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Abstract

Software architecture analysis methods aim to predict
the quality of a system before it has been developed. In 
general, the quality of the architecture is validated by
analyzing the impact of predefined scenarios on
architectural components. Hereby, it is implicitly
assumed that an appropriate refactoring of the
architecture design can help in coping with critical
scenarios and mending the architecture. This paper
shows that there are also concerns at the architecture
design level which inherently crosscut multiple
architectural components, which cannot be localized in 
one architectural component and which, as such, can not 
be easily managed by using conventional abstraction
mechanisms. We propose the Aspectual Software
Architecture Analysis Method (ASAAM) to explicitly
identify and specify these architectural aspects and make 
them transparent early in the software development life 
cycle. ASAAM introduces a set of heuristic rules that
help to derive architectural aspects and the
corresponding tangled architectural components from
scenarios. The approach is illustrated for architectural 
aspect identification in the architecture design of a
window management system. 

Keywords
aspect-oriented software architecture design, scenario-

based aspect-identification, scenario based architectural 
evaluation.

1. Introduction

Software architecture forms one of the key artifacts in 
the entire software development life cycle since it
embodies the earliest design decisions and includes the 
gross-level components that directly impact the
subsequent analysis, design and implementation [4][2].
Accordingly, it is important that the architecture design 
supports the software system qualities required by the 
various stakeholders. For ensuring the quality factors the 
common assumption is that identifying the fundamental 
concerns for architecture design is necessary and various 
architecture design methods have been introduced for

this purpose [16]. To verify that the right concerns have 
been identified generally static analysis of formal
architectural models are applied [13] or a set of
architecture analysis methods as described in [7] are
adopted. In this paper we focus on software architecture 
analysis methods that utilize scenarios for evaluating
architectures. In general, these analysis methods take as 
input the architecture design and measure the impact of 
predefined scenarios on it in order to identify the
potential risks and the sensitive points of the architecture. 
This helps to predict the quality of the system before it is 
built, thereby reducing unnecessary maintenance costs. 

A scenario is considered to be a brief description of 
some anticipated or desired use of the system [1].
Scenarios that can be directly supported by the
architecture(s) are called direct scenarios. Scenarios that 
require the redesign of the architecture are called indirect
scenarios. In that case the software architecture design 
needs to be refactored to turn the indirect scenarios into 
direct scenarios. In that case generally it is tacitly
assumed that the redesign of the software architecture 
design can be mostly successful. 

In this paper we argue that some concerns, even at the 
architectural design level, can not be easily localized and
specified in individual architectural components. Similar 
to the notion of aspect at the programming level, we say 
that these concerns are crosscutting and denote so-called
architectural aspects. Since the crosscutting property of 
architectural aspects is inherent we claim that these
cannot be undone simply by redefining the software
architecture using conventional architectural
abstractions. In fact, we believe that like various aspect-
oriented programming abstractions [8][12] we need
explicit mechanisms to identify, specify and evaluate
aspects at the architecture design level. 

Current software architecture analysis methods do not 
make an explicit distinction between conventional
architectural concerns that can be localized using current 
architectural abstractions and architectural concerns that 
crosscut multiple architectural components. The risk is
that potential crosscutting concerns might not be detected 
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as aspects and as such remain unsolved at the design and 
programming level. This may lead to tangled code in the 
system and consequently the quality factors that the
architecture analysis methods attempt to verify will still 
be impeded.

To overcome this issue, we propose the Aspectual
Software Architecture Analysis Method (ASAAM) as an 
approach for evaluating the architectural aspects in the 
available software architecture design. ASAAM builds
on the Software Architecture Analysis Method (SAAM) 
as described in [1] and [11]. ASAAM is complementary 
to SAAM and includes explicit mechanisms for
identifying architectural aspects and the related tangled 
components.

