
ASAC: Automatic Sensitivity Analysis
for Approximate Computing

Pooja Roy1, Rajarshi Ray2, Chundong Wang3, Weng-Fai Wong1

School of Computing, National University of Singapore1, Singapore

National Institute of Technology, Meghalaya2, India

Data Storage Institute3, A⋆STAR, Singapore

{poojaroy@comp.nus.edu.sg, raj.ray84@gmail.com, wangc@dsi.a-star.edu.sg, wongwf@comp.nus.edu.sg}

Abstract

The approximation based programming paradigm is especially at-
tractive for developing error-resilient applications, targeting low
power embedded devices. It allows for program data to be com-
puted and stored approximately for better energy efficiency. The
duration of battery in the smartphones, tablets, etc. is generally
more of a concern to users than an application’s accuracy or fi-
delity beyond certain acceptable quality of service. Therefore, re-
laxing accuracy to improve energy efficiency is an attractive trade-
off when permissible by the application’s domain. Recent works
suggest source code annotations and type qualifiers to facilitate safe
approximate computation and data manipulation. It requires rewrit-
ing of programs or the availability of source codes for annotations.
This may not be feasible as real-world applications tend to be large,
with source code that is not readily available.

In this paper, we propose a novel sensitivity analysis that auto-
matically generates annotations for programs for the purpose of ap-
proximate computing. Our framework, ASAC, extracts information
about the sensitivity of the output with respect to program data. We
show that the program output is sensitive to only a subset of pro-
gram data that we deem critical, and hence must be precise. The rest
of the data can be computed and stored approximately. We evalu-
ated our analysis on a range of applications, and achieved a 86% ac-
curacy compared to manual annotations by programmers. We val-
idated our analysis by showing that the applications are within the
acceptable QoS threshold if we approximate the non-critical data.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: - Automatic Programming; D.2.5 [Software Engineer-
ing]: Testing and Debugging - Code inspection and walk-throughs,
Error handling and recovery

Keywords approximate computing, power-aware computing, au-
tomatic programming, sensitivity analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LCTES ’14, June 12–13, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2877-7/14/06. . . $15.00.
http://dx.doi.org/10.1145/2597809.2597812

1. Introduction

Approximate computing is a new programming paradigm that al-
lows programs to trade-off accuracy of internal program data in
favour of lower energy consumption. It is especially appealing to
low-power embedded devices where energy efficiency is of seri-
ous concern. Further, there are many applications targeted to smart-
phones, tablets, etc. that are capable of tolerating inaccuracy while
maintaining the desired quality of service (QoS). Many recent
works have shown this to be a promising trade-off for current and
future embedded platforms [2, 9, 13, 17, 25, 29].

In general, many programs contain specific parts that contribute
to the correctness of the output and others that do not. A correct out-
put usually lies within a Quality of Service range of the application.
The parts of a program that do not affect the output beyond a tol-
erable extent are deemed approximable, while parts that are impor-
tant are non-approximable. Depending on the application, the ratio
between these two parts can vary significantly. The presence of ap-
proximable data in a program is the mainstay of the approximate
computing paradigm. The non-approximable program data can be
computed and stored in a high power mode, while the approximable
regions in a low power mode [9]. Applications allowing such be-
haviour are called error-tolerant. Error-tolerance of applications
running on devices prone to soft-errors is well studied [14, 16, 28].
However, in this new paradigm, instead of mitigating the errors, a
controlled degradation of QoS due to the errors is allowed.

The challenge is how to discover the distinct approximable
and non-approximable parts of a program automatically, so that
adapting this approximation based programming paradigm is eas-
ier. Recent works have proposed source code annotations and type-
qualifiers for programmers to indicate whether a variable (data) is
error resilient, in other words, approximable [17, 25]. However, this
implies rewriting or annotating source codes. This may be easily
accomplished for small programs, but is difficult or infeasible for
complex programs and legacy softwares. Other works have shown
that program approximations can be achieved through algorithmic
choices, runtime decision making frameworks, and on the archi-
tectural or device level [1, 2, 6, 27]. The provision of algorithmic
choices too is the programmer’s responsibility and the application
is compiled using all the versions of a procedure. This is not only
difficult when dealing with large applications having large num-
bers of procedures, it also inflates size of executables. Such conse-
quences impede the usage of these solutions for embedded devices.

