a coordinate frame defined by a

bone [Lewis et al. 2000]. In FFD, each point is associated with a

closed region in a FFD grid [MacCracken and Joy 1996]. Other

space warp techniques deform the global space [Milliron et al.

2002]. Beier and Neely used space deformation for morphing

[1992]. Twister deforms the global space according to two 6-DOF

controls [Llamas et al. 2003], and Barrett and Cheney [2002] used

space-warp deformation for digital image editing. Brookstein

[1989] used thin-plate splines to find a space deformation that is

defined by several control points. A drawback of these approaches

is that they model the rigidity of the ambient space, rather than

that of the shape itself, and thus the resulting deformation differs

greatly from the behavior of real objects.

The second category includes physically based methods, the most

popular of which are mass-spring models [Gibson and Mirtich

1997]. These are very easy to implement, but their behavior is too

elastic for many applications and they often converge slowly. In

addition, careful parameter tuning is required to make them really

work. More physically accurate simulation is possible with finite-

element methods [Celniker and Gossard 1991], but these are very

complicated and expensive to solve, making them inappropriate

for interactive manipulation of simple drawings. The ArtDefo

system [James and Pai 1999] achieved physically accurate,

interactive shape deformation using boundary-elements, but it is

limited to very small deformations such as poking the surface and

is not applicable to large deformations like bending an arm.

The work presented here belongs to the second category. Our goal

is to introduce internal model rigidity into shape manipulation.

However, instead of using physically based models, we use

simple geometric approach similar to a technique used in [Alexa

et al. 2000]. They obtain an as-rigid-as-possible interpolation

between shapes by computing a rigid transformation for each

triangle element geometrically and stitching them together.

Similarly, we achieve as-rigid-as-possible manipulation by

geometrically minimizing the distortion associated with each

triangle in a mesh. Sheffer and Kraevoy [2004] introduce a similar

deformation tool, but use an iterative computation that is too

expensive for interactive manipulations, especially when the

control vertices move quickly.

The algorithm we use can be seen as a variant of the Laplacian

surface-editing method proposed by Sorkine et al. [2004]. They

achieved fast detail-preserving deformation by using rotation- and

scale-invariant Laplacian coordinates. They also proposed scaling

the Laplacians of the deformed shape back to their original scale

and re-solving. Similarly, we add a scale-preserving effect to the

initial deformation process. We show that this scale-preservation

effect makes possible more dynamic manipulation than is seen in

their paper’s examples, where the user fixes most of the shape and

moves only a specific region of interest.

3 Overview

We start with an overview of the system to establish a context for

the core algorithms described in the next section.

The user first imports a 2D shape—represented either by vector

graphics or a bitmap image—into the system. The only

requirement is that the boundary of the shape can be represented

as a simple closed polygon. For bitmap images, we currently

manually remove backgrounds and apply automatic silhouette

tracing using the marching squares algorithm. The system then

generates a triangulated mesh inside the boundary. Various

triangulation methods are available [Shewchuk 1996], but better

manipulation results are achieved by using near-equilateral

triangles of similar sizes across the region. We use a particle-

based algorithm to obtain such a mesh [Markosian 1999]. Starting

with a standard constrained Delaunay triangulation, the system

iteratively refines the mesh by adjusting vertex positions and

mesh connectivity. To work at interactive rates, it is important that

the mesh not be too large. Our current implementation generates

meshes with 100-300 vertices within a few seconds. The resulting

triangulation is registered as the “rest shape,” and the system

performs a pre-computation (which we call “registration”) to

accelerate the computation during the interaction (Figure 2a).

Original

drawing or image

Triangle

Mesh
Handles Result

a) Triangulation and registration b) Compilation c) Manipulation

Figure 2: Overview of the system. The system first triangulates the

original shape, and performs some pre-computation. The user adds

handles. Moving the handles results in a fast deformation.

The user manipulates the shape by indicating handles on the shape

and then interactively moving the handles (Figure 2b,c). The user

clicks on the shape to place handles and drags the handles to move

them. We currently let the user place handles only at existing

mesh vertices. Ideally, the system would allow the user to put

handles at arbitrary locations and modify the mesh structure to

include the handle. We plan to incorporate such a re-meshing

mechanism into the system in the future.