The remainder of this paper is organized as follows. In 
section 2 a short overview of the software architecture 
analysis method, SAAM will be given. In section 3 we 
present a running example, the design of a Window
Management System. In section 4 we describe the steps 
of ASAAM to explicitly identify architectural aspects. 
Finally, in section 5 we provide our conclusions. 

2. Software Architecture Evaluation 

In [7] a comprehensive survey is given of the various 
software architecture design analysis methods that have 
been proposed so far. Amo ng these methods the
Software Architecture Analysis Method (SAAM) can be 
considered as a mature method which has been validated 
in various cases studies. Other methods such as
SAAMCS, ESAAMI, SAAMER and ATAM are based 
on or adopt the concepts used in this method [7]. The 
Aspectual Software Architecture Analysis Method
(ASAAM) in this paper also defines an extension and 
refinement to SAAM. Before explaining ASAAM we 
will describe the steps of SAAM first. The basic
activities of SAAM are illustrated in
Figure 1.

Scenario
Development

Architecture
Description

Individual Scenario
evaluation

Assess
Scenario

interaction

Overall
Evaluation

and

or

Single Architecture
Analysis

Comparing multiple
architectures

Figure 1. SAAM inputs and activities [1]

SAAM takes as input a problem description,
requirements statement and architecture descriptions.
The steps of SAAM are as follows [11]:

1. Describe candidate architecture: The candidate
architecture is described which includes the system’s
computation and data components, as well as all
component relationships, sometimes called connectors. 

2. Develop scenarios: Development of scenarios for
various stakeholders; the scenarios illustrate the kinds of 
activities the system must support and the anticipated
changes that will be made to the system over time. 

3. Perform scenario evaluations: Scenarios are
categorized into direct and indirect scenarios. For each 
indirect task scenario the required changes to the
architecture are listed and the cost of performing these 
changes is estimated. A modification to the architecture 
means that either a new component or connection is
introduced or an existing component or connection
requires a change in its specification.

4. Reveal scenario interaction: Different indirect
scenarios that require changes to the same components or 
connections are said to interact at the corresponding
component. Determining scenario interaction is a process 
of identifying scenarios that affect a common set of
components. Scenario interaction measures the extent to 
which the architecture supports an appropriate separation 
of concerns. Semantically close scenarios should interact 
at the same component. Semantically distinct scenarios 
that interact indicate an improper decomposition. 

5. Overall evaluation: Finally, each scenario and the
scenario interactions are weighted in terms of their
relative importance and this weighting used to determine 
an overall ranking. The weighting chosen will reflect the 
relative importance of the quality factors that the
scenarios manifest.

3. Example: Window Management System

In this section we will provide an example of the design 
of a window management system architecture, which we 
will use in subsequent sections to present the ASAAM. 

A window management system is a type of interactive 
user interface that enables users to work with multiple 
separate applications at the same time 1. This is achieved 
through the use of a desktop metaphor in which each
process is associated with a graphical window. A
window management system provides the functionality
to create and manipulate the display of multiple
processes.

1 Inspired from example in [11]
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Figure 2. Top-level architecture of window 
management system.

A window management system includes several major 
components such as EventManager for controlling I/O,
e.g. keyboard and mouse events; Process-Manager for 
scheduling and managing application processes;
ScreenManager for maintaining the integrity of the
screen; and WindowManager for managing the windows 
that are related to the application processes. The top-
level architecture design of the window management
system is given in Figure 2. EventManager in this
architecture handles only keyboard and mouse input.
ProcessManager includes functionality to manage
multiple processes. EventManager communicates the
events to WindowManager which notifies
ProcessManager. Depending on the event
ProcessManager can activate, delay or kill application
processes. Events that are related to the updating of the
screen notify the ScreenManager.

By applying a scenario-based software architecture
analysis method, such as SAAM, we can now identify, 
for example, the following direct and indirect scenarios 
for the given architecture in Figure 2:

Direct Scenarios:

S1. Start multiple processes at the same time.
S2. Change color of widgets in a window.
S3. Close all open windows
S4. Change screen resolution
S5. Enter a command to start application process
S6. Move the main window
S7. Screen saver is activated
S8. Resize a window
S9. Terminate a process
S10. Interrupt a process 

Indirect Scenarios:

S11. Change look-and-feel style at run-time.
S12. Add voice control
S13. A failure occurs and the system shuts down. 
S14. Provide dual display screen.
S15. Use multiple desktops.