In this paper, we propose “ASAC” - Automatic Sensitivity anal-
ysis for Approximate Computing, a framework to automatically dis-
cover approximable data from a program. The main component of
this framework is a specialized sensitivity analysis using statistical
methods. Sensitivity analysis of parameters of mathematical mod-

int sum(){

 int i;

 double a = 0.1, sum = 0.0;

 for(i=0;i<10;i++){

 sum += a/10;

 }

 return sum;

 }

sum

i

a

sum 3.0

a 0.2

i 4

Acceptable

QoS

Perturbed

Output

QoS Loss

i

sum

a

fine tune

value-range in the

hyperbox

Values of variables in a sample

perturbation

of variables

cumulative curve construction

hypothesis test

Sensitivity

ranking of

variables

initial hyperbox

construction hyperbox

source code

start

end

Figure 1: Overview of “ASAC” framework. Each box represents a step and the arrows are the dataflow between them. There is a information
flow from Sampler back to the Hyperbox Construction to facilitate further optimization in range analysis.

els using statistical methods is known in literature [21]. Our contri-
bution in this paper is the use of statistical methods for sensitivity
analysis of program data. It consists of a random sampler and a hy-
pothesis tester. The main idea of the analysis is to systematically
perturb variables and then observe the resultant output sensitiv-
ity. Using the outputs from the probes, ASAC applies a hypothesis
tester to check against a correct output, which by definition is one
fulfilling an acceptable QoS threshold. The hypothesis test gener-
ates scores for each variable that ranks the variable’s contribution
to the output of the program. Based on the scores, the variables are
classified as approximable or non- approximable.

ASAC is fully automatic and alleviates the programmer’s in-
volvement. With minor modification, it can also be applied to pro-
grams where the source code is not available. A direct application
of this framework can be as a feedback system to a compiler, pro-
viding information about how the program’s may be approximated.
Moreover, ASAC can be used as a black-box tester to gain insight
about the sensitivity of program output against program data. This
would be valuable information for platforms susceptible to soft-
errors, where instead of allowing the approximation, the sensitivity
of the variables can be used as a metric to decide which data should
be protected. We evaluated our analysis against a ‘gold’ standard
where a programmer has made type-qualifier based annotations to
programs to facilitate approximation [25]. We achieve 86% accu-
racy in determining approximable data with respect to this manu-
ally annotated baseline (MAB). In addition, to show the scalability
and generality of our analysis, we apply it to bigger and more com-
plex programs from MiBench and SPEC2006 benchmark suites.
Our contributions in this paper are summarized as follows :

• The first automated software analysis that partitions program
data for approximate computing based programming paradigm.

• A framework to discover program data that can be approxi-
mated without compromising the QoS of a given application.

• A black-box analysis that can test programs and order the vari-
ables in terms of their contribution to the correctness of the final
output.

The rest of the paper is organized as follows: after a brief
overview and motivation in Section 2, we will describe our frame-
work in Sections 3 and 4. The evaluation of our analysis is pre-
sented in Section 5. Related works are explored in Section 6 and
we conclude our paper in Section 7.