Our system also supports multiple-point input devices. We

currently use SmartSkin [Rekimoto 2002], which can track

multiple fingers touching its surface. By projecting the drawing

onto the SmartSkin we bring the user's fingers into direct

correspondence with the constraint points (Figure 1). This lets the

user grasp and manipulate the drawing as if manipulating a real-

world object. We are also testing a Wacom tablet with two

orientation-sensitive mice. In this case, each mouse is associated

with a couple of vertices which are moved and rotated by the

mouse (Figure 16). The interface has some similarity to Twister

[Llamas et al. 2003], but the operation using our system is more

like manipulation of physical objects while their system is

designed for model construction.

Shape manipulation is first applied to the triangle mesh; the

system then maps the original drawing or image from the original

mesh to the deformed mesh. When manipulating vector graphics,

we use the barycentric coordinates of each vertex within the

corresponding triangle of the mesh. When manipulating a bitmap

image, we simply use standard linear texture mapping.

The system performs additional pre-computations when new

handles are added or removed (Figure 2b). We call this process

“compilation” because this process actually prepares a function

that takes the handle configuration as input and returns the

resulting shape as output. During interaction, the system

repeatedly sends the updated handle configuration to this function.

4. Algorithm

The input to the algorithm is the set of all xy-coordinates of the

constrained mesh vertices (Figure 3a) and the output is the xy-

coordinates of the remaining free vertices that minimize the

distortion associated with all triangles in the resulting mesh

(Figure 3d). The central challenge is to find an appropriate

definition for the distortion of an individual triangle. Our strategy

is to design an error metric that is quadratic in its free variables so

the system can solve the minimization problem as a simple matrix

computation.

Ideally we would like a single quadratic error function that

appropriately represents overall distortion. We have examined

various possibilities, but finally concluded that it is impossible to

design such a function (see Appendix A). Our solution is to split

the problem into a rotation part and a scale part so that each part is

handled by an independent quadratic error function. With this

decomposition, we can obtain the final result by sequentially

solving two least-squares problems.

Given the coordinates of the constrained vertices, the first step

generates an intermediate result by minimizing an error metric

that prevents shearing and non-uniform stretching but permits

rotation and uniform scaling (Figure 3a). The second step takes

this result and adjusts the scale of each triangle. This second step

is further decomposed into two sequential processes. The system

first fits each original triangle to the corresponding intermediate

triangles without changing scale (Figure 3b), and then computes

the final result by minimizing an error metric that represents the

difference between the fitted triangle and the resulting triangles

(Figure 3c). The following subsections describe each step in detail.

a b c

Figure 3: Overview of the algorithm. For the given handle configuration,

the system first generates an intermediate result by minimizing conformal

(i.e., scale-independent) distortion (a). The system then fits triangles from

the rest shape to corresponding triangles in the intermediate result (b). The

system generates a final result (c) by minimizing the difference between

the fitted triangles and the corresponding triangles.

4.1 Step one: scale-free construction

Step one generates an intermediate result by minimizing an error

function that allows rotation and uniform scaling. The input is the

xy-coordinates of the constrained vertices and the output is the xy-

coordinates of the remaining free vertices. Note that this algorithm

does not use the previous result as an initial configuration, as do

physically-based simulation or relaxation methods. Instead, we

provide a closed-form solution for the problem.

This step corresponds to the 2D case in Laplacian editing [Sorkine

et al. 2004]. Our formulation is slightly different in that we use a

triangle mesh rather than the boundary and we assign quadratic

error functionals to each individual triangle rather than each

vertex. We believe that our formulation is slightly easier to

implement but their formulation can certainly be used instead of

ours in this step.

The error function for a deformed triangle {v0′, v1′, v2′} is defined

as follows (Figure 4). For the corresponding triangle in the rest

shape {v0, v1, v2}, the system first computes relative coordinates

{x01, y01} of v2 in the local coordinate frame defined by v0 and v1

(R90 denotes rotation counterclockwise by 90 degrees):

109001100102 vvRyvvxvv ++= (1)

Given v0′, v1′, x01, and y01, the system can compute the desired

location for v2′.