S16. Monitor activities of the user
S17. Provide touch screen and light pen as input
S18. A memory overflow due to too many opened windows
S19. Port system to command-based operation system 
S20. Minimize windows after idle time

This means that scenario S1 to S10 can be directly 
performed by the given architecture. Scenarios S10 to 
S20 require some architectural changes to perform the 
required functionality. As described before, this can
consist of a change to the functionality of one or more 
architectural components, the addition of an architectural 
component to perform new functionality, the addition of 
an architectural relation between the architectural
components, or a combination of these changes [11].

Table 1 shows the direct and indirect scenarios
together with the scenario interactions at each
component. Direct scenarios are used to understand a 
component’s complexity. Indirect scenario interactions
are considered as good if they are semantically close. 
This shows the cohesiveness of the component. In case 
the scenarios are semantically distinct then this either 
means that the component needs to be composed to
fulfill subsets of semantically close scenarios or it is
assumed that the component is badly designed and a 
critical refactoring of the architecture is needed. 

Table 1. Scenario Interactions for 
Window Manager architecture

Component Direct
Scenarios

Indirect
Scenarios

EventManager S3, S5 S12,S13,S16,S17,
S18,S19

ScreenManager S4, S7 S16, S18,S19,S20
WindowManager S2, S3, S6, S8 S11, S14, S15, 

S16,S19
ProcessManager S1, S3, S9, S10 S13, S16,S19

We argue that the architecture may include potential 
architectural aspects and these should be explicitly and
distinctly considered. However, since the state-of-the-art
architecture analysis methods do not consider
architectural aspects it is not possible to detect these at 
the architecture design level. Since potential aspects will 
not disappear by themselves these will still pop up later 
in the detailed design and programming level.
Consequently this might easily lead to the known
problems such as scattered concerns and tangled code, 
thereby increasing complexity and introducing
maintenance problems. Within the context of software 
architecture analysis methods, this actually means that
the verification of the concerns is not complete and as 
such the desired quality factors cannot be appropriately 
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predicted. Aspects should be considered as first class
concerns and be identified right at the architectural
design level [17].

4. Approach for architectural aspect 
identification

In this section we will extend and refine the steps in 
the SAAM to provide a method that can also identify
architectural aspects using scenarios. There are several
similarities between aspects and scenarios. First, aspects 
are crosscutting concerns, that is, concerns that interact 
over many components. In the same way, (indirect)
scenarios also require changes to several components and 
can be said to ‘crosscut’ components. Second, aspects 
are relative to the problem description and the given
decomposition of the design. Similarly, the
categorization of scenarios into direct and indirect
scenarios is completely dependent on the problem
description and the given architecture design. Based on 
these observations we think that scenarios provide
potential architectural aspects. 

The basic activities for the ASAAM are illustrated in
Figure 3.

Scenario
Development

Architecture
Description

Individual Scenario
evaluation and Aspect

Identification

Refactoring of
Architecture

Aspectual
Refactoring of
Architecture

Scenario Interaction
Assesment and Tangled
Component Identification

Figure 3. Activities for ASAAM

ASAAM, like the SAAM, takes as input a problem
description, a requirements statement and architecture
descriptions. In addition to developing a candidate
architecture and scenarios, ASAAM comprises the
following steps:

1. Candidate architecture development

A (candidate) architecture design is provided that
will be analysed with respect to the required quality 
factors and potential aspects. 

2. Develop scenarios

This is similar to SAAM. Scenarios from various 
stakeholders are collected, which represent both
important uses and anticipated uses of the software 

architecture.

