
ASAAM: Aspectual Software Architecture Analysis Method

Bedir Tekinerdogan
Department of Computer Science, University of Twente,

P.O. Box 217 7500 AE Enschede, The Netherlands
bedir@cs.utwente.nl

Abstract

Software architecture analysis methods aim to predict
the quality of a system before it has been developed. In
general, the quality of the architecture is validated by
analyzing the impact of predefined scenarios on
architectural components. Hereby, it is implicitly
assumed that an appropriate refactoring of the
architecture design can help in coping with critical
scenarios and mending the architecture. This paper
shows that there are also concerns at the architecture
design level which inherently crosscut multiple
architectural components, which cannot be localized in
one architectural component and which, as such, can not
be easily managed by using conventional abstraction
mechanisms. We propose the Aspectual Software
Architecture Analysis Method (ASAAM) to explicitly
identify and specify these architectural aspects and make
them transparent early in the software development life
cycle. ASAAM introduces a set of heuristic rules that
help to derive architectural aspects and the
corresponding tangled architectural components from
scenarios. The approach is illustrated for architectural
aspect identification in the architecture design of a
window management system.

Keywords
aspect-oriented software architecture design, scenario-

based aspect-identification, scenario based architectural
evaluation.

1. Introduction

Software architecture forms one of the key artifacts in
the entire software development life cycle since it
embodies the earliest design decisions and includes the
gross-level components that directly impact the
subsequent analysis, design and implementation [4][2].
Accordingly, it is important that the architecture design
supports the software system qualities required by the
various stakeholders. For ensuring the quality factors the
common assumption is that identifying the fundamental
concerns for architecture design is necessary and various
architecture design methods have been introduced for

this purpose [16]. To verify that the right concerns have
been identified generally static analysis of formal
architectural models are applied [13] or a set of
architecture analysis methods as described in [7] are
adopted. In this paper we focus on software architecture
analysis methods that utilize scenarios for evaluating
architectures. In general, these analysis methods take as
input the architecture design and measure the impact of
predefined scenarios on it in order to identify the
potential risks and the sensitive points of the architecture.
This helps to predict the quality of the system before it is
built, thereby reducing unnecessary maintenance costs.

A scenario is considered to be a brief description of
some anticipated or desired use of the system [1].
Scenarios that can be directly supported by the
architecture(s) are called direct scenarios. Scenarios that
require the redesign of the architecture are called indirect
scenarios. In that case the software architecture design
needs to be refactored to turn the indirect scenarios into
direct scenarios. In that case generally it is tacitly
assumed that the redesign of the software architecture
design can be mostly successful.

In this paper we argue that some concerns, even at the
architectural design level, can not be easily localized and
specified in individual architectural components. Similar
to the notion of aspect at the programming level, we say
that these concerns are crosscutting and denote so-called
architectural aspects. Since the crosscutting property of
architectural aspects is inherent we claim that these
cannot be undone simply by redefining the software
architecture using conventional architectural
abstractions. In fact, we believe that like various aspect-
oriented programming abstractions [8][12] we need
explicit mechanisms to identify, specify and evaluate
aspects at the architecture design level.

Current software architecture analysis methods do not
make an explicit distinction between conventional
architectural concerns that can be localized using current
architectural abstractions and architectural concerns that
crosscut multiple architectural components. The risk is
that potential crosscutting concerns might not be detected

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

as aspects and as such remain unsolved at the design and
programming level. This may lead to tangled code in the
system and consequently the quality factors that the
architecture analysis methods attempt to verify will still
be impeded.

To overcome this issue, we propose the Aspectual
Software Architecture Analysis Method (ASAAM) as an
approach for evaluating the architectural aspects in the
available software architecture design. ASAAM builds
on the Software Architecture Analysis Method (SAAM)
as described in [1] and [11]. ASAAM is complementary
to SAAM and includes explicit mechanisms for
identifying architectural aspects and the related tangled
components.

The remainder of this paper is organized as follows. In
section 2 a short overview of the software architecture
analysis method, SAAM will be given. In section 3 we
present a running example, the design of a Window
Management System. In section 4 we describe the steps
of ASAAM to explicitly identify architectural aspects.
Finally, in section 5 we provide our conclusions.