⎥
⎦

⎤
⎢
⎣

⎡
−

=′′+′′+′=
01

10
 90109001100102 where RvvRyvvxvv

desired (2)

The error associated with v2′ is then represented as
2

2

desired

2}{ 2
′−= vvE v

 (3)

We can define v0
desired and v1

desired similarly, and we define the

error associated with the triangle as

∑
=

′−=
3,2,1

2
desired

},,{ 210

i

iivvv vvE (4)

Original Triangle Target triangle

v0

v1

v2

v2
desired

x01

y01

x01

y01

90deg

90deg error for v2

v0´

v1´

v2´

Figure 4: Error metric used in step one. v2
desired is obtained by fitting the

original triangle to the target triangle by translation, rotation, and scaling

so that v0′ and v1′ match v0 and v1.

The error for the entire mesh is simply the sum of errors for all

triangles in the mesh. Since the error metric is quadratic in v′

=(v0x′, v0y′, …, vnx′, vny′) T, we can express it in matrix form:

′′=′ Gvv
v

T

}{1E (5)

The minimization problem is solved by setting the partial

derivatives of the function E1{v′} with respect to the free variables

u = (u0x, u0y,…, umx, umy)
T in v′ to zero. By reordering v′ to put the

free variables first we can write v′T=(uT qT) where q represents the

constrained vertices. This gives us

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′′=

q

u

GG

GG

q

u
Gvv

1110

0100

T

T

1E
 (6)

0)qG(G)uG(G
u

=+++=
∂
∂ T

1001

T

0000
1E

 (7)

We rewrite this as

0BquG =+′ (8)

Note that G′ and B are fixed and only q changes during

manipulation. Therefore, we can obtain u by simple matrix

multiplication by pre-computing G′-1B at the beginning. G′ is a

2m×2m sparse, symmetric matrix with approximately 12 entries

per column, because of the near-equilateral structure of the mesh.

Computing the solution in step one, as shown in Figure 3a, is very

fast; it requires only one matrix multiplication during interaction.

Step one generates reasonable results as long as the distances

between handles are close to their distances in the rest shape, as

shown in [Sorkine et al. 2004]. For example, one can successfully

translate or rotate the shape using this step alone. However, since

the error function does not capture changes in scale, the shape

inflates as the handles move away from each other and shrinks as

they approach each other. We fix this problem in step two.

4.2 Step two: scale adjustment

This step takes the intermediate result from step one (the xy-

coordinates of all vertices) as input and returns the final result

(updated xy-coordinates of the free vertices) by adjusting the scale

of the triangles in the mesh (Figure 3b, c).

4.2.1 Fitting the original triangle to the intermediate
triangle

The system first fits each triangle in the rest shape to the

corresponding triangle in the intermediate result, allowing rotation

and translation but not shearing or scaling (Figure 3b). There are a

couple of methods for this sort of fitting; we use the following

method in our current implementation.

Given a triangle {v0′, v1′, v2′} in the intermediate result and

corresponding triangle in the rest shape {v0, v1, v2}, the first

problem is to find a new triangle {v0
 fitted, v1

 fitted, v2
 fitted} that is

congruent to {v0, v1, v2} and minimizes the following functional

(Figure 5):

∑
=

′−=
3,2,1

2
fitted

},,{f fitted
2

fitted
1

fitted
0

i

iivvv
vvE (9)

Since it is difficult to obtain such a result directly, we approximate

it by first minimizing the error allowing uniform scaling and then

adjusting the scale afterwards.

Original Triangle Intermediate triangle

and fitted triangle

v0
v1

v2

v0´

v1´

v2´

v0
fitted

v1
fitted

v2
fitted

Figure 5: Fitting the original triangle to the intermediate triangle by

translation and rotation.

Using the coordinates x01 and y01 defined in Section 4.1, we can

express v2
fitted using v0

fitted and v1
fitted:

fitted

1

fitted

09001

fitted

1

fitted

001

fitted

0

fitted

2 vvRyvvxvv ++= (10)

so the fitting functional becomes a function of just the coordinates

of v0
fitted and v1

fitted, a quadratic in the four free variables of

w=(v0x
fitted, v0y

fitted, v1x
fitted, v1y

fitted)T. We can minimize Ef by setting

the partial derivatives of Ef over the four free variables to zero.