2. Overview

In this section we present a brief overview of our framework,
ASAC. Our motivation for this work is twofold. The first is to
alleviate the existing burden placed on the programmer in facil-
itating approximate computing. We aim to automatically analyze
a program and identify data that can be approximated. In scenar-
ios where annotating programs without programmer’s knowledge
is considered unsafe, ASAC can serve as the suggestive framework
for annotating bigger and more complex programs. Programmers
can then fine-tune ASAC’s analysis results to obtain the final par-
titioning. In any case, it is obviously expensive, time consuming,
and in some scenarios, infeasible to identify approximable and non-
approximable data, and annotate the application completely man-
ually. Moreover, for legacy softwares and other programs that has
undergone significant changes over many versions, it may be diffi-

cult to understand the implications of approximated variables and
their effect globally. Therefore, an automated analysis is indispens-
able for approximate computing in the large.

Our second motivation is to study the error-resilience of internal
program data i.e. program variables, etc. Error-resilient program
transformations has been well studied. However, all the existing
works focus on approximating different components such as proce-
dure approximation, input data approximation, control- flow based
approximation etc. [4, 27]. Other works have studied the error-
resilience of data in architectural components such as the arithmetic
units, register files, etc. [6, 15]. Here, we are proposing a framework
to analyse and approximate internal program data while maintain-
ing an acceptable QoS according to the application.

The key idea is to systematically perturb the program variables
and to observe its effect on program output. By quantifying the sen-
sitivity of the output to the perturbations, we can discern program
variables in terms of their contributions to the output. A variable
that does not contribute to the correctness of the output or the func-
tionality of the program beyond a certain extent is not considered
as critical, and therefore can be approximated. Conversely, critical
variables cannot be approximated and must be precise.

Figure 1 illustrates ASAC consisting of 3 main stages, namely
discovery, probe and testing. In discovery stage, we extract the
variables of a program along with the range of values that each can
assume during the execution. The cartesian product of the variable
range intervals defines an n-dimensional hyperbox. This hyperbox
is the sample space for the statistical experiments performed by the
sensitivity analysis module. Each dimension represents a variable
and the corresponding edge of the hyperbox is the range of that
variable. Therefore, the total number of dimensions in the hyperbox
is determined by the number of variables in the program.

At the subsequent probe stage, we first divide the hyperbox
into smaller hyperboxes of equal sizes. We select a subset of these
smaller hyperboxes, the samples, and choose a number of points
from among them. Each of these points are n-tuple coordinates
containing the values of each variable at that point. These points
are passed to the program and the values are forcefully assigned
(perturbed) to corresponding variables during the execution by
means of binary instrumentation. Due to the intrusion, the program
output can be expected to be deviated from the correct output. Our
aim is to measure this incorrectness. According to the difference
between the QoS threshold of the application and the perturbed
outputs, we mark each such sample as “good” (pass) or “bad”(fail).

Next, in the testing stage, a cumulative distribution curve is
obtained by plotting the number of good or bad samples against
the range of each dimension of hyperbox. The two curves undergo a
hypothesis test that generates the maximum distance between them.
A large distance between the curves means that the program output
is very sensitive to the variable representing that dimension of
the hyperbox. Conversely, a smaller distance implies the opposite.
Each of the stages are described in details in the following sections.

3. Automated Analysis

In this section, we will describe the three stages in detail. First, we
explain two main concepts integral to the discovery stage - range
analysis and hyperbox construction. Range analysis is well studied.
It is commonly used to detect integer overflows, etc. However, here
we apply range analysis to estimate the values that a variable can
assume during program’s execution.

Definition For each variable Vi in program under analysis, let
value(Vi) be the value that Vi can assume during program execu-
tion. Then, range(Vi) = [Ri1, Ri2], where Ri1 ≤ value(Vi) ≤
Ri2. If Ri1 = ±∞ or Ri2 = ±∞, range(Vi) is given by the
datatype of Vi.