2. Software Architecture Evaluation

In [7] a comprehensive survey is given of the various
software architecture design analysis methods that have
been proposed so far. Amo ng these methods the
Software Architecture Analysis Method (SAAM) can be
considered as a mature method which has been validated
in various cases studies. Other methods such as
SAAMCS, ESAAMI, SAAMER and ATAM are based
on or adopt the concepts used in this method [7]. The
Aspectual Software Architecture Analysis Method
(ASAAM) in this paper also defines an extension and
refinement to SAAM. Before explaining ASAAM we
will describe the steps of SAAM first. The basic
activities of SAAM are illustrated in
Figure 1.

Scenario
Development

Architecture
Description

Individual Scenario
evaluation

Assess
Scenario

interaction

Overall
Evaluation

and

or

Single Architecture
Analysis

Comparing multiple
architectures

Figure 1. SAAM inputs and activities [1]

SAAM takes as input a problem description,
requirements statement and architecture descriptions.
The steps of SAAM are as follows [11]:

1. Describe candidate architecture: The candidate
architecture is described which includes the system’s
computation and data components, as well as all
component relationships, sometimes called connectors.

2. Develop scenarios: Development of scenarios for
various stakeholders; the scenarios illustrate the kinds of
activities the system must support and the anticipated
changes that will be made to the system over time.

3. Perform scenario evaluations: Scenarios are
categorized into direct and indirect scenarios. For each
indirect task scenario the required changes to the
architecture are listed and the cost of performing these
changes is estimated. A modification to the architecture
means that either a new component or connection is
introduced or an existing component or connection
requires a change in its specification.

4. Reveal scenario interaction: Different indirect
scenarios that require changes to the same components or
connections are said to interact at the corresponding
component. Determining scenario interaction is a process
of identifying scenarios that affect a common set of
components. Scenario interaction measures the extent to
which the architecture supports an appropriate separation
of concerns. Semantically close scenarios should interact
at the same component. Semantically distinct scenarios
that interact indicate an improper decomposition.

5. Overall evaluation: Finally, each scenario and the
scenario interactions are weighted in terms of their
relative importance and this weighting used to determine
an overall ranking. The weighting chosen will reflect the
relative importance of the quality factors that the
scenarios manifest.

3. Example: Window Management System

In this section we will provide an example of the design
of a window management system architecture, which we
will use in subsequent sections to present the ASAAM.

A window management system is a type of interactive
user interface that enables users to work with multiple
separate applications at the same time 1. This is achieved
through the use of a desktop metaphor in which each
process is associated with a graphical window. A
window management system provides the functionality
to create and manipulate the display of multiple
processes.

1 Inspired from example in [11]

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

EventManager
<<architectural>>

ScreenManager
<<architectural>>

ProcessManager
<<architectural>>

WindowManager
<<architectural>>

communicates

update screen

notifies

Figure 2. Top-level architecture of window
management system.

A window management system includes several major
components such as EventManager for controlling I/O,
e.g. keyboard and mouse events; Process-Manager for
scheduling and managing application processes;
ScreenManager for maintaining the integrity of the
screen; and WindowManager for managing the windows
that are related to the application processes. The top-
level architecture design of the window management
system is given in Figure 2. EventManager in this
architecture handles only keyboard and mouse input.
ProcessManager includes functionality to manage
multiple processes. EventManager communicates the
events to WindowManager which notifies
ProcessManager. Depending on the event
ProcessManager can activate, delay or kill application
processes. Events that are related to the updating of the
screen notify the ScreenManager.

By applying a scenario-based software architecture
analysis method, such as SAAM, we can now identify,
for example, the following direct and indirect scenarios
for the given architecture in Figure 2:

Direct Scenarios:

S1. Start multiple processes at the same time.
S2. Change color of widgets in a window.
S3. Close all open windows
S4. Change screen resolution
S5. Enter a command to start application process
S6. Move the main window
S7. Screen saver is activated
S8. Resize a window
S9. Terminate a process
S10. Interrupt a process

Indirect Scenarios:

S11. Change look-and-feel style at run-time.
S12. Add voice control
S13. A failure occurs and the system shuts down.
S14. Provide dual display screen.
S15. Use multiple desktops.

S16. Monitor activities of the user
S17. Provide touch screen and light pen as input
S18. A memory overflow due to too many opened windows
S19. Port system to command-based operation system
S20. Minimize windows after idle time

This means that scenario S1 to S10 can be directly
performed by the given architecture. Scenarios S10 to
S20 require some architectural changes to perform the
required functionality. As described before, this can
consist of a change to the functionality of one or more
architectural components, the addition of an architectural
component to perform new functionality, the addition of
an architectural relation between the architectural
components, or a combination of these changes [11].