The result is an easily-solved 4×4 linear system. In matrix form,

 0CFw
w

=+=
∂
∂ fE

 (11)

F is fixed for a given mesh and C is defined by the result of step

one. Therefore, we compute F and invert it during registration. By

solving this equation, we obtain a newly fitted triangle {v0
fitted,

v1
fitted, v2

fitted} that is similar to the original triangle {v0, v1, v2}. We

make it congruent simply by scaling the fitted triangle by the

factor of ||v0
fitted-v1

fitted||/||v0-v1||. We apply this fitting operation to

all triangles in the mesh. Note that each vertex of the original

mesh appears in several triangles and hence corresponds to

multiple vertices in the fitting triangles (gray triangles in Figure

3b). Reconciling these distinct locations is the sole remaining task.

4.2.2 Generating the final result using the fitted
triangles

The system now computes the final xy-coordinates of the free

vertices for given xy-coordinates of the constrained vertices by

minimizing the difference between the resulting triangle in the

mesh and the fitted triangle (Figure 2d). Note that we use only the

fitted triangles here and no longer need the intermediate mesh.

This process is very similar to the assembly process in [Alexa et al.

2000; Sumner and Popovic 2004; Yu et al. 2004].

We again begin the explanation with the single triangle {v0, v1, v2}

(Figure 6). Given the corresponding fitted triangle {v0
fitted, v1

fitted,

v2
fitted}, we define a quadratic error function by

∑
∈

′′′′′′ −′′′′=
)}0,2(),2,1(),1,0{(),(

2
fittedfitted

},{2
210

ji

jijivvv
vvvvE (12)

Note that we associate an error with each edge, not each vertex.

That is, we use the rotation of the fitted triangle and ignore its

position. The translation is solved for as a side effect only. The

error is clearly minimized when the triangles {v0′′, v1′′, v2′′} and

{v0
fitted, v1

fitted, v2
fitted} are identical. But since the vertex v0′′, for

instance, may lie in several triangles, the optimal position for v0′′
will be some average of the positions desired by each triangle in

which it appears.

fitted triangle

v0´´

v0
fitted

target triangle

v1
fitted

v2
fitted

v1´´

v2´´

Figure 6: Error metric used in step two. This metric measures the

difference between the edge vectors of the fitted triangle and those of the

target triangle.

The error for the entire mesh can be represented in a matrix form:

cE
v

+′′+′′′′=′′ fvHvv T

}{2
 (13)

Note that H is defined by the connectivity of the original mesh

and is independent of the fitted triangles, while f and c are

determined by the fitted triangles and thus change during

interaction.

We minimize E2 by setting the partial derivatives of E2 over free

vertices u to zero. By reordering v′′, we can write v′′ T = (u T q T).

This gives us

() ccE +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+′′+′′′′=

q

u
ff

q

u

HH

HH

q

u
fvHvv

1110

0100

T

T

102

 (14)

0f)qH(H)uH(H
u

=++++=
∂
∂

0

T

1001

T

0000
2E

 (15)

We rewrite this as

0fDquH =++′ 0
 (16)

H′ and D are fixed but q and f0 change during manipulation. We

therefore pre-compute LU factorization of H′ at the beginning and

solve the equation using it during interaction. Actually, the x and y

components are mutually independent in H′, so we can perform

the above computation for each component separately. For each

component, H′ is an m×m sparse, symmetric matrix with

approximately 6 entries for each column.

4.3 Algorithm summary

Our algorithm can be summarized as follows.

1 Registration (when a new rest shape is defined)

1-1 Construct matrices G and H using the vertex coordinates in

the rest shape.

1-2 Construct F and invert it for each triangle.

2 Compilation (when handles are added or removed)

2-1 Construct G′ and B from G and compute G′-1B.

2-2 Construct H′ and D from H and construct LU factorization

of H′.
3 During manipulation (when handles are moved)

3-1 Obtain intermediate coordinates for the free vertices as

-G′-1Bq where q represents the coordinates of handles.

3-2 Construct C for each triangle using the intermediate vertex

coordinates. Multiplying F-1 and C and adjust its scale to

obtain each fitted triangle.

3-3 Construct f0 using the fitted triangles and obtain the final

result by solving H′u+Dq+f0=0 using pre-computed LU

factorization.

5. Extensions

This section discusses various adjustments necessary to make the

system work in practice, as well as other enhancements.

