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Abstract 
We present an interactive system that lets a user move and deform 

a two-dimensional shape without manually establishing a skeleton 

or freeform deformation (FFD) domain beforehand. The shape is 

represented by a triangle mesh and the user moves several vertices 

of the mesh as constrained handles. The system then computes the 

positions of the remaining free vertices by minimizing the 

distortion of each triangle. While physically based simulation or 

iterative refinement can also be used for this purpose, they tend to 

be slow. We present a two-step closed-form algorithm that 

achieves real-time interaction. The first step finds an appropriate 

rotation for each triangle and the second step adjusts its scale. The 

key idea is to use quadratic error metrics so that each 

minimization problem becomes a system of linear equations. 

After solving the simultaneous equations at the beginning of 

interaction, we can quickly find the positions of free vertices 

during interactive manipulation. Our approach successfully 

conveys a sense of rigidity of the shape, which is difficult in 

space-warp approaches. With a multiple-point input device, even 

beginners can easily move, rotate, and deform shapes at will. 

 
CR Categories: I.3.6 [Computer Graphics]: Methodology and 
Techniques – Interaction Techniques; I.3.3 [Computer Graphics]: 
Picture/Image Generation – Display algorithms; I.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling – 
Geometric algorithms.  
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1 Introduction 
 

With a 2D image or drawing at hand, a user might want to 

manipulate it—move, rotate, stretch, and bend it. The primary 

application we have in mind is an editing tool for drawing or 

image-editing systems, but our interactive shape manipulation 

technique is also useful in various applications such as real-time 

live performance [Ngo et al. 2000] and enriching graphical user 

interfaces [Bruce and Calder 1995].  

 

One popular approach for shape manipulation is to use a pre-

defined skeleton. The user manipulates the skeleton configuration 

and the system adjusts the overall shape relative to the skeleton. 

However, defining a skeleton structure for a shape is not a trivial 

task [Lewis et al. 2000] and is not effective for objects, such as 

jellies, that lack an obvious jointed structure. Another popular 

method is free-form deformation (FFD) [MacCracken and Joy 

1996] in which the user explicitly divides the space into several 

domains and manipulates each domain by moving control points 

defining it. But setting FFD domains is tedious and the user must 

laboriously manipulate many control vertices.  

This paper presents an interactive system that allows the user to 

manipulate a shape without using a skeleton or FFD. The user 

chooses several points inside the shape as handles and moves each 

handle to a desired position. The system then moves, rotates, and 

deforms the overall shape to match the given handle positions 

while minimizing distortion. By taking the interior of the shape 

into account, our approach can model its rigidity (i.e., internal 

resistance to deformation), making the result much closer to the 

behavior of real-world objects than in space-warp approaches as 

in [Barrett and Cheney 2002; Llamas et al. 2003].  

 

We use a two-step closed-form algorithm for finding the shape 

configuration that minimizes distortion. The typical approach is to 

use a physically based simulation or nonlinear optimizations 

[Sheffer and Kraevoy 2004], but these techniques are too slow for 

interactive manipulation. A key aspect of our approach is the 

design of a quadratic error metric so that the minimization 

problem is formulated as a set of simultaneous linear equations. 

Our system solves the simultaneous equations at the beginning, 

and can therefore quickly find a solution during interaction. 

Ideally we would like a single quadratic error function that 

handles all properties of a shape, but no such function exists (see 

Appendix A). We therefore split the problem into a rotation part 

and a scale part. This divides the problem into two least-squares 

minimization problems that we can solve sequentially. This 

method can be seen as a variant of the method proposed by 

Sorkine et al. [2004]. 

 

Our technique can be useful in standard dragging operations with 

a mouse, but it is particularly interesting when using a multiple-

point input device such as a SmartSkin touchpad [Rekimoto 2002] 

(Figure 1). With such a device, one can interactively move, rotate, 

and deform an entire shape as if manipulating a real object using 

both hands. This is difficult with existing shape deformation tools 

because most allow only local modification while the overall 

position and orientation of the shape remain fixed. 

 

  

Figure 1: Shape manipulation using a SmartSkin touchpad. The user can 

interactively move, rotate, and deform the shape using both hands as if 

manipulating a real object. 