Table 1 shows the direct and indirect scenarios
together with the scenario interactions at each
component. Direct scenarios are used to understand a
component’s complexity. Indirect scenario interactions
are considered as good if they are semantically close.
This shows the cohesiveness of the component. In case
the scenarios are semantically distinct then this either
means that the component needs to be composed to
fulfill subsets of semantically close scenarios or it is
assumed that the component is badly designed and a
critical refactoring of the architecture is needed.

Table 1. Scenario Interactions for
Window Manager architecture

Component Direct
Scenarios

Indirect
Scenarios

EventManager S3, S5 S12,S13,S16,S17,
S18,S19

ScreenManager S4, S7 S16, S18,S19,S20
WindowManager S2, S3, S6, S8 S11, S14, S15,

S16,S19
ProcessManager S1, S3, S9, S10 S13, S16,S19

We argue that the architecture may include potential
architectural aspects and these should be explicitly and
distinctly considered. However, since the state-of-the-art
architecture analysis methods do not consider
architectural aspects it is not possible to detect these at
the architecture design level. Since potential aspects will
not disappear by themselves these will still pop up later
in the detailed design and programming level.
Consequently this might easily lead to the known
problems such as scattered concerns and tangled code,
thereby increasing complexity and introducing
maintenance problems. Within the context of software
architecture analysis methods, this actually means that
the verification of the concerns is not complete and as
such the desired quality factors cannot be appropriately

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

predicted. Aspects should be considered as first class
concerns and be identified right at the architectural
design level [17].

4. Approach for architectural aspect
identification

In this section we will extend and refine the steps in
the SAAM to provide a method that can also identify
architectural aspects using scenarios. There are several
similarities between aspects and scenarios. First, aspects
are crosscutting concerns, that is, concerns that interact
over many components. In the same way, (indirect)
scenarios also require changes to several components and
can be said to ‘crosscut’ components. Second, aspects
are relative to the problem description and the given
decomposition of the design. Similarly, the
categorization of scenarios into direct and indirect
scenarios is completely dependent on the problem
description and the given architecture design. Based on
these observations we think that scenarios provide
potential architectural aspects.

The basic activities for the ASAAM are illustrated in
Figure 3.

Scenario
Development

Architecture
Description

Individual Scenario
evaluation and Aspect

Identification

Refactoring of
Architecture

Aspectual
Refactoring of
Architecture

Scenario Interaction
Assesment and Tangled
Component Identification

Figure 3. Activities for ASAAM

ASAAM, like the SAAM, takes as input a problem
description, a requirements statement and architecture
descriptions. In addition to developing a candidate
architecture and scenarios, ASAAM comprises the
following steps:

1. Candidate architecture development

A (candidate) architecture design is provided that
will be analysed with respect to the required quality
factors and potential aspects.

2. Develop scenarios

This is similar to SAAM. Scenarios from various
stakeholders are collected, which represent both
important uses and anticipated uses of the software

architecture.

3. Individual scenario evaluation and aspect
identification

Scenarios are firstly categorized into direct and
indirect scenarios. Complementary to SAAM, the
scenario evaluation also searches for potential
architectural aspects. The application of the heuristic
rules will result in a further classification of the
scenarios into direct scenarios, indirect scenarios,
aspectual scenarios and architectural aspects.
Aspectual scenarios are derived from direct or
indirect scenarios and represent potential aspects. By
aspect domain analysis the corresponding aspect for
the scenario is searched and described.

4. Scenario interaction assessment and component
classification

The goal of this step is to assess whether the
architecture supports an appropriate separation of
concerns. This includes both non-crosscutting
concerns and crosscutting concerns, i.e. aspects. For
each component both direct and indirect components
are analyzed and categorized into cohesive
component, tangled component, composite
component, or ill-defined component.

5. Refactoring of architecture

Based on the scenario interaction assessment and
component classifications a refactoring of the
architecture is proposed. The refactoring can be
done using conventional abstraction techniques,
such as design patterns, or using aspect-oriented
techniques. The architectural aspects and the tangled
components are explicitly described in the
architecture.

In the following we will describe each of these steps
in more detail by giving explicit heuristic rules and
applying this to the given example.