3. Individual scenario evaluation and aspect 
identification

Scenarios are firstly categorized into direct and
indirect scenarios. Complementary to SAAM, the
scenario evaluation also searches for potential
architectural aspects. The application of the heuristic 
rules will result in a further classification of the
scenarios into direct scenarios, indirect scenarios,
aspectual scenarios and architectural aspects.
Aspectual scenarios are derived from direct or
indirect scenarios and represent potential aspects. By 
aspect domain analysis the corresponding aspect for 
the scenario is searched and described.

4. Scenario interaction assessment and component 
classification

The goal of this step is to assess whether the
architecture supports an appropriate separation of
concerns. This includes both non-crosscutting
concerns and crosscutting concerns, i.e. aspects. For 
each component both direct and indirect components 
are analyzed and categorized into cohesive
component, tangled component, composite
component, or ill-defined component.

5. Refactoring of architecture

Based on the scenario interaction assessment and
component classifications a refactoring of the
architecture is proposed. The refactoring can be
done using conventional abstraction techniques,
such as design patterns, or using aspect-oriented
techniques. The architectural aspects and the tangled 
components are explicitly described in the
architecture.

In the following we will describe each of these steps 
in more detail by giving explicit heuristic rules and
applying this to the given example.

4.1 Individual Scenario Evaluation and Aspect
Identification

SAAM considers the set of scenarios to be complete 
when the addition of a new scenario no longer disturbs 
the architecture design. However, there is a risk that for a 
given set of scenarios this process will never be
completed, that is, the architecture will need to be
disturbed all the time. This may even the case if all the 
architectural components in the system are modular. The 
reason why the set of scenario analysis will not be
completed is the fact that a scenario might include a
potential architectural aspect. As we have described
before, an architectural aspect is a concern that crosscuts 
across multiple architectural components. 
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In the ASAAM we have defined a set of heuristic
rules to categorize scenarios into direct scenarios,
indirect scenarios and architectural aspects. The heuristic 
rules are expressed using conditional statements in the 
following form [18]:

IF <condition> THEN <consequent>

The condition part includes an artifact that is
analyzed. In this context, an artifact is a work product in 
the software architecture design process. The basic
artifacts in ASAAM are as follows: ARCHITECTURE,
PROBLEM DESCRIPTION, SCENARIO, ASPECT, and
COMPONENT. As we will see, each of these artifacts is
further specialized into intermediate representations to
support the software engineer in processing the heuristic 
rules of ASAAM. The consequent part of each rule
includes an action, which usually includes a
transformation of an artifact to another artifact.

Scenario

Direct
Scenario

Indirect
Scenario

Aspectual
Scenario

R0

R1 R2

R4

R3

R5

Architectural
Aspect

R6

Figure 4. Scenario artifact diagram

Figure 4 shows the scenario artifact diagram of
ASAAM, which defines the relations among the heuristic 
rules and the scenario artifacts. The rounded rectangles 
represent artifacts, the labeled arrows the heuristic rules. 
The bold rounded rectangles represent the artifacts that 
are finally delivered. In the individual scenario analysis 
and aspect identification process the delivered artifacts 
are the following: 

1. Direct Scenario, describes a scenario that can
directly perform the provided scenarios.

2. Indirect Scenario, describes a scenario which
requires some changes to the component that it
interacts with.

3. Aspectual Scenario, a direct or indirect scenario
which is scattered over different architectural
components and which cannot be captured in a

single component. 

4. Architectural Aspect, a well-defined concern
transformed from an aspectual scenario based on the 
domain models derived from a domain analysis
process.

The heuristic rules for scenario evaluation in ASAAM 
are shown in Figure 5. The rules are numbered from R0 
to R6 and include the manipulation of the artifacts shown 
in the scenario artifact diagram in Figure 4 . 