 



2 Related Work 
 

Shape manipulation techniques fall roughly into two categories. 

One is to deform the space in which the target shape is embedded; 

the other is to deform the shape while taking its structure into 

account. 

 

Deformation using skeletons, FFD, and other space-warp 

approaches belong to the first category. With skeletons, each point 

in the shape is associated with a coordinate frame defined by a 

bone [Lewis et al. 2000]. In FFD, each point is associated with a 

closed region in a FFD grid [MacCracken and Joy 1996]. Other 

space warp techniques deform the global space [Milliron et al. 

2002]. Beier and Neely used space deformation for morphing 

[1992]. Twister deforms the global space according to two 6-DOF 

controls [Llamas et al. 2003], and Barrett and Cheney [2002] used 

space-warp deformation for digital image editing. Brookstein 

[1989] used thin-plate splines to find a space deformation that is 

defined by several control points. A drawback of these approaches 

is that they model the rigidity of the ambient space, rather than 

that of the shape itself, and thus the resulting deformation differs 

greatly from the behavior of real objects. 

 

The second category includes physically based methods, the most 

popular of which are mass-spring models [Gibson and Mirtich 

1997]. These are very easy to implement, but their behavior is too 

elastic for many applications and they often converge slowly. In 

addition, careful parameter tuning is required to make them really 

work. More physically accurate simulation is possible with finite-

element methods [Celniker and Gossard 1991], but these are very 

complicated and expensive to solve, making them inappropriate 

for interactive manipulation of simple drawings. The ArtDefo 

system [James and Pai 1999] achieved physically accurate, 

interactive shape deformation using boundary-elements, but it is 

limited to very small deformations such as poking the surface and 

is not applicable to large deformations like bending an arm.  

 

The work presented here belongs to the second category. Our goal 

is to introduce internal model rigidity into shape manipulation. 

However, instead of using physically based models, we use 

simple geometric approach similar to a technique used in [Alexa 

et al. 2000]. They obtain an as-rigid-as-possible interpolation 

between shapes by computing a rigid transformation for each 

triangle element geometrically and stitching them together. 

Similarly, we achieve as-rigid-as-possible manipulation by 

geometrically minimizing the distortion associated with each 

triangle in a mesh. Sheffer and Kraevoy [2004] introduce a similar 

deformation tool, but use an iterative computation that is too 

expensive for interactive manipulations, especially when the 

control vertices move quickly. 

 

The algorithm we use can be seen as a variant of the Laplacian 

surface-editing method proposed by Sorkine et al. [2004]. They 

achieved fast detail-preserving deformation by using rotation- and 

scale-invariant Laplacian coordinates. They also proposed scaling 

the Laplacians of the deformed shape back to their original scale 

and re-solving. Similarly, we add a scale-preserving effect to the 

initial deformation process. We show that this scale-preservation 

effect makes possible more dynamic manipulation than is seen in 

their paper’s examples, where the user fixes most of the shape and 

moves only a specific region of interest.  

 

 

3 Overview 
 

We start with an overview of the system to establish a context for 

the core algorithms described in the next section.  

 

The user first imports a 2D shape—represented either by vector 

graphics or a bitmap image—into the system. The only 

requirement is that the boundary of the shape can be represented 

as a simple closed polygon. For bitmap images, we currently 

manually remove backgrounds and apply automatic silhouette 

tracing using the marching squares algorithm. The system then 

generates a triangulated mesh inside the boundary. Various 

triangulation methods are available [Shewchuk 1996], but better 

manipulation results are achieved by using near-equilateral 

triangles of similar sizes across the region. We use a particle-

based algorithm to obtain such a mesh [Markosian 1999]. Starting 

with a standard constrained Delaunay triangulation, the system 

iteratively refines the mesh by adjusting vertex positions and 

mesh connectivity. To work at interactive rates, it is important that 

the mesh not be too large. Our current implementation generates 

meshes with 100-300 vertices within a few seconds. The resulting 

triangulation is registered as the “rest shape,” and the system 

performs a pre-computation (which we call “registration”) to 

accelerate the computation during the interaction (Figure 2a). 