5.1 Collision detection and depth adjustment

We must be careful when different parts of the shape overlap. If

we assign depths inappropriately, the overlapping parts can

interpenetrate (Figure 7 middle). One problem is that one cannot

assign static consistent depth values that work for all possible

deformations. Figure 8 shows a simple case. Suppose we had

continuous depth values across the shape. Given three points a, b,

and c, we can assume that a’s depth < b’s depth < c’s depth. If

we bring vertex b between a and c by deformation, there must

exist an edge where one vertex is deeper than b and the other is

shallower. This produces the undesirable artifact in Figure 8.

Our approach is to dynamically adjust depth during interaction

(Figure 7 right). We continuously monitor the mesh for self-

intersection and assign appropriate depth values to the

overlapping parts. This process is similar to the hidden-line

removal algorithm in [Hornung 1984]. We first locate boundary

intersections and then search for overlapping regions starting from

those boundary intersections. Determining the depth order of the

overlapping regions is still an open problem. We currently use a

statically predefined order as a starting point. We have also

implemented a very simple mechanism to achieve frame-to-frame

coherence, but it is still in preliminary form.

 rest shape without depth adjustment with depth adjustment

Figure 7: Collusion detection and depth adjustment. Without appropriate

depth assignment, one can see interpenetration (center). We detect

overlapping regions and adjust depth on the fly.

Figure 8: Limitation of static depth assignment.

5.2 Weights for controlling rigidity

Because our algorithm minimizes a simple error functional,

adding different weights to different parts of the mesh is

straightforward. We do this to control the local rigidity of the

shape. We provide a painting interface in which the user can make

certain parts stiffer than others. We currently use a weight of

10000 for the painted triangles and 1 for the others. This is useful

in preventing important features such as a head from being

distorted (Figure 9). It is possible to enforce perfect rigidity by

reducing the number of free variables in the minimization, thus

obtaining similar results, but we found that weighting is more

flexible, and produces more pleasing results under extreme

distortions..

rest shape without weights with weights

Figure 9: Adjusting rigidity with weights. By adding extra weights to

important regions, one can prevent undesirable distortion.

5.3 Animations

Our shape manipulation technique is useful in making 2D

animations, for example by setting the character shape at each key

frame. This is especially helpful when one wants to animate

drawings with detailed surface decoration, since drawing them

manually is tedious. It also makes it practical to make animations

by deforming photographed objects.

Another approach is to use it for performance-driven animation.

By manipulating multiple control vertices simultaneously, one can

make interesting animations by recording live performances. We

are currently testing a technique similar to Ngo et al.’s system

[2000] and facial animation example in [Lewis et al. 2000]. The

user first sets a pose by manipulating control vertices and

associates the control vertex configuration with a specific point on

the canvas. After setting several such key poses, the user can

direct multiple control vertices simultaneously by simply moving

a control cursor. The system computes an appropriate control

vertex configuration by interpolating nearby key poses using a

radial basis function (Figure 10).

Figure 10: Designing performance-driven animation using spatial

keyframing. The users specify a set of key poses (yellow mark) by

manipulating handles. They can then manipulate the entire body by

dragging a control cursor (red mark). The system blends nearby poses

using a radial basis function.

The resulting motion is very smooth and lively because the user’s

own hand movement appears in the resulting animation. In

addition, it is much easier and faster than traditional temporal

keyframing using existing shape deformation techniques.

5.4 As-rigid-as-possible curve editing

We have also applied our two-step algorithm to curve editing. For

curve editing, we take a polyline instead of a triangle mesh as

input. We first apply 2D Laplacian curve editing [Sorkine et al.

2004] and then apply our scale adjustment procedure to the result.

Figure 11 shows an example operation. Without scale adjustment,

the curve grows and shrinks freely. With scale adjustment, the

curve behaves as if it is rigid.

without scale adjustment with scale adjustment

Figure 11: Curve editing with and without scale-adjustment procedure.

Without scale adjustment, the stretched region grows and the squashed

region shrinks.

To let the user adjust the influence region dynamically during

interaction, we introduce a peeling interface in which the

influence region grows as the user drags the curve father away

(Figure 12). This frees the user from specifying an influence

region beforehand and makes the interaction very intuitive. As an

option, we also allow the user to explicitly specify the influence

region by putting virtual pushpins along the curve before dragging.