Algorithm 1 Range Analysis

Input:
1: Program P, QoS Threshold Q

Output:
2: R[n], where n← no. of variables in P

3: Initialize rangeOf(Vi) = ∅ ∀ Vi in P
4: for each variable Vi in P do
5: if rangeof(Vi) = ∅ then
6: var ← Vi

7: Ri[2]← RANGE ANALYSIS(var) /* standard widening
& narrowing operator based */

8: if Ri[0] ∨Ri[1] =∞ then
9: if DATATYPE(var) = int 32 then

10: Ri[0]← −32767 /* standard data */
11: Ri[1]← 32767 /* range for int type */
12: else if DATATYPE(var) = float then
13: Ri[0]← 0 /* dummy range */
14: Ri[1]← 1 /* that will shrink over runs */
15: else
16: /∗ handle all datatypes similarly ∗/
17: end if
18: end if
19: end if
20: end for
21: return Ri[]

Variables Datatype Initial Range Tuned Range
LineSadBlk0 double [1 , 1] [0.0 , 780.0]
P A int [2048 , 2048] [128 , 128]
P E int [-32768 ,

32767]
[34 , 244]

D dis1 double [1 , 1] [-15.0 , 177.0]

Table 1: Ranges of some variables in H.264

This value range is essential for the construction of the hyper-
box. We employ widening and narrowing operators based dataflow
analysis to calculate the value ranges of the variables [23]. Algo-
rithm 1 gives a pseudo-code description of our range analysis. In
cases where the analysis is unable to generate a finite value range,
we fine-tune the range based on the data type of the variable (line
9-12). For floating-point variables, we assume a dummy starting
range of zero (line 13-14).

In order to extract the real value range, we have a information
loop back (see Figure 1) from the sampler to hyperbox construction
which makes it easy to get narrow and precise value-ranges from
the profile runs of the program. Therefore, even if the dataflow anal-
ysis generates an infinite range for a variable, it is soon mitigated.
This is shown in Table 1 with the examples of some of the vari-
ables in H.264. After calculating the ranges of the variables, we
can construct the hyperbox.

Definition An n-dimensional hyperbox H is the cartesian product
of the range intervals of each of the n variables.
H = [R11, R12]× [R21, R22]× . . .× [Rn1, Rn2], where [Ri1, Ri2]
is the range of variable (Vi).

Figure 2 shows a conceptual diagram of hyperboxes. Each di-
mension represents a variable and thus with n variables it will have
n − dimensions. The starting and ending point of each dimen-
sion is R1 and R2 of each variable i.e. the range. As the value
range of a variable can narrow or widen over runs, the hyperbox
may also shrink and grow. The shaded areas are called samples.

x1 x2

y1

y2
variable x

v
ar

ia
b

le
 y

z1

v
ar

ia
b
le

 z

variable x

x1 x2

y1

y2

z2

Figure 2: Example of 2 dimensional and 3 dimensional hyper-
boxes. A 2-variable program would generate a 2-D hyperbox and
similarly, a 3-variable program would generate a 3-D hyperbox as
shown.

These are small hyperboxes obtained by discretizing the edges, and
selecting only a subset from among them. Discretization provides
a finite sampling space from the original hyperbox which has in-
finitely many sample points. The finite sample space can then be
sampled using any statistical sampler. In our framework, we have
used the Latin Hyperbox Sampling (LHS) algorithm [18]. LHS en-
sures that the sampling is bias free and with a fairly well coverage
of the sample space.

As shown in Figure 2, the 2-D hyperbox is discretized into equal
sized grids, and only one sample from each row and column are
qualified to be in the subset. For n-dimension, LHS selects only a
subset of the samples based on their positioning. The complexity of
this method depends on two factors - n, number of variables, i.e. the
dimension of the hyperbox, and the constant k i.e. the discretization
parameter. Empirically, the number of samples to be selected from
a hyperbox can be defined as follows -

Number of samples = (

(k−1)∏

n=0

(k − n))n−1

Next, in the first step of the probe stage, we choose m uniformly
random points from each sampled hyperboxes. We will present a
study of the effects of the constants in a later section. Each of these
points are an n-tuple coordinate, where n is the number of variables
in the program. For example, a point mi from a sample si has the
coordinates (mi1 ,mi2 , ...min), where mi1 is the value of variable
V1 at the point mi. The points can be represented as a vector
of real numbers. We use these vectors to introduce perturbation
in the program execution by passing the values dynamically with
an instrumentation tool. We call a program execution with the
perturbed values a probe run. As the hyperbox was originally
constructed by the value ranges of the variables, the perturbation for
each variable lies within the range of values the variable is expected
to assume during executions.