4.1 Individual Scenario Evaluation and Aspect
Identification

SAAM considers the set of scenarios to be complete
when the addition of a new scenario no longer disturbs
the architecture design. However, there is a risk that for a
given set of scenarios this process will never be
completed, that is, the architecture will need to be
disturbed all the time. This may even the case if all the
architectural components in the system are modular. The
reason why the set of scenario analysis will not be
completed is the fact that a scenario might include a
potential architectural aspect. As we have described
before, an architectural aspect is a concern that crosscuts
across multiple architectural components.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

In the ASAAM we have defined a set of heuristic
rules to categorize scenarios into direct scenarios,
indirect scenarios and architectural aspects. The heuristic
rules are expressed using conditional statements in the
following form [18]:

IF <condition> THEN <consequent>

The condition part includes an artifact that is
analyzed. In this context, an artifact is a work product in
the software architecture design process. The basic
artifacts in ASAAM are as follows: ARCHITECTURE,
PROBLEM DESCRIPTION, SCENARIO, ASPECT, and
COMPONENT. As we will see, each of these artifacts is
further specialized into intermediate representations to
support the software engineer in processing the heuristic
rules of ASAAM. The consequent part of each rule
includes an action, which usually includes a
transformation of an artifact to another artifact.

Scenario

Direct
Scenario

Indirect
Scenario

Aspectual
Scenario

R0

R1 R2

R4

R3

R5

Architectural
Aspect

R6

Figure 4. Scenario artifact diagram

Figure 4 shows the scenario artifact diagram of
ASAAM, which defines the relations among the heuristic
rules and the scenario artifacts. The rounded rectangles
represent artifacts, the labeled arrows the heuristic rules.
The bold rounded rectangles represent the artifacts that
are finally delivered. In the individual scenario analysis
and aspect identification process the delivered artifacts
are the following:

1. Direct Scenario, describes a scenario that can
directly perform the provided scenarios.

2. Indirect Scenario, describes a scenario which
requires some changes to the component that it
interacts with.

3. Aspectual Scenario, a direct or indirect scenario
which is scattered over different architectural
components and which cannot be captured in a

single component.

4. Architectural Aspect, a well-defined concern
transformed from an aspectual scenario based on the
domain models derived from a domain analysis
process.

The heuristic rules for scenario evaluation in ASAAM
are shown in Figure 5. The rules are numbered from R0
to R6 and include the manipulation of the artifacts shown
in the scenario artifact diagram in Figure 4 .

R0:
Develop SCENARIO artifacts based on PROBLEM DESCRIPTION

R1:
IF SCENARIO does not require any changes to architectural
description
THEN SCENARIO becomes DIRECT SCENARIO

R2:
IF SCENARIO requires changes to one or more ARCHITECTURAL
COMPONENTs
THEN SCENARIO becomes INDIRECT SCENARIO

R3:
IF INDIRECT SCENARIO can be resolved after refactoring
THEN INDIRECT SCENARIO is DIRECT SCENARIO

R4:
IF DIRECT SCENARIO is scattered and cannot be localized in one
component
THEN DIRECT SCENARIO is ASPECTUAL SCENARIO

R5:
IF INDIRECT SCENARIO is scattered and cannot be localized in one
component
THEN INDIRECT SCENARIO is ASPECTUAL SCENARIO

R6:
Derive ARCHITECTURAL ASPECT from ASPECTUAL SCENARIO

Figure 5. Heuristic rules for scenario evaluation

Rule R0 defines the scenario development from the
problem description. The result of this rule is typically
the set of scenarios as defined in section 3. Rules R1 and
R2 categorize the scenarios into direct and indirect
scenarios. Rule R3 states that an indirect scenario can
become direct in case the architecture can be
appropriately refactored.

Rule R4 and R5 are used to identify aspect scenarios
that are scenarios for which the required changes are
scattered over many architectural components, and which
can not be just easily localized into one component. For
example, in the window management system
architecture, by applying rule R5, the scenarios S13
(failure occurs), S16 (monitor user activities), and S19
(port to command-based operating system) interact at
various components, they are scattered over many
components and it is difficult to localize these in one
component, since they are inherently crosscutting.
ASAAM explicitly identifies these scenarios as aspectual

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

scenarios. As such in ASAAM a third category that
represents architectural aspects for scenarios is
introduced:

Aspectual Scenarios
S13. A failure occurs and the system shuts down.
S16. Monitor activities of the user
S19. Port system to command-based operation system

In rule R6 these aspectual scenarios are more
thoroughly inspected by analyzing the related domain(s)
using domain analysis [2], and a corresponding
architectural aspect is identified. For the above scenarios
we might come up with architectural aspects of Failure
Management Aspect, Monitoring Aspect and
OperatingSystem Aspect. By doing so, the software
engineer may anticipate on these during the detailed
design and programming phases.