R0:
Develop SCENARIO artifacts based on PROBLEM DESCRIPTION

R1:
IF SCENARIO does not require any changes to architectural 
description
THEN SCENARIO becomes DIRECT SCENARIO

R2:
IF SCENARIO requires changes to one or more ARCHITECTURAL 
COMPONENTs
THEN SCENARIO becomes INDIRECT SCENARIO

R3:
IF INDIRECT SCENARIO can be resolved after refactoring 
THEN INDIRECT SCENARIO is DIRECT SCENARIO

R4:
IF DIRECT SCENARIO is scattered and cannot be localized in one 
component
THEN DIRECT SCENARIO is  ASPECTUAL SCENARIO

R5:
IF INDIRECT SCENARIO is scattered and cannot be localized in one 
component
THEN INDIRECT SCENARIO is  ASPECTUAL SCENARIO

R6:
Derive ARCHITECTURAL ASPECT from ASPECTUAL SCENARIO

Figure 5. Heuristic rules for scenario evaluation

Rule R0 defines the scenario development from the 
problem description. The result of this rule is typically 
the set of scenarios as defined in section 3. Rules R1 and 
R2 categorize the scenarios into direct and indirect
scenarios. Rule R3 states that an indirect scenario can 
become direct in case the architecture can be
appropriately refactored. 

Rule R4 and R5 are used to identify aspect scenarios
that are scenarios for which the required changes are
scattered over many architectural components, and which 
can not be just easily localized into one component. For 
example, in the window management system
architecture, by applying rule R5, the scenarios S13
(failure occurs), S16 (monitor user activities), and S19 
(port to command-based operating system) interact at
various components, they are scattered over many
components and it is difficult to localize these in one 
component, since they are inherently crosscutting.
ASAAM explicitly identifies these scenarios as aspectual 
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scenarios. As such in ASAAM a third category that
represents architectural aspects for scenarios is
introduced:

Aspectual Scenarios
S13. A failure occurs and the system shuts down. 
S16. Monitor activities of the user
S19. Port system to command-based operation system 

In rule R6 these aspectual scenarios are more
thoroughly inspected by analyzing the related domain(s) 
using domain analysis [2], and a corresponding
architectural aspect is identified. For the above scenarios 
we might come up with architectural aspects of Failure
Management Aspect, Monitoring Aspect and
OperatingSystem Aspect. By doing so, the software
engineer may anticipate on these during the detailed
design and programming phases.

To guide the software engineer in processing these
heuristic rules in ASAAM we order and specify these 
rules as follows:

R0; R1||R2; R3; R4||R5; R6

Here ‘;’ is used to denote sequence, ‘||’ defines the 
parallel activity. In this case, rule R0 is executed first, 
followed by R1 and/or R2 which may be processed in 
parallel, followed by R3, followed by R4 and/or R5 in 
parallel, and finally R6. 

4.2 Scenario Interaction Assessment and 
Tangled Components Identification

After scenarios have been classified ASAAM focuses 
on scenarios at individual components. Figure 6 shows 
the component artifact diagram in ASAAM which shows 
the relation between the various corresponding heuristic 
rules and the intermediate forms of component artifacts. 
ASAAM delivers the following type of components
(bold rounded rectangles in the figure): 

1. Cohesive Component, which is a component that is 
well defined and performs semantically close
scenarios.

2. Composite Component, a component consisting of 
several sub-components that each perform a
semantically close set of scenarios.

3. Tangled Component, a component that performs an 
aspectual scenario which is either directly or
indirectly performed by the component. 

4. Ill-defined Component, a component that includes
semantically distinct scenarios but which cannot be 
decomposed or does not include an aspectual
scenario.

Further, the artifacts Component, and Tentative
Tangled Component represent the intermediate artifacts 
that help to identify the above four types of components. 
The heuristic rules R7 to R18 are shown in Figure 7.

Component

Direct
Component

Indirect
Component

R7

R8 R9

R13

R11

Tentative
Tangled

Component

Composite
Component

R12

Tangled
Component

R17

R14

Cohesive
Component

R15
R16

R10

ill-Defined
Component

R18

Figure 6. Component artifact diagram

Rule R7 lists the architectural components. Typically, 
these are the four architectural components as provided 
in Figure 2.