Definition Let Pi be a vector of the outputs of all the probe runs
of sample Si, fobj be an objective function, and θ is a constant

threshold. If fobj(Pi) ≥ θ then designate Pi to be a “good”
sample, else mark it as a “bad” sample. We define the objective
function as

fobj = (

j=k∑

j=0

ω(Pi))/k

where ω(Pi) = 1 if Pi ≥ Tqos, otherwise ω(Pi) = 0. Tqos is the
QoS threshold for the application given by the user.

Algorithm 2 illustrates the detailed steps involved in the con-
struction of hyperbox and how points from among the samples

Algorithm 2 Hyperbox Construction & Sampling

Input:
1: Range[n][2], where n is no. of variables in program
2: k, discretization factor

Output:
3: V ector[n][k], containing the values to be passed to program

for perturbed run
4: procedure HYPERCUBE(Range[n][2],n)
5: Initialize H ← ∅
6: Initialize dim = n
7: for i = 0 to dim do
8: H[i].leftdiagonal← Range[i][0]
9: H[i].rightdiagonal← Range[i][1]

10: end for
11: end procedure

12: procedure LATIN HYPERCUBE SAMPLING(H[n],dim,k)
13: for i = 0 to k do
14: for j = 0 to dim do
15: L = H[j].leftdiagonal
16: U = H[j].rightdiagonal
17: Interval Size = (U − L)/k
18: Interval V al = CHOOSERANDOM(i,j)
19: LowLim = Interval V al ∗ Interval Size
20: T [0][0]← L+ LowLim
21: T [0][1]← L+ LowLim+ Interval Size
22: Sample[i][j] ← Sample[i][j] ∩ HYPER-

CUBE(T[1][2],j)
23: end for
24: end for
25: return SampleT

26: end procedure

are chosen. First, a hyperbox is built using the preliminary value
ranges obtained from the range analysis (line 3-10). For each vari-
able represented by a particular dimension (edge) of the hyperbox,
the edge is discretized into k intervals (line 13-17). Therefore, we
have dim ∗ k number of smaller hyperboxes after this step, where
dim is the total number of variables and k is the discretization con-
stant. A subset of these smaller hyperboxes are chosen using LHS
to have a fair coverage of the ranges (line 18-22). The samples rep-
resent the set of values to be passed to the program in the probe
runs. The perturbed outputs from all the probe runs are partitioned
into two classes - “good” or “bad”, based on the QoS threshold of
the application.

N
o

.
o

f
S

a
m

p
le

s

Dimension Range

Good Samples

Bad Samples

Max. Distance

Figure 3: This graph is an example of how the CDFs are plotted
and the hypothesis test’s computes the distance metric using them.
The two curves are plotted from the cumulative number of samples
that are marked “good” and “bad” based on the QoS.

From all the samples marked as either good or bad (0 or 1),
we construct a cumulative curve for each dimension of the hyper-
box. The number of good samples is counted, and plotted against
the range of that dimension. Similarly, a second curve is obtained
by counting the samples marked as bad. These two curves are re-
garded as two cumulative distributions obtained from the perturbed
program runs.

Definition Let Seni denote the sensitivity score for a variable
Vi. Let fgoodVi and fbadVi be the two cumulative distribution

function (CDF) for variable Vi. Then, Seni = maxx|fgoodVi(x)−
fbadVi(x)|, where x is a point in the value range of the variable Vi

at which the CDFs are calculated.