To guide the software engineer in processing these
heuristic rules in ASAAM we order and specify these
rules as follows:

R0; R1||R2; R3; R4||R5; R6

Here ‘;’ is used to denote sequence, ‘||’ defines the
parallel activity. In this case, rule R0 is executed first,
followed by R1 and/or R2 which may be processed in
parallel, followed by R3, followed by R4 and/or R5 in
parallel, and finally R6.

4.2 Scenario Interaction Assessment and
Tangled Components Identification

After scenarios have been classified ASAAM focuses
on scenarios at individual components. Figure 6 shows
the component artifact diagram in ASAAM which shows
the relation between the various corresponding heuristic
rules and the intermediate forms of component artifacts.
ASAAM delivers the following type of components
(bold rounded rectangles in the figure):

1. Cohesive Component, which is a component that is
well defined and performs semantically close
scenarios.

2. Composite Component, a component consisting of
several sub-components that each perform a
semantically close set of scenarios.

3. Tangled Component, a component that performs an
aspectual scenario which is either directly or
indirectly performed by the component.

4. Ill-defined Component, a component that includes
semantically distinct scenarios but which cannot be
decomposed or does not include an aspectual
scenario.

Further, the artifacts Component, and Tentative
Tangled Component represent the intermediate artifacts
that help to identify the above four types of components.
The heuristic rules R7 to R18 are shown in Figure 7.

Component

Direct
Component

Indirect
Component

R7

R8 R9

R13

R11

Tentative
Tangled

Component

Composite
Component

R12

Tangled
Component

R17

R14

Cohesive
Component

R15
R16

R10

ill-Defined
Component

R18

Figure 6. Component artifact diagram

Rule R7 lists the architectural components. Typically,
these are the four architectural components as provided
in Figure 2.

Rules R8 and R9 categorize the components into
direct and indirect components to distinguish between
components that perform direct scenarios and indirect
scenarios, respectively. The characterization of the
component as direct and indirect is relative to the
scenarios. The component can be direct for one set of
scenarios and indirect for another set. This is explicitly
described as shown in Table 1.

Rule R10 defines the situation in which an indirect
component can be refactored to perform an indirect
scenario. In this case the indirect scenario becomes direct
and as such the component will be direct. For example,
scenario S12 (adding voice control) is not supported by
the EventManager. However, the functionality of
EventManager can be rather easily adapted to also accept
voice input so that S12 can become direct.

Rules R11, R12 and R13 analyze the direct
components and decide whether they perform either
semantically close scenarios or semantically distinct
scenarios.

In case of semantically close scenarios (R11) the
component is identified as a cohesive component. This
covers scenarios S3, S6 and S8, for example, which are

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

all window management operations and can be directly
supported by WindowManager. We say that
WindowManager is a cohesive component with regard to
scenarios S3, S6 and S8.

If the performed scenarios are semantically distinct
but if the component can be decomposed into sub-
components in which each subcomponent performs a set
of semantically close scenarios then the component is
identified as a composite component (R13). This is, for
example the case for scenario S4, changing the screen
resolution, and scenario S7, activating a screen saver;
both are performed by ScreenManager but can be
regarded as semantically distinct scenarios. Nevertheless
if we assume that these functionalities are provided by
separate subcomponents in ScreenManager in the current
architecture, then ScreenManager is a composite
component regarding scenarios S4 and S7. If the
semantically distinct set of scenarios can not be
decomposed into sub-components to eliminate the
semantically distinct behavior then rule R12 states that
the component is a tentative tangled component. A
tentative tangled component can eventually become a
tangled component or an ill-defined component, as we
will explain shortly.

Rules R14, R15 and R16 define the transformation
from an indirect component to either a cohesive
component, a tentative tangled component or a
composite component. In essence, the rules are similar to
rules R10, R11 and R12 for direct components, except
the transformations take place from an indirect
component. Of particular interest is rule R15 which
concerns the identification of tangled components from
indirect components. For example, consider the indirect
scenario S19 which concerns porting the window
management system to a different operating system
platform. This scenario requires changes to all the
components in the architecture and cannot be localized.
It will also interact with the scenarios in the
corresponding components. As a result the affected
components become tentative tangled components of this
aspectual scenario.