 
Original

drawing or image
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a) Triangulation and registration b) Compilation c) Manipulation  

Figure 2: Overview of the system. The system first triangulates the 

original shape, and performs some pre-computation. The user adds 

handles. Moving the handles results in a fast deformation. 

 

The user manipulates the shape by indicating handles on the shape 

and then interactively moving the handles (Figure 2b,c). The user 

clicks on the shape to place handles and drags the handles to move 

them. We currently let the user place handles only at existing 

mesh vertices. Ideally, the system would allow the user to put 

handles at arbitrary locations and modify the mesh structure to 

include the handle. We plan to incorporate such a re-meshing 

mechanism into the system in the future. 

 

Our system also supports multiple-point input devices. We 

currently use SmartSkin [Rekimoto 2002], which can track 

multiple fingers touching its surface. By projecting the drawing 

onto the SmartSkin we bring the user's fingers into direct 

correspondence with the constraint points (Figure 1). This lets the 

user grasp and manipulate the drawing as if manipulating a real-

world object. We are also testing a Wacom tablet with two 

orientation-sensitive mice. In this case, each mouse is associated 

with a couple of vertices which are moved and rotated by the 

mouse (Figure 16). The interface has some similarity to Twister 

[Llamas et al. 2003], but the operation using our system is more 

like manipulation of physical objects while their system is 

designed for model construction.  

 

Shape manipulation is first applied to the triangle mesh; the 

system then maps the original drawing or image from the original 

mesh to the deformed mesh. When manipulating vector graphics, 



we use the barycentric coordinates of each vertex within the 

corresponding triangle of the mesh. When manipulating a bitmap 

image, we simply use standard linear texture mapping. 

 

The system performs additional pre-computations when new 

handles are added or removed (Figure 2b). We call this process 

“compilation” because this process actually prepares a function 

that takes the handle configuration as input and returns the 

resulting shape as output. During interaction, the system 

repeatedly sends the updated handle configuration to this function.  

 

4. Algorithm 

 

The input to the algorithm is the set of all xy-coordinates of the 

constrained mesh vertices (Figure 3a) and the output is the xy- 

coordinates of the remaining free vertices that minimize the 

distortion associated with all triangles in the resulting mesh 

(Figure 3d). The central challenge is to find an appropriate 

definition for the distortion of an individual triangle. Our strategy 

is to design an error metric that is quadratic in its free variables so 

the system can solve the minimization problem as a simple matrix 

computation.  

 

Ideally we would like a single quadratic error function that 

appropriately represents overall distortion. We have examined 

various possibilities, but finally concluded that it is impossible to 

design such a function (see Appendix A). Our solution is to split 

the problem into a rotation part and a scale part so that each part is 

handled by an independent quadratic error function. With this 

decomposition, we can obtain the final result by sequentially 

solving two least-squares problems. 

 

Given the coordinates of the constrained vertices, the first step 

generates an intermediate result by minimizing an error metric 

that prevents shearing and non-uniform stretching but permits 

rotation and uniform scaling (Figure 3a). The second step takes 

this result and adjusts the scale of each triangle. This second step 

is further decomposed into two sequential processes. The system 

first fits each original triangle to the corresponding intermediate 

triangles without changing scale (Figure 3b), and then computes 

the final result by minimizing an error metric that represents the 

difference between the fitted triangle and the resulting triangles 

(Figure 3c). The following subsections describe each step in detail. 

 

a b c
 

Figure 3: Overview of the algorithm. For the given handle configuration, 

the system first generates an intermediate result by minimizing conformal 

(i.e., scale-independent) distortion (a). The system then fits triangles from 

the rest shape to corresponding triangles in the intermediate result (b). The 

system generates a final result (c) by minimizing the difference between 

the fitted triangles and the corresponding triangles. 

 

4.1 Step one: scale-free construction 

 

Step one generates an intermediate result by minimizing an error 

function that allows rotation and uniform scaling. The input is the 

xy-coordinates of the constrained vertices and the output is the xy-

coordinates of the remaining free vertices. Note that this algorithm 

does not use the previous result as an initial configuration, as do 

physically-based simulation or relaxation methods. Instead, we 

provide a closed-form solution for the problem. 