Intuitively, the distance between the two curves denotes the con-
tribution of this variables towards the program output. We ap-
ply the Kolmogorov-Smirnov hypothesis test [21] to calculate the
maximum distance between the two curves. This is called the d-
statistics, and it translates to the sensitivity ranking: the higher the
distance, the higher is the sensitivity of the output to this vari-
able, and vice-versa. Figure 3 shows an example of the cumula-
tive curves, and the maximum distance between them. A detailed
step-by-step description of the generation of the sensitivity scores
is given in Algorithm 3. First, the program probe step is detailed in
lines 3-15. The procedure receives the vector of values from the hy-
perbox as input and runs the program by forcefully assigning these
values to the variables. Each program run produces a result that is
stored to be compared for QoS at a later stage. In this procedure,
the hypercube is also updated with fine-tuned range of the vari-
ables. Next, in the hypothesis test procedure, an error is calculated
from the obtained result and the original result of the program (line
18). This error is used to mark a sample as good or bad. Follow-
ing this marking, considering all the samples from the hyperbox, a
cumulative graph is plotted against each dimension (lines 27-33).
Two curves are obtained for each dimension of the hyperbox and
they are passed to the KS-Test for the distance metric (line 35).

4. Optimizations

4.1 Discretization Constant

Our proposed analysis has one tunable parameter, the discretiza-
tion constant, k. This determines the size of the samples for each
dimension in the hyperbox. In other words, all the value ranges of
the variables are divided up using this constant k so as to reduce the
value space (see Algorithm 2). The completion time of the analysis
is affected by this parameter. A larger value will cause the analysis
to take a longer time to complete because the hyperbox is divided
into smaller grids. However, the sensitivity scores obtained from
the analysis is not affected by the value of k as shown in Table 2.
Thus, we can conclude that the sensitivity of program output with
respect to its variables is a characteristic of the program. For our
evaluation, we tested with k = 10, 50, 100, 200.

Figure 4 shows the total time taken by ASAC to complete its
analysis. As shown, when k ≤ 100, ASAC takes longer time to
rank the variables. Table 2 shows the percentage of total variables
marked as approximate with two different k values. The percent-
ages for k = 5 and k = 200 are same as that for k = 10
and k = 100, respectively. The difference between k = 10 and
k = 100 is attributed to the fine tuning of the ranges of the vari-
ables. As the percentages are averaged over 20 runs, different pro-
gram paths will result in different fine-tuning of the variable ranges.
Nonetheless, the difference of percentage of variables marked as
approximate shows no significant variation over the values of k as
shown in Table 2.

There is another constant m, which determines how many points
will be chosen from within one sample to perturb the program. We

Algorithm 3 Sensitivity Ranking

Input:
1: V ector[n][k], containing the values to be passed to program

for perturbed run
2: Q, QoS Threshold

Output:
3: SenScores[n], sensitivity scores for variables
4: procedure PROGRAM PROBE(Vector[n][k])
5: Initialize V alues[n]← ∅
6: Initialize dim = n
7: for j = 0 to k do
8: for i = 0 to dim do
9: V alues[i]← V ector[i][j]

10: end for
11: Output[j]← program executed with V alues[]
12: Update hypercube
13: end for
14: return Output[]
15: end procedure

16: procedure HYPOTHESIS TEST(Output[],Q)
17: for i = 0 to k do
18: err = GETERRORFUNCTION(Output[i])
19: if err ≤ Q then
20: Good[i][] = V alues[]
21: else
22: Bad[i][] = V alues[]
23: end if
24: end for
25: for i = 0 to dim do
26: j ← Ri[0]
27: while j 6= Ri[1] do
28: if j ∈ Good[i][] then
29: Cgood[j] + +
30: else if j ∈ Bad[i][] then
31: Cbad[j] + +
32: end if
33: j+ = IntervalSize
34: end while
35: SenScores[i]← KS TEST(Cgood, Cbad)
36: end for
37: end procedure

0

20

40

60

80

100

120

140

160

180

200

10 50 100 200

T
im

e
(m

in
u

te
s)