Note that in the case of direct components the
architecture does not require to be changed, since it
already fulfills all the related scenarios. The issue here is
that using the above rules we can detect whether the
component is still a tangled component or composite
component, despite the fact that it might accidentally
perform the scenarios. In case of indirect scenarios the
change is always required.

R7:
Select COMPONENT from ARCHITECTURE

R8:
IF COMPONENT is not affected by a SCENARIO
THEN component is DIRECT COMPONENT for SCENARIO

R9:
IF COMPONENT is affected by one or more SCENARIO
THEN component is INDIRECT COMPONENT for SCENARIO

R10
IF INDIRECT COMPONENT can be refactored to perform
INDIRECT SCENARIO
THEN INDIRECT COMPONENT is DIRECT COMPONENT

R11
IF DIRECT COMPONENT performs semantically close scenarios
THEN DIRECT COMPONENT is COHESIVE COMPONENT

R12
IF DIRECT COMPONENT performs semantically distinct scenarios
AND cannot be decomposed
THEN DIRECT COMPONENT is TENTATIVE TANGLED
COMPONENT

R13
IF DIRECT COMPONENT performs semantically distinct scenarios
AND can be decomposed
THEN DIRECT COMPONENT is COMPOSITE COMPONENT

R14:
IF INDIRECT COMPONENT includes semantically close scenarios
THEN INDIRECT COMPONENT is COHESIVE COMPONENT

R15:
IF INDIRECT COMPONENT includes semantically distinct scenarios
AND cannot be decomposed
THEN COMPONENT becomes TENTATIVE TANGLED
COMPONENT

R16:
IF INDIRECT COMPONENT includes semantically distinct scenarios
AND can be decomposed
THEN INDIRECT COMPONENT is COMPOSITE COMPONENT

R17:
IF TENTATIVE TANGLED COMPONENT includes ASPECTUAL
SCENARIO
THEN TENTATIVE TANGLED COMPONENT is
TANGLED COMPONENT for given aspectual scenario

R18:
IF TENTATIVE TANGLED COMPONENT does not include
ASPECTUAL SCENARIO
THEN TENTATIVE TANGLED COMPONENT is Ill-DEFINED
COMPONENT

Figure 7. Heuristic rules for identifying
tangled components.

Rule R17 and R18 inspect the tentative tangled
component on aspectual scenarios that might have been
identified in the individual scenario evaluation and
aspect identification process. In case an aspectual
scenario is involved (R17) then the tentative tangled
component becomes a tangled component of the
architectural aspect that is derived from the
corresponding aspectual scenario. Otherwise (R18) the
tentative tangled component becomes an ill-defined

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

component, which means that the component includes
semantically distinct scenarios because of an improper
decomposition of the component.

The rule ordering for the scenario interaction
assessment and tangled component identification can be
specified as follows:

R7; (R8||R9); R10;
((R11||R12||R13); || (R14;R15;R16)); R17

After executing these heuristic rules for each
component we can identify the related aspects and
characterize the components more specifically. The
results are shown in Table 2. This table provides a
guideline for the refactoring of the architecture. The
column Cohesive lists the direct and indirect scenarios
that show the cohesiveness of the corresponding
component. The column Aspect lists the set of aspectual
scenarios that are tangled in the component. Finally,
column Ill-def. lists the scenarios that the architectural
component can not cope with at all.

Table 2. Characterization of Components

Component Cohesive Aspect Compos. ll.def

EventManager S5 S13,S16,S19 S12,S17 -

ScreenManager S14 S13,S19 S4,S7 -

WindowManager S2,S3,S6,
S8,S20

S16,S19 S11,S18,S15 -

ProcessManager S1,S9,S10 S13,S16,S19 -

4.3 Architectural Aspect Specification
The previous two sections have described the steps of

ASAAM for identifying architectural aspects and the
related tangled components. This information will be
used to redesign the given architecture in which the
architectural aspects are made explicit. This can be
basically done in two ways: (1) using a software
architecture description language [13] or (2) using a
visual modeling language to represent aspects in the
architecture. The latter is usually based on extensions of
UML [5]. We will not elaborate on this issue due to
space limitations.