 

This step corresponds to the 2D case in Laplacian editing [Sorkine 

et al. 2004]. Our formulation is slightly different in that we use a 

triangle mesh rather than the boundary and we assign quadratic 

error functionals to each individual triangle rather than each 

vertex. We believe that our formulation is slightly easier to 

implement but their formulation can certainly be used instead of 

ours in this step.  

 

The error function for a deformed triangle {v0′, v1′, v2′} is defined 

as follows (Figure 4). For the corresponding triangle in the rest 

shape {v0, v1, v2}, the system first computes relative coordinates 

{x01, y01} of v2 in the local coordinate frame defined by v0 and v1 

(R90 denotes rotation counterclockwise by 90 degrees):  
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Figure 4: Error metric used in step one. v2
desired is obtained by fitting the 

original triangle to the target triangle by translation, rotation, and scaling 

so that v0′ and v1′ match v0 and v1. 

 

The error for the entire mesh is simply the sum of errors for all 

triangles in the mesh. Since the error metric is quadratic in v′ 

=(v0x′, v0y′, …, vnx′, vny′) T, we can express it in matrix form: 

′′=′ Gvv
v

T
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The minimization problem is solved by setting the partial 

derivatives of the function E1{v′} with respect to the free variables 

u = (u0x, u0y,…, umx, umy)
T in v′ to zero. By reordering v′ to put the 

free variables first we can write v′T=(uT qT) where q represents the 

constrained vertices. This gives us 
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We rewrite this as 

0BquG =+′                                     (8) 

Note that G′ and B are fixed and only q changes during 

manipulation. Therefore, we can obtain u by simple matrix 

multiplication by pre-computing G′-1B at the beginning. G′ is a 

2m×2m sparse, symmetric matrix with approximately 12 entries 

per column, because of the near-equilateral structure of the mesh. 

 

Computing the solution in step one, as shown in Figure 3a, is very 

fast; it requires only one matrix multiplication during interaction. 

Step one generates reasonable results as long as the distances 

between handles are close to their distances in the rest shape, as 

shown in [Sorkine et al. 2004]. For example, one can successfully 

translate or rotate the shape using this step alone. However, since 

the error function does not capture changes in scale, the shape 

inflates as the handles move away from each other and shrinks as 

they approach each other. We fix this problem in step two. 

 

4.2 Step two: scale adjustment  
 

This step takes the intermediate result from step one (the xy-

coordinates of all vertices) as input and returns the final result 

(updated xy-coordinates of the free vertices) by adjusting the scale 

of the triangles in the mesh (Figure 3b, c).  

 

4.2.1 Fitting the original triangle to the intermediate 
triangle 
 

The system first fits each triangle in the rest shape to the 

corresponding triangle in the intermediate result, allowing rotation 

and translation but not shearing or scaling (Figure 3b). There are a 

couple of methods for this sort of fitting; we use the following 

method in our current implementation. 

 

Given a triangle {v0′, v1′, v2′} in the intermediate result and 

corresponding triangle in the rest shape {v0, v1, v2}, the first 

problem is to find a new triangle {v0
 fitted, v1

 fitted, v2
 fitted} that is 

congruent to {v0, v1, v2} and minimizes the following functional 

(Figure 5): 
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Since it is difficult to obtain such a result directly, we approximate 

it by first minimizing the error allowing uniform scaling and then 

adjusting the scale afterwards.  
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Figure 5: Fitting the original triangle to the intermediate triangle by 

translation and rotation. 

 

Using the coordinates x01 and y01 defined in Section 4.1, we can 

express v2
fitted using v0

fitted and v1
fitted: 

fitted
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so the fitting functional becomes a function of just the coordinates 

of v0
fitted and v1

fitted, a quadratic in the four free variables of 

w=(v0x
fitted, v0y

fitted, v1x
fitted, v1y

fitted)T. We can minimize Ef by setting 

the partial derivatives of Ef over the four free variables to zero. 