Value of K

SOR

SMM

Monte

FFT

LU

JPEG

H264

369.85

Figure 4: Total time (in minutes) taken by ASAC to produce the
variable rankings with varied values of the parameters k while
m = 2.

observe an interesting trend in the relationship between k and m.
As the samples are small in size with a high value of k, increasing
the value of m, i.e. choosing many points within a narrow range,
results in passing similar values for probing. Therefore, the value
of this constant m has no significant impact on the variable ranking
when k is high. Nonetheless, a high value of both k and m will
translate to higher running time for our analysis.

When k is small, the value of m has an impact on the vari-
ables’ ranking. A small value of k and m will result in sampling a
few representatives from a large hyperbox causing poor coverage
of the sample space. This behaviour is accentuated in bigger pro-
grams, such as JPEG and H.264. However, it is important to have
perturbations with values of variables that are uniformly distributed
over its range. Therefore, for our experiments we used m = 5 and
k = 100.

4.2 Perturbation Points

In the probe stage of our framework, we force variables to assume
values chosen from the hyperbox. We use the dynamic instrumen-
tation tool PIN [20] to inject the values at runtime. There are two
important issues that we would like to discuss here.

First, it is a challenge to identify program points where the vari-
ables are perturbed. For example, if a perturbation is introduced at
a point where a variable is first used after being defined, then the
effect on output will be different than if the perturbation is intro-
duced at a later point. In the former, the error might propagate and
accumulate, resulting in a large deviation from correct output. On
the other hand, the error might get masked by further arithmetic op-
erations on the variables [27]. In our implementation, we introduce
the perturbations at the first usage of a variable after it is defined.
Nonetheless, it would be interesting to study the effects of the per-
turbation at other program points.

The second challenge is in injecting error into loop structures.
It is difficult to force values into loop variables because of its
iterative nature. Our aim is to perturb a variable to see the effect
on the output. However, if the loop factor is high, then injecting the
perturbation at every iteration becomes too aggressive. Instead we
chose to perturb only a subset (25%) of the loop iterations. This
technique is analogous to the concept of loop-perforation [29].

Data Approximable(%)
Bench-
marks

Total
Decls

k = 2 m = 5

m = 2 m = 10 k = 10 k = 100
SOR 28 28 28 28 28
SMM 29 27 27 27 27
Monte 15 33 33 33 33
FFT 85 32 35 36 35
LU 150 6 9 9 10

JPEG 1174 6 10 11 11
H.264 11857 7 15 16 16

Table 2: Percentage of variables marked as approximable by ASAC
with different values of k and m.

4.3 Instrumentation & Testing

ASAC involves ranking the variables using their identifiers, i.e.
names, which are not easily accessible after the code generation,
especially at runtime. Therefore, it is difficult to pass the perturba-
tion values to the program during the probe runs.

To force a sample value into a program, we implemented a
compile-time pass that will inject additional code at the appropriate
program point in the code to read the value to be forced into a
variable from a file, and perform the write of that value into the

variable. We also found that for larger applications, it was easier
to use the PIN tool to inject such values - provided they are not
bound to registers - into variables using their virtual addresses. In
the actual implementation, we used a combination of both.

In the testing and evaluation of ASAC, we adapted the bitflip
error model used by many prior works [3, 4, 15] to introduce errors
into the application. A bitflip error essentially means that one or
more bits within a data toggles one or more times during execution
of the program, inducing an error. We used the same two techniques
described above except that in the testing and evaluation, instead
of forcing a targeted variable to take a certain value, we choose a
(uniformly) random bit among the 16 lower bits of its current, and
toggle it. There are many other error models available in literature,
we chose bitflip because it is fairly simple to understand and model.
Nonetheless, more complicated error models could also be used.