Rules R8 and R9 categorize the components into
direct and indirect components to distinguish between
components that perform direct scenarios and indirect
scenarios, respectively. The characterization of the
component as direct and indirect is relative to the
scenarios. The component can be direct for one set of 
scenarios and indirect for another set. This is explicitly 
described as shown in Table 1.

Rule R10 defines the situation in which an indirect
component can be refactored to perform an indirect
scenario. In this case the indirect scenario becomes direct 
and as such the component will be direct. For example, 
scenario S12 (adding voice control) is not supported by 
the EventManager. However, the functionality of
EventManager can be rather easily adapted to also accept 
voice input so that S12 can become direct. 

Rules R11, R12 and R13 analyze the direct
components and decide whether they perform either
semantically close scenarios or semantically distinct
scenarios.

In case of semantically close scenarios (R11) the
component is identified as a cohesive component. This 
covers scenarios S3, S6 and S8, for example, which are 
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all window management operations and can be directly 
supported by WindowManager. We say that
WindowManager is a cohesive component with regard to 
scenarios S3, S6 and S8. 

If the performed scenarios are semantically distinct
but if the component can be decomposed into sub-
components in which each subcomponent performs a set 
of semantically close scenarios then the component is 
identified as a composite component (R13). This is, for 
example the case for scenario S4, changing the screen 
resolution, and scenario S7, activating a screen saver;
both are performed by ScreenManager but can be
regarded as semantically distinct scenarios. Nevertheless 
if we assume that these functionalities are provided by
separate subcomponents in ScreenManager in the current 
architecture, then ScreenManager is a composite
component regarding scenarios S4 and S7. If the
semantically distinct set of scenarios can not be
decomposed into sub-components to eliminate the
semantically distinct behavior then rule R12 states that 
the component is a tentative tangled component. A
tentative tangled component can eventually become a 
tangled component or an ill-defined component, as we
will explain shortly. 

Rules R14, R15 and R16 define the transformation
from an indirect component to either a cohesive
component, a tentative tangled component or a
composite component.  In essence, the rules are similar to 
rules R10, R11 and R12 for direct components, except 
the transformations take place from an indirect
component. Of particular interest is rule R15 which
concerns the identification of tangled components from
indirect components. For example, consider the indirect 
scenario S19 which concerns porting the window
management system to a different operating system
platform. This scenario requires changes to all the
components in the architecture and cannot be localized. 
It will also interact with the scenarios in the
corresponding components. As a result the affected
components become tentative tangled components of this 
aspectual scenario. 

Note that in the case of direct components the
architecture does not require to be changed, since it
already fulfills all the related scenarios. The issue here is 
that using the above rules we can detect whether the
component is still a tangled component or composite 
component, despite the fact that it might accidentally
perform the scenarios. In case of indirect scenarios the 
change is always required. 

R7:
Select COMPONENT from ARCHITECTURE

R8:
IF COMPONENT is not affected by a SCENARIO 
THEN component is DIRECT COMPONENT for SCENARIO

R9:
IF COMPONENT is affected by one or more SCENARIO 
THEN component is INDIRECT COMPONENT for SCENARIO

R10
IF INDIRECT COMPONENT can be refactored to perform 
INDIRECT SCENARIO
THEN INDIRECT COMPONENT is DIRECT COMPONENT

R11
IF DIRECT COMPONENT performs semantically close scenarios 
THEN DIRECT COMPONENT is COHESIVE COMPONENT

R12
IF DIRECT COMPONENT performs semantically distinct scenarios 
AND cannot be decomposed 
THEN DIRECT COMPONENT is TENTATIVE TANGLED 
COMPONENT

R13
IF DIRECT COMPONENT performs semantically distinct scenarios 
AND can be decomposed 
THEN DIRECT COMPONENT is COMPOSITE COMPONENT