The result is an easily-solved 4×4 linear system. In matrix form,  

 0CFw
w

=+=
∂
∂ fE

                                (11) 

F is fixed for a given mesh and C is defined by the result of step 

one. Therefore, we compute F and invert it during registration. By 

solving this equation, we obtain a newly fitted triangle {v0
fitted, 

v1
fitted, v2

fitted} that is similar to the original triangle {v0, v1, v2}. We 

make it congruent simply by scaling the fitted triangle by the 

factor of ||v0
fitted-v1

fitted||/||v0-v1||. We apply this fitting operation to 

all triangles in the mesh. Note that each vertex of the original 

mesh appears in several triangles and hence corresponds to 

multiple vertices in the fitting triangles (gray triangles in Figure 

3b). Reconciling these distinct locations is the sole remaining task. 

 

4.2.2 Generating the final result using the fitted 
triangles 
 

The system now computes the final xy-coordinates of the free 

vertices for given xy-coordinates of the constrained vertices by 

minimizing the difference between the resulting triangle in the 

mesh and the fitted triangle (Figure 2d). Note that we use only the 

fitted triangles here and no longer need the intermediate mesh. 

This process is very similar to the assembly process in [Alexa et al. 

2000; Sumner and Popovic 2004; Yu et al. 2004]. 

 

We again begin the explanation with the single triangle {v0, v1, v2} 

(Figure 6). Given the corresponding fitted triangle {v0
fitted, v1

fitted, 

v2
fitted}, we define a quadratic error function by  
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Note that we associate an error with each edge, not each vertex. 

That is, we use the rotation of the fitted triangle and ignore its 

position. The translation is solved for as a side effect only. The 

error is clearly minimized when the triangles {v0′′, v1′′, v2′′} and 

{v0
fitted, v1

fitted, v2
fitted} are identical. But since the vertex v0′′, for 

instance, may lie in several triangles, the optimal position for v0′′ 
will be some average of the positions desired by each triangle in 

which it appears. 
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Figure 6: Error metric used in step two. This metric measures the 

difference between the edge vectors of the fitted triangle and those of the 

target triangle. 

The error for the entire mesh can be represented in a matrix form: 
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v
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Note that H is defined by the connectivity of the original mesh 

and is independent of the fitted triangles, while f and c are 

determined by the fitted triangles and thus change during 

interaction. 

We minimize E2 by setting the partial derivatives of E2 over free 

vertices u to zero. By reordering v′′, we can write v′′ T = (u T q T). 

This gives us 
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We rewrite this as 

0fDquH =++′ 0
                          (16) 

 

H′ and D are fixed but q and f0 change during manipulation. We 

therefore pre-compute LU factorization of H′ at the beginning and 

solve the equation using it during interaction. Actually, the x and y 

components are mutually independent in H′, so we can perform 

the above computation for each component separately. For each 

component, H′ is an m×m sparse, symmetric matrix with 

approximately 6 entries for each column.  

 

4.3 Algorithm summary  
 

Our algorithm can be summarized as follows. 

1 Registration (when a new rest shape is defined) 

1-1 Construct matrices G and H using the vertex coordinates in 

the rest shape. 

1-2 Construct F and invert it for each triangle. 

2 Compilation (when handles are added or removed) 

2-1 Construct G′ and B from G and compute G′-1B. 

2-2 Construct H′ and D from H and construct LU factorization 

of H′. 
3 During manipulation (when handles are moved) 

3-1 Obtain intermediate coordinates for the free vertices as        

-G′-1Bq where q represents the coordinates of handles. 

3-2 Construct C for each triangle using the intermediate vertex 

coordinates. Multiplying F-1 and C and adjust its scale to 

obtain each fitted triangle. 

3-3 Construct f0 using the fitted triangles and obtain the final 

result by solving H′u+Dq+f0=0 using pre-computed LU 

factorization.  

 

5. Extensions 
 

This section discusses various adjustments necessary to make the 

system work in practice, as well as other enhancements.  