As an example, in Figure 8 we show a UML diagram
of the refactored architecture which explicitly includes
the architectural aspect derived from the aspectual
scenario S13 (failure occurs and system shuts down). We
have used stereotypes, the built-in extension mechanism
of UML [5]. Architectural components are identified
using the stereotype <<architectural>>. Architectural
aspects are represented using the sterotype <<arch-
aspect>>. To represent the relations with the tangled

components we represent <<pointcut>>. This stereotype
identifies, similar to the concept used in AspectJ [12], a
pointcut designator referring to the set of components
that the aspect crosscuts. In this case the pointcut is
called recover() which has as join points the architectural
components EventManager, ScreenManager and
ProcessManager. At this phase we do not specify other
aspect issues such as the related advice. These might be
explored during the detailed design and implementation
of the system.

WindowManager
<<architectural>>

EventManager
<<architectural>>

communicates

ScreenManager
<<architectural>> updateFailureManagement

<<pointcut>> recover()

<<arch-aspect>>

ProcessManager
<<architectural>>

notifies

Figure 8. Window management system architecture
after aspectual refactoring

5. Related Work

Various architecture analysis methods have been
proposed in the literature. A comprehensive overview of
these architecture analysis methods is given [7]. In this
paper we have basically adopted SAAM as a
representative for scenario-based analysis methods. The
reason for this is that SAAM includes a core set of steps
that is adopted by most of these methods. Further SAAM
has been validated in various case studies. ASAAM
extends and refines SAAM to include steps for
architectural aspect identification. As such, we think that
ASAAM also provides complementary techniques to the
other software architecture analysis methods.

In [14] an approach is proposed for modularizing and
composing crosscutting aspectual concerns at the
requirements analysis phase. The approach is based on
separating the specification of aspectual requirements
and non-aspectual requirements. Composition rules are
defined which specify how aspectual requirements
impact non-aspectual requirements. The approach helps
to identify early trade-offs between aspectual
requirements and support the decision of the various
stakeholders in the requirements engineering process.
This approach can be considered complementary to
ASAAM, and vice versa, since it focuses on
requirements engineering, whereas ASAAM focuses
more on the architecture design.

In our earlier work we have stated that aspects should

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

be identified at the requirements analysis and software
architecture design phases [17]. In addition we have
thereby stated that aspects should be derived from
domain models. This work on ASAAM is an extension
to our previous ideas. The novelty here is that we apply
scenarios to guide the identification of aspects and the
related domain analysis to aspects.

Aspectual design is emerging and we think that
ASAAM can benefit from the various proposals such as
described in [6][9][10] and [15]. In [6], composition
patterns are introduced which use UML templates to
extend UML for aspect-oriented design. In [9] examples
of architectural capture of aspects and their
representation using UML is provided. In [10] an
approach is described for aspect-oriented component
engineering techniques together with the corresponding
notations. In [15] a UML-based Aspect-Oriented Design
notation is provided for AspectJ as the target
implementation language. The ideas in these publications
on aspect modeling might be used in the architectural
aspect specification process as described in section 4.3.

6. Conclusion

The contribution of this paper is twofold. First of all
we have shown that several architectural concerns
crosscut multiple architectural components. That is to
say, architectural aspects exist. For example in the
window management system example presented in
section 4 we have seen that the Failure Management
Aspect, Monitoring Aspect and OperatingSystem Aspect
are inherently crosscutting concerns.

Secondly, we have defined the method ASAAM
which is a systematic scenario-based architecture
analysis method that is both able to identify concerns that
can be easily localized and specified in architectural
abstractions, and identify concerns that crosscut various
architectural components. The method includes a set of
heuristics for identifying these architectural aspects. For
this, scenarios have been classified into direct scenario,
indirect scenarios, aspectual scenarios, and architectural
aspects. In addition we have provided a detailed analysis
of scenario interactions and provided a characterization
of the various components into cohesive component,
composite component, tangled component, and ill-
defined components.

We have illustrated our ideas for evaluating the
architecture of window management system architecture
and identified the architectural aspects of failure
management, monitoring and operating system aspects.
We have discussed that these aspects should be made
explicit at the architecture design level so as to prepare it
for aspect-oriented design and aspect-oriented

programming. In addition we have proposed a simple
way of specifying architectural aspects, or pointed to
using existing more advanced aspect modeling
techniques.