R14:
IF INDIRECT COMPONENT includes semantically close scenarios
THEN INDIRECT COMPONENT is COHESIVE COMPONENT 

R15:
IF INDIRECT COMPONENT includes semantically distinct scenarios 
AND cannot be decomposed
THEN COMPONENT becomes TENTATIVE TANGLED 
COMPONENT

R16:
IF INDIRECT COMPONENT includes semantically distinct scenarios 
AND can be decomposed 
THEN INDIRECT COMPONENT is COMPOSITE COMPONENT

R17:
IF TENTATIVE TANGLED COMPONENT includes ASPECTUAL
SCENARIO
THEN TENTATIVE TANGLED COMPONENT is
TANGLED COMPONENT for given aspectual scenario

R18:
IF TENTATIVE TANGLED COMPONENT does not include
ASPECTUAL SCENARIO 
THEN TENTATIVE TANGLED COMPONENT is Ill-DEFINED
COMPONENT

Figure 7. Heuristic rules for identifying 
tangled components. 

Rule R17 and R18 inspect the tentative tangled
component on aspectual scenarios that might have been 
identified in the individual scenario evaluation and
aspect identification process. In case an aspectual
scenario is involved (R17) then the tentative tangled
component becomes a tangled component of the
architectural aspect that is derived from the
corresponding aspectual scenario. Otherwise (R18) the 
tentative tangled component becomes an ill-defined
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component, which means that the component includes
semantically distinct scenarios because of an improper 
decomposition of the component. 

The rule ordering for the scenario interaction
assessment and tangled component identification can be 
specified as follows:

R7; (R8||R9); R10; 
((R11||R12||R13); || (R14;R15;R16)); R17

After executing these heuristic rules for each
component we can identify the related aspects and
characterize the components more specifically. The
results are shown in Table 2. This table provides a
guideline for the refactoring of the architecture. The
column Cohesive lists the direct and indirect scenarios
that show the cohesiveness of the corresponding
component. The column Aspect lists the set of aspectual
scenarios that are tangled in the component. Finally,
column Ill-def. lists the scenarios that the architectural 
component can not cope with at all.

Table 2. Characterization of Components 

Component Cohesive Aspect Compos. ll.def

EventManager S5 S13,S16,S19 S12,S17 -

ScreenManager S14 S13,S19 S4,S7 -

WindowManager S2,S3,S6,
S8,S20

S16,S19 S11,S18,S15 -

ProcessManager S1,S9,S10 S13,S16,S19 -

4.3 Architectural Aspect Specification
The previous two sections have described the steps of 

ASAAM for identifying architectural aspects and the
related tangled components. This information will be
used to redesign the given architecture in which the
architectural aspects are made explicit. This can be
basically done in two ways: (1) using a software
architecture description language [13] or (2) using a
visual modeling language to represent aspects in the
architecture. The latter is usually based on extensions of 
UML [5]. We will not elaborate on this issue due to 
space limitations. 

As an example, in Figure 8 we show a UML diagram 
of the refactored architecture which explicitly includes 
the architectural aspect derived from the aspectual
scenario S13 (failure occurs and system shuts down). We 
have used stereotypes, the built-in extension mechanism 
of UML [5]. Architectural components are identified
using the stereotype <<architectural>>. Architectural
aspects are represented using the sterotype <<arch-
aspect>>. To represent the relations with the tangled

components we represent <<pointcut>>. This stereotype 
identifies, similar to the concept used in AspectJ [12], a 
pointcut designator referring to the set of components 
that the aspect crosscuts.  In this case the pointcut is 
called recover() which has as join points the architectural 
components EventManager, ScreenManager and
ProcessManager. At this phase we do not specify other 
aspect issues such as the related advice. These might be 
explored during the detailed design and implementation 
of the system. 