A similar grab-and-pull curve editing tool is used in Macromedia

Flash, but it allows only local changes and does not let the user

change the influence region.

Figure 12: Curve editing with a peeling interface. As the user pulls the

curve further away, the influence region grows (left to right). The user can

also explicitly specify the region beforehand (bottom left).

6. Results

We have applied our technique to various drawings and images.

Figure 13 shows the manipulation of arms and legs by controlling

the end points. This is similar to the pin-and-drag interface for

articulated characters [Yamane and Nakamura 2003], but our

system works with no explicit skeleton structures. Figure 14

shows manipulation by controlling the internal points. Note that

the arms and legs are displaced appropriately due to the rigidity of

the body. By contrast, a mass-spring model can take some time to

propagate the effect to the entire body. Figure 15 shows

manipulation of a shape that lacks articulated structure; note that

the shape is stretched and squashed appropriately. Figure 1 and 16

show applications of our technique to images. The natural

deformation effects give the feel of manipulating real 3D objects.

Figure 13: Manipulation of a shape by controlling the end points.

Figure 14: Manipulation of a shape by controlling the internal points. The

user moves the handle at the center horizontally and the entire body is

deformed appropriately.

Figure 15: Stretch and squash of a non-articulated shape.

Figure 16: Manipulation of an image using two rotation sensitive mice.

Figure 1 shows a snapshot of operation using a SmartSkin multi-

point touchpad [Rekimoto 2002]. Test users found it easy to bend

and stretch the shapes, and enjoyed experimenting with the shapes

and the movements they could produce. Since the deformation is

updated in real time and is easy to control, several fingers can be

used to steer different parts of the shape and perform simple

animations. Two users can work together to create more complex

motion.

Table 1 summarizes the performance of the current

implementation. This data is for a system running Java 1.4 on a

Windows XP notebook PC (Pentium III 1GHz processor and 756

MB of memory). We use a native sparse LU solver [Davis 2003]

for matrix computations. We obtained the data by running the

corresponding routines 100 times, so these are very rough

estimates severely affected by garbage collection and CPU cache.

The result indicates that step two is the bottleneck during

manipulation. In our experience, one can obtain quite nice results

with a very coarse mesh with fewer than 100 vertices (Figure 17

left). All examples in this paper are obtained with similar mesh

sizes. In this range, the system shows completely real-time

performance and the user experiences no delay. One can obtain

smoother results by using a finer mesh but the interaction

eventually becomes choppy. The delay becomes obvious at a

vertex count of around 300 on our notebook PC (Figure 17 right).

Table 1: Sample running times (milliseconds) for the meshes in Figure 17

Registration Compilation Update # of

vertices Step1 Step2 Step1 Step2 Step1 Step2

93 16 18 14 4 0.06 2.2

150 42 38 29 8 0.09 3.5

287 160 107 72 19 0.16 7.5

Figure 17: Example triangulations. The number of vertices is 85, 156, 298

respectively and three handles are attached to each.

We have experimentally examined the effect of uneven

triangulation on our algorithm and found it to be fairly robust

against irregularly spaced mesh. Figure 18 shows an example. The

dense and sparse regions are evenly squashed and stretched, and

similar behavior is observed for bending. This can be explained as

follows. If triangle size is reduced by a factor of 1/n, the distortion

associated with each triangle decreases by a factor of 1/n2. At the

same time, the density of triangles becomes n2 times higher. As a

result, triangle size does not affect the total cost. This does not

apply for curve editing, where the density increases only linearly.

The error in a dense region is estimated as smaller, thus making

the region softer. The simplest solution is to approximate the

curve by an evenly spaced polyline and apply our algorithm to the

resampled curve.

rest shape squashed

stretched

Figure 18: The effect of uneven triangulation. Our algorithm is not

strongly affected by the mesh density.

7. Limitations and Future Work

The two-step algorithm introduced here is merely a practical

approximation to achieve interactive performance. It works

surprisingly well in most cases as shown in our examples, but in

some cases its limitations are revealed. Figure 19 shows an

example. When the control handle is moved one might expect the

result shown on the right, but our algorithm returns the result

shown in the middle due to its inherent linear nature. The free

vertices only move parallel to the line connecting the constrained

vertices. To handle these cases, a more accurate distortion metric

similar to the one in [Sheffer and Kraevoy 2004] is probably

necessary.

 rest shape current results physically plausible results

Figure 19: A limitation of our algorithm. If the user stretches a shape (left),

the current algorithm returns the result in the middle; the results on the

right would be more desirable.