ASAAM builds on scenario-based architecture
analysis methods, and as such, should be considered as a
complementary approach to these methods. The benefit
of ASAAM is due to the systematic support for the
management of architectural aspects in an explicit
manner. In this paper we have applied ASAAM for a
single structure of an architecture. In fact, architectures
are composed of several different structures, each
focused on a single concern or set of related concerns, as
described in [4], and analysis must take these different
structures into account. We will focus on applying
ASAAM to multiple structures of the architecture in our
future work.

Acknowledgements

I would like to thank the anonymous reviewers for
their comments and suggestions. This research has been
carried out in the Aspect-Oriented Software Architecture
Design project which is funded by the Dutch Scientific
Organisation in the Jacquard Software Engineering
Program.

References
[1] G. Abowd. Analyzing Development Qualities at the

Architecture Level: The Software Architecture Analysis
Method. in: L. Bass, P. Clements, and R. Kazman (eds.).
Software Architecture in Practice, Addison-Wesley 1998.

[2] M. Aksit (Ed.), Software Architectures and Component
Technology: The State of the Art in Research and
Practice, Kluwer Academic Publishers, 2001.

[3] G. Arrango. Domain Analysis Methods. In Software
Reusability, Schäfer, R. Prieto-Díaz, and M. Matsumoto
(Eds.), Ellis Horwood, New York, New York, pp. 17-49,
1994.

[4] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice, second edition, Addison-Wesley
1998.

[5] G. Booch, J. Rumbaugh & I. Jacobson. The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[6] S. Clarke, R.J. Walker. Composition Patterns: An
Approach to Designing Reusable Aspects. In proceedings
of the 23rd International Conference on Software
Engineering (ICSE), Toronto, Canada, May 2001.

[7] L.Dobrica & E.Niemela. A survey on software
architecture analysis methods. IEEE Trans. on Software
Engineering, Vol. 28, No. 7, pp.638-654, July 2002.

[8] T. Elrad, R. Fillman, & A. Bader. Aspect-Oriented
Programming. Communication of the ACM, Vol. 44, No.
10, October 2001.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

[9] J. Grundy & R. Patel. Developing Software Components
with the UML, Enterprise Java Beans and Aspects, In
Proceedings of the 2001 Australian Software Engineering
Conference, Canberra, Australia, 26-28 August 2001.

[10] J. Grundy. Multi-perspective specification, design and
implementation of software components using aspects,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000,
pp. 713-734.

[11] R.Kazman, G.Abowd, L.Bass & P.Clements. Scenario-
Based Analysis of Software Architecture. IEEE Software,
pp. 47-55, Nov. 1996.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W.G. Griswold. An Overview of AspectJ. In J.
Lindskov Knudsen (ed.), ECOOP 2001 Object-Oriented
Programming 15th European Conference, Budapest
Hungary, pages 327-353. Volume 2072 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, June, 1997.

[13] N.Medvidovic & R.N. Taylor. A classification and
comparison framework for Software Architecture
Description Languages, IEEE Trans. on Software
Engineering, Vol. 26, No.1 pp. 70-93, 2000..

[14] A. Rashid, A. Moreira, J. Araujo. Modularisation and

Composition of Aspectual Requirements. In proceedings of
Second Aspect-Oriented Software Development
Conference, Boston, pp. 11-20, March, 2003.

[15] D.Stein, S. Hanenberg & R. Unland. A UML-based
Aspect-Oriented Design Notation for AspectJ, in
Proceedings of First Aspect-Oriented Software
Development Conference, Enschede, The Netherlands,
April, 2002.

[16] B. Tekinerdogan & M. Aksit. Classifying and Evaluating
Architecture Design Methods, in: Software Architectures
and Component Technology: The State of the Art in
Research and Practice, M. Aksit (Ed.), Kluwer Academic
Publishers, 2001.

[17] B.Tekinerdogan & M. Aksit. Deriving design aspects from
conceptual models. In: Demeyer, S., & Bosch, J. (eds.),
Object-Oriented Technology, ECOOP '98 Workshop
Reader, LNCS 1543, Springer-Verlag, pp.410-414, 1999.

[18] B. Tekinerdogan & M. Aksit, Providing Automatic
Support for Heuristic Rules of Methods, in Object-
Oriented Technology, S. Demeyer and J. Bosch (Eds.),
LNCS 1543, ECOOP'98 Workshop Reader, Springer
Verlag, pp. 493-499, July 1998.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