 

5.1 Collision detection and depth adjustment 
 

We must be careful when different parts of the shape overlap. If 

we assign depths inappropriately, the overlapping parts can 

interpenetrate (Figure 7 middle). One problem is that one cannot 

assign static consistent depth values that work for all possible 

deformations. Figure 8 shows a simple case. Suppose we had 

continuous depth values across the shape. Given three points a, b, 

and c, we can assume that a’s depth <  b’s depth <  c’s depth. If 

we bring vertex b between a and c by deformation, there must 

exist an edge where one vertex is deeper than b and the other is 

shallower. This produces the undesirable artifact in Figure 8. 

 

Our approach is to dynamically adjust depth during interaction 

(Figure 7 right). We continuously monitor the mesh for self-

intersection and assign appropriate depth values to the 

overlapping parts. This process is similar to the hidden-line 

removal algorithm in [Hornung 1984]. We first locate boundary 

intersections and then search for overlapping regions starting from 

those boundary intersections. Determining the depth order of the 

overlapping regions is still an open problem. We currently use a 

statically predefined order as a starting point. We have also 

implemented a very simple mechanism to achieve frame-to-frame 

coherence, but it is still in preliminary form. 

 

                      
           rest shape         without depth adjustment       with depth adjustment 

Figure 7: Collusion detection and depth adjustment. Without appropriate 

depth assignment, one can see interpenetration (center). We detect 

overlapping regions and adjust depth on the fly. 

 

Figure 8: Limitation of static depth assignment.  

 

5.2 Weights for controlling rigidity 

 

Because our algorithm minimizes a simple error functional, 

adding different weights to different parts of the mesh is 

straightforward. We do this to control the local rigidity of the 

shape. We provide a painting interface in which the user can make 

certain parts stiffer than others. We currently use a weight of 

10000 for the painted triangles and 1 for the others. This is useful 

in preventing important features such as a head from being 

distorted (Figure 9). It is possible to enforce perfect rigidity by 

reducing the number of free variables in the minimization, thus 

obtaining similar results, but we found that weighting is more 

flexible, and produces more pleasing results under extreme 

distortions.. 

 
rest shape                   without weights                 with weights  

Figure 9: Adjusting rigidity with weights. By adding extra weights to 

important regions, one can prevent undesirable distortion. 

 

5.3 Animations 

 

Our shape manipulation technique is useful in making 2D 

animations, for example by setting the character shape at each key 

frame. This is especially helpful when one wants to animate 

drawings with detailed surface decoration, since drawing them 

manually is tedious. It also makes it practical to make animations 

by deforming photographed objects. 

 

Another approach is to use it for performance-driven animation. 

By manipulating multiple control vertices simultaneously, one can 



make interesting animations by recording live performances.  We 

are currently testing a technique similar to Ngo et al.’s system 

[2000] and facial animation example in [Lewis et al. 2000]. The 

user first sets a pose by manipulating control vertices and 

associates the control vertex configuration with a specific point on 

the canvas. After setting several such key poses, the user can 

direct multiple control vertices simultaneously by simply moving 

a control cursor. The system computes an appropriate control 

vertex configuration by interpolating nearby key poses using a 

radial basis function (Figure 10).  

 

 

Figure 10: Designing performance-driven animation using spatial 

keyframing. The users specify a set of key poses (yellow mark) by 

manipulating handles. They can then manipulate the entire body by 

dragging a control cursor (red mark). The system blends nearby poses 

using a radial basis function.  

 

The resulting motion is very smooth and lively because the user’s 

own hand movement appears in the resulting animation. In 

addition, it is much easier and faster than traditional temporal 

keyframing using existing shape deformation techniques.  

 

5.4 As-rigid-as-possible curve editing 

 

We have also applied our two-step algorithm to curve editing. For 

curve editing, we take a polyline instead of a triangle mesh as 

input. We first apply 2D Laplacian curve editing [Sorkine et al. 

2004] and then apply our scale adjustment procedure to the result. 

Figure 11 shows an example operation. Without scale adjustment, 

the curve grows and shrinks freely. With scale adjustment, the 

curve behaves as if it is rigid.  

 

 
without scale adjustment                  with scale adjustment 

Figure 11: Curve editing with and without scale-adjustment procedure. 

Without scale adjustment, the stretched region grows and the squashed 

region shrinks. 