WindowManager
<<architectural>>

EventManager
<<architectural>>

communicates

ScreenManager
<<architectural>> updateFailureManagement

<<pointcut>> recover()

<<arch-aspect>>

ProcessManager
<<architectural>>

notifies

Figure 8. Window management system architecture 
after aspectual refactoring

5. Related Work

Various architecture analysis methods have been
proposed in the literature. A comprehensive overview of 
these architecture analysis methods is given [7]. In this 
paper we have basically adopted SAAM as a
representative for scenario-based analysis methods. The 
reason for this is that SAAM includes a core set of steps 
that is adopted by most of these methods. Further SAAM 
has been validated in various case studies. ASAAM
extends and refines SAAM to include steps for
architectural aspect identification. As such, we think that
ASAAM also provides complementary techniques to the 
other software architecture analysis methods. 

In [14] an approach is proposed for modularizing and 
composing crosscutting aspectual concerns at the
requirements analysis phase. The approach is based on 
separating the specification of aspectual requirements
and non-aspectual requirements. Composition rules are
defined which specify how aspectual requirements
impact non-aspectual requirements. The approach helps 
to identify early trade-offs between aspectual
requirements and support the decision of the various
stakeholders in the requirements engineering process.
This approach can be considered complementary to
ASAAM, and vice versa, since it focuses on
requirements engineering, whereas ASAAM focuses
more on the architecture design.

In our earlier work we have stated that aspects should 
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be identified at the requirements analysis and software 
architecture design phases [17]. In addition we have
thereby stated that aspects should be derived from
domain models. This work on ASAAM is an extension 
to our previous ideas. The novelty here is that we apply 
scenarios to guide the identification of aspects and the 
related domain analysis to aspects. 

Aspectual design is emerging and we think that
ASAAM can benefit from the various proposals such as 
described in [6][9][10] and [15]. In [6], composition
patterns are introduced which use UML templates to
extend UML for aspect-oriented design. In [9] examples 
of architectural capture of aspects and their
representation using UML is provided. In [10] an
approach is described for aspect-oriented component
engineering techniques together with the corresponding 
notations. In [15] a UML-based Aspect-Oriented Design 
notation is provided for AspectJ as the target
implementation language. The ideas in these publications 
on aspect modeling might be used in the architectural
aspect specification process as described in section 4.3.

6. Conclusion

The contribution of this paper is twofold. First of all 
we have shown that several architectural concerns
crosscut multiple architectural components. That is to
say, architectural aspects exist. For example in the
window management system example presented in
section 4 we have seen that the Failure Management
Aspect, Monitoring Aspect and OperatingSystem Aspect
are inherently crosscutting concerns. 

Secondly, we have defined the method ASAAM
which is a systematic scenario-based architecture
analysis method that is both able to identify concerns that 
can be easily localized and specified in architectural
abstractions, and identify concerns that crosscut various 
architectural components. The method includes a set of 
heuristics for identifying these architectural aspects. For 
this, scenarios have been classified into direct scenario, 
indirect scenarios, aspectual scenarios, and architectural
aspects. In addition we have provided a detailed analysis 
of scenario interactions and provided a characterization 
of the various components into cohesive component,
composite component, tangled component, and ill-
defined components. 

We have illustrated our ideas for evaluating the
architecture of window management system architecture 
and identified the architectural aspects of failure
management, monitoring and operating system aspects. 
We have discussed that these aspects should be made 
explicit at the architecture design level so as to prepare it 
for aspect-oriented design and aspect-oriented

programming. In addition we have proposed a simple
way of specifying architectural aspects, or pointed to
using existing more advanced aspect modeling
techniques.

ASAAM builds on scenario-based architecture
analysis methods, and as such, should be considered as a 
complementary approach to these methods. The benefit 
of ASAAM is due to the systematic support for the
management of architectural aspects in an explicit
manner. In this paper we have applied ASAAM for a 
single structure of an architecture. In fact, architectures 
are composed of several different structures, each
focused on a single concern or set of related concerns, as 
described in [4], and analysis must take these different 
structures into account. We will focus on applying
ASAAM to multiple structures of the architecture in our 
future work. 
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