As is discussed in [Alexa et al. 2000], a linear mapping from an

original triangle to a deformed triangle ignoring the translation

factor can be represented by a 2×2 affine transformation matrix A.

Using singular value decomposition (SVD), the matrix A can be

represented as a combination of a rotation part Rγ, a shearing part

sh, and a scaling part sx, sy [Shoemake and Duff 1992]:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

yh

hxT

ss

ss
RDRRRRDRRA γβββαβα))(((17)

Given this formulation, one can obtain as-rigid-as-possible

mapping by minimizing |sh|, |sx-1|, and |sy-1|. We would like to

experiment with this by finding a way to minimize these errors

directly.

Volume preservation is another feature that the current

formulation cannot achieve [Angelidis et al. 2004]. With volume

preservation, an object is squashed vertically when it is stretched

horizontally. In the decomposition above, volume preservation is

simulated by minimizing |sxsy-1|. We tried to implement this effect

by adjusting the target triangle in the step 2, but the result was not

very satisfactory. Our experience suggests that it is necessary to

implement volume transfer between triangle elements to obtain a

globally convincing result. We plan to explore this path in the

future.

We very much want to extend the technique to 3D shapes. The

ability to freely move, rotate, and deform a 3D object is very

attractive in various applications such as object manipulation in

virtual environments. Unfortunately, the extension is not

straightforward. We have experimented with various formulations

but we have yet to find quadratic error functions equivalent to

those we use in 2D, and it seems that we must take a very

different approach. We plan to continue our exploration.

Acknowledgements

We would like to thank Jun Rekimoto and Kentaro Fukuchi for

providing SmartSkin. We also thank Daniel Keefe and Uruma

Delvi for their lovely drawings. Finally we thank the user

interface research group at the University of Tokyo and the Brown

University graphics group for helpful discussions.

References

ALEXA, M., COHEN-OR, D., and LEVIN, D. 2000. As-Rigid-As-Possible

Shape Interpolation. In Proceedings of ACM SIGGRAPH 2000, 157-164.

ANGELIDIS, A., CANI, M., WYVILL, G., and KING, S. 2004. Swirling-

Sweepers: Constant-Volume Modeling. Pacific Graphics 2004, 10-15.

BARRETT, W. A., and CHENEY, A. S. 2002. Object-based Image Editing.

ACM Transactions on Graphics, 21, 3, 777-784.

Beier, T. and Neely, S. 1992 Feature-based image metamorphosis, In

Computer Graphics (Proceedings of SIGGRAPH 92), 26, 2, 35-42.

Bookstein, F. L. 1989. Principal Warps: Thin-Plate Splines and the

Decomposition of Deformations, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 11, 6, 567-585.

BRUCE, H. T., and CALDER, P. 1995. Animating Direct Manipulation

Interfaces. In Proceedings of UIST ‘95, 3-12.

CELNIKER, G., and GOSSARD, D. 1991. Deformable Curve and Surface

Finite Elements for Free-form Shape Design. In Computer Graphics

(Proceedings of ACM SIGGRAPH 91), 25, 4, 257-266.

DAVIS, T. A. 2003. Umfpack Version 4.1 User Guide. Technical report

TR-03-008, University of Florida.

GIBSON, S. F., and MIRTICH, B. 1997. A Survey of Deformable Models in

Computer Graphics. Technical report TR-97-19, Mitsubishi Electric

Research Laboratories.

HORNUNG, C. 1984. A Method for Solving the Visibility Problem. IEEE

Computer Graphics and Applications, 4, 7, 26-33.

JAMES, D. L., and PAI, D. K. 1999. ArtDefo Accurate Real Time

Deformable Objects, In Proceedings of ACM SIGGRAPH 1999, 65-72.

LEWIS, J. P., CORDNER, M., and FONG, N. 2000. Pose Space Deformations:

A Unified Approach to Shape Interpolation and Skeleton-driven

Deformation. In Proceedings of ACM SIGGRAPH 2000, 165-172.