 

To let the user adjust the influence region dynamically during 

interaction, we introduce a peeling interface in which the 

influence region grows as the user drags the curve father away 

(Figure 12). This frees the user from specifying an influence 

region beforehand and makes the interaction very intuitive. As an 

option, we also allow the user to explicitly specify the influence 

region by putting virtual pushpins along the curve before dragging. 

A similar grab-and-pull curve editing tool is used in Macromedia 

Flash, but it allows only local changes and does not let the user 

change the influence region.  

 

 

Figure 12: Curve editing with a peeling interface. As the user pulls the 

curve further away, the influence region grows (left to right). The user can 

also explicitly specify the region beforehand (bottom left). 

 

6. Results 
 

We have applied our technique to various drawings and images. 

Figure 13 shows the manipulation of arms and legs by controlling 

the end points. This is similar to the pin-and-drag interface for 

articulated characters [Yamane and Nakamura 2003], but our 

system works with no explicit skeleton structures. Figure 14 

shows manipulation by controlling the internal points. Note that 

the arms and legs are displaced appropriately due to the rigidity of 

the body. By contrast, a mass-spring model can take some time to 

propagate the effect to the entire body. Figure 15 shows 

manipulation of a shape that lacks articulated structure; note that 

the shape is stretched and squashed appropriately. Figure 1 and 16 

show applications of our technique to images. The natural 

deformation effects give the feel of manipulating real 3D objects. 

   

Figure 13: Manipulation of a shape by controlling the end points.  

   

Figure 14: Manipulation of a shape by controlling the internal points. The 

user moves the handle at the center horizontally and the entire body is 

deformed appropriately.  

   

Figure 15: Stretch and squash of a non-articulated shape. 



 

Figure 16: Manipulation of an image using two rotation sensitive mice. 

 

Figure 1 shows a snapshot of operation using a SmartSkin multi-

point touchpad [Rekimoto 2002]. Test users found it easy to bend 

and stretch the shapes, and enjoyed experimenting with the shapes 

and the movements they could produce. Since the deformation is 

updated in real time and is easy to control, several fingers can be 

used to steer different parts of the shape and perform simple 

animations. Two users can work together to create more complex 

motion.  

 

Table 1 summarizes the performance of the current 

implementation. This data is for a system running Java 1.4 on a 

Windows XP notebook PC (Pentium III 1GHz processor and 756 

MB of memory). We use a native sparse LU solver [Davis 2003] 

for matrix computations. We obtained the data by running the 

corresponding routines 100 times, so these are very rough 

estimates severely affected by garbage collection and CPU cache. 

The result indicates that step two is the bottleneck during 

manipulation. In our experience, one can obtain quite nice results 

with a very coarse mesh with fewer than 100 vertices (Figure 17 

left). All examples in this paper are obtained with similar mesh 

sizes. In this range, the system shows completely real-time 

performance and the user experiences no delay. One can obtain 

smoother results by using a finer mesh but the interaction 

eventually becomes choppy. The delay becomes obvious at a 

vertex count of around 300 on our notebook PC (Figure 17 right). 

 
Table 1: Sample running times (milliseconds) for the meshes in Figure 17 

Registration Compilation Update # of 

vertices Step1 Step2 Step1 Step2 Step1 Step2

93  16 18 14 4 0.06 2.2

150 42 38 29 8 0.09 3.5

287 160 107 72 19 0.16 7.5

 

     

Figure 17: Example triangulations. The number of vertices is 85, 156, 298 

respectively and three handles are attached to each. 

 

We have experimentally examined the effect of uneven 

triangulation on our algorithm and found it to be fairly robust 

against irregularly spaced mesh. Figure 18 shows an example. The 

dense and sparse regions are evenly squashed and stretched, and 

similar behavior is observed for bending. This can be explained as 

follows. If triangle size is reduced by a factor of 1/n, the distortion 

associated with each triangle decreases by a factor of 1/n2. At the 

same time, the density of triangles becomes n2 times higher. As a 

result, triangle size does not affect the total cost. This does not 

apply for curve editing, where the density increases only linearly. 