LLAMAS, I., KIM, B., GARGUS, J., ROSSIGNAC, J., and SHAW, C. D. 2003.

Twister: A Space-Warp Operator for the Two-Handed Editing of 3D

Shapes. ACM Transactions on Graphics, 22, 3, 663–668.

MACCRACKEN, R., and JOY, K.I. 1996. Free-form Deformations with

Lattices of Arbitrary Topology. In Proceedings of ACM SIGGRAPH

1996, 181-188.

MARKOSIAN, L., COHEN, J.M., CRULLI, T., and HUGHES, J.F. 1999. Skin: a

Constructive Approach to Modeling Free-form Shapes. In Proceedings

of ACM SIGGRAPH 1999, 393-400.

MILLIRON, T., JENSEN, R., BARZEL, R. and FINKELSTEIN, A. 2002. A

Framework for Geometric Warps and Deformations. ACM Transactions

on Graphics, 21, 1, 20-51.

NGO, T., CUTRELL, D., DANA, J., DONALD, B., LOEB, L. and ZHU, S. 2000.

Accessible Animation and Customizable Graphics via Simplicial

Configuration Modeling. In Proceedings of ACM SIGGRAPH 2000,

403-410.

REKIMOTO, J. 2002. SmartSkin: An Infrastructure for Freehand

Manipulations on Interactive Surfaces. In Proceedings of CHI’02, 113-

120.

SHEWCHUK, J.R. 1996. Triangle: Engineering a 2D Quality Mesh

Generator and Delaunay Triangulator. In Proceedings of First

Workshop on Applied Computational Geometry, 124-133.

SHEFFER, A., and KRAEVOY, V. 2004. Pyramid Coordinates for Morphing

and Deformation. In Proceedings of 3D Data Processing, Visualization,

and Transmission, 2nd International Symposium on (3DPVT'04), 68-75.

Shoemake K. and Duff, T. 1992. Matrix Animation and Polar

Decomposition. In Proceedings of Graphics Interface ’92, 258-264.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., ROSSL, C., and

SEIDEL, H. 2004. Laplacian Surface Editing. In Proceedings of the

Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,

179-188.

SUMNER, R. W., and POPOVIC, J. 2004. Deformation Transfer for Triangle

Meshes, ACM Transaction on Graphics, 23, 3, 399-405.

YAMANE, K., and NAKAMURA, Y. 2003. Natural Motion Animation

Through Constraining and Deconstraining at Will. IEEE Transaction on

Visualization and Computer Graphics, 9, 3, 352-360.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B. and SHUM, H. Y. 2004.

Mesh Editing with Poisson-Based Gradient Field Manipulation. ACM

Transactions on Graphics, 23, 3, 641-648.

A Proof of nonexistence of quadratic error metric

We claimed that there is no quadratic function of the locations of

the deformed mesh vertices that measures the distortion from the

original mesh, in the sense that it is minimized exactly when the

deformed mesh is oriented congruent to the original.

The proof is by contradiction: Suppose there is such a measure,

and apply it to a one-triangle mesh with an original triangle ((0,0),

(1,0), (0,1)) and a deformed triangle ((0,0), (x,y), (u,v)). This gives

a function T(x,y,u,v) that is quadratic in the variables x,y,u,v. By

subtracting the constant term, we can get a new quadratic with no

constant term, but with exactly the same minima. Because rotation

through 180 degrees is an orientation preserving congruence, we

know that T(x,y,u,v)= T(-x,-y,-u,-v) for all (x,y,u,v). This means

that T can be written with no linear terms. We already removed

the constant term, so T is “pure quadratic” (i.e., all terms have

total exponent two).

The function T must be “positive semidefinite” (i.e., T(x,y,u,v) >=

0 for all (x,y,u,v)), because if T(x0,y0,u0,v0) = K < 0, then

T(tx0,ty0,tu0,tv0) = t2K < 0; as we increase t, the values of T

become arbitrarily negative; hence T has no minimum value,

which contradicts the hypothesis.

However, for such a function, the value at (0,0,0,0) is zero, and

this is certainly the global minimum. But (0,0,0,0) represents a

degenerate triangle that is not congruent to our chosen one. This is

a contradiction.