The error in a dense region is estimated as smaller, thus making 

the region softer. The simplest solution is to approximate the 

curve by an evenly spaced polyline and apply our algorithm to the 

resampled curve. 

 
rest shape squashed

stretched

 

Figure 18: The effect of uneven triangulation. Our algorithm is not 

strongly affected by the mesh density. 

 

7. Limitations and Future Work 
 

The two-step algorithm introduced here is merely a practical 

approximation to achieve interactive performance. It works 

surprisingly well in most cases as shown in our examples, but in 

some cases its limitations are revealed. Figure 19 shows an 

example. When the control handle is moved one might expect the 

result shown on the right, but our algorithm returns the result 

shown in the middle due to its inherent linear nature. The free 

vertices only move parallel to the line connecting the constrained 

vertices. To handle these cases, a more accurate distortion metric 

similar to the one in [Sheffer and Kraevoy 2004] is probably 

necessary.  

 

 
     rest shape                  current results              physically plausible results 

Figure 19: A limitation of our algorithm. If the user stretches a shape (left), 

the current algorithm returns the result in the middle; the results on the 

right would be more desirable. 

As is discussed in [Alexa et al. 2000], a linear mapping from an 

original triangle to a deformed triangle ignoring the translation 

factor can be represented by a 2×2 affine transformation matrix A. 

Using singular value decomposition (SVD), the matrix A can be 

represented as a combination of a rotation part Rγ, a shearing part 

sh, and a scaling part sx, sy [Shoemake and Duff 1992]: 
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⎝
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Given this formulation, one can obtain as-rigid-as-possible 

mapping by minimizing |sh|, |sx-1|, and |sy-1|. We would like to 

experiment with this by finding a way to minimize these errors 

directly. 

 

Volume preservation is another feature that the current 

formulation cannot achieve [Angelidis et al. 2004]. With volume 

preservation, an object is squashed vertically when it is stretched 

horizontally. In the decomposition above, volume preservation is 

simulated by minimizing |sxsy-1|. We tried to implement this effect 

by adjusting the target triangle in the step 2, but the result was not 



very satisfactory. Our experience suggests that it is necessary to 

implement volume transfer between triangle elements to obtain a 

globally convincing result. We plan to explore this path in the 

future.  

 

We very much want to extend the technique to 3D shapes. The 

ability to freely move, rotate, and deform a 3D object is very 

attractive in various applications such as object manipulation in 

virtual environments. Unfortunately, the extension is not 

straightforward. We have experimented with various formulations 

but we have yet to find quadratic error functions equivalent to 

those we use in 2D, and it seems that we must take a very 

different approach.  We plan to continue our exploration. 
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A  Proof of nonexistence of quadratic error metric 
 

We claimed that there is no quadratic function of the locations of 

the deformed mesh vertices that measures the distortion from the 

original mesh, in the sense that it is minimized exactly when the 

deformed mesh is oriented congruent to the original.   

The proof is by contradiction: Suppose there is such a measure, 

and apply it to a one-triangle mesh with an original triangle ((0,0), 

(1,0), (0,1)) and a deformed triangle ((0,0), (x,y), (u,v)). This gives 

a function T(x,y,u,v) that is quadratic in the variables x,y,u,v. By 

subtracting the constant term, we can get a new quadratic with no 

constant term, but with exactly the same minima. Because rotation 

through 180 degrees is an orientation preserving congruence, we 

know that T(x,y,u,v)= T(-x,-y,-u,-v) for all (x,y,u,v). This means 

that T can be written with no linear terms. We already removed 

the constant term, so T is “pure quadratic” (i.e., all terms have 

total exponent two).  

The function T must be “positive semidefinite” (i.e., T(x,y,u,v) >= 

0 for all (x,y,u,v)),  because if T(x0,y0,u0,v0) = K < 0, then 

T(tx0,ty0,tu0,tv0) = t2K < 0; as we increase t, the values of T 

become arbitrarily negative; hence T has no minimum value, 

which contradicts the hypothesis. 

However, for such a function, the value at (0,0,0,0) is zero, and 

this is certainly the global minimum. But (0,0,0,0) represents a 

degenerate triangle that is not congruent to our chosen one. This is 

a contradiction. 