5. Evaluation

We evaluated ASAC against a manually annotated baseline (MAB)
that uses type-qualifiers [25]. The authors of that paper kindly
provided us with benchmarks from SciMark2 [22] that had such
annotations made. We also apply ASAC to two benchmarks from
SPEC2006 [30] and MiBench [11] to test its scalability. To measure
the QoS loss due to approximation, we defined the error metric
for each application, shown in Table 3. For FFT, LU and SOR,
we use the mean squared error between the correct answer and the
approximated output to quantify the degradation. For applications
like SparseMatMult and MonteCarlo, we measure the normalized
difference i.e. 0 if the approximated output is equal to correct
output and 1 if not. For JPEG and H.264, we use the signal-to-
noise ratio (SNR). The error estimation module as well as the QoS
threshold is deemed to be provided by the user for our analysis.
This makes it easy and portable.

Application Benchmark Error Metric LOC
SOR SciMark2 Mean Square Error 36

SparseMatMult SciMark2 Normalized difference 38

MonteCarlo SciMark2 Normalized difference 59

FFT SciMark2 Mean Square Error 168

LU SciMark2 Mean Square Error 283

JPEG MiBench SNR 30781

H.264 SPEC2006 SNR 46190

Table 3: Description of all the benchmarks used for evaluation.

Comparison with Manually Annotated Baseline (MAB). Table 4
shows the detailed comparison of ASAC with MAB. We shall ex-
amine the precision, recall and accuracy metrics of these experi-
ments.

Precision measures how frequent a variable marked by ASAC to
be approximable is also annotated as approximable in the MAB.
Empirically it is defined as -

tp
tp+fp

where ‘tp’ and ‘fp’ are the ‘true positive’ and ‘false positive’ in
Table 4, respectively. The former are those variables found to be
‘approximable’ in both ASAC and MAB. The latter are variables
that ASAC declared to be ‘approximable’ but were annotated as
‘non- approximable’ in MAB. ASAC achieved a precision of 75%.
The 25% loss in precision is due to the fact that our framework is
more optimistic in marking variables as approximable.

Benchmarks True
Positive(tp)

False
Positive(fp)

False
Negative(fn)

True
Negative(tn)

Precision Recall Accuracy

SOR 5 0 1 2 0.83 1.00 0.88

SMM 1 0 1 6 0.50 1.00 0.88

Monte 2 0 1 2 0.67 1.00 0.80

FFT 15 2 2 12 0.88 0.88 0.87

LU 7 1 1 5 0.88 0.88 0.86

Average 0.75 0.95 0.86

Table 4: Comparison of ASAC with “EnerJ” [25].

Recall measures the robustness of our analysis. It is the comple-
ment of the percentage of variables our analysis mistakenly classi-
fies a variable as non-approximable while MAB has annotated it as
approximable, defined as follows -

tp
tp+fn

where ‘fn’ is ‘false negative’, variables that are marked as ‘non-
approximable’ as ASAC but annotated as ‘approximable’ by MAB.
These are the cases where our analysis fails to exploit approximable
variables. Our analysis shows a high recall value of 95%. Finally,
accuracy is a metric that combines precision and recall, and quan-
tifies how much can we match the classification by MAB. It is de-
fined as -

tp+tn
tp+tn+fp+fn

where ‘tn’ are the ‘true negatives’, i.e., the variables that both
ASAC and MAB agree are non-approximable.

We achieve a high accuracy of 86%, using ASAC’s fully au-
tomatic approach. The accuracy can be improved further by opti-
mizations discussed in Section 4.

Error Measurement. In order to quantify the error due to approx-
imation of program data, we evaluated different levels of error in-
jection: two levels in JPEG, and three levels for H.264. First, in
the Mild injection, errors are injected to only 50% of the variables
marked as approximable. This half is chosen from the lower ranked
variables (lower sensitivity scores) among those that are marked as
approximable. Bitflip errors were injected into these variables dur-
ing runtime.

0

1

2

3

4

5

6

SOR SMM Monte FFT LU

E
rr

o
r

(%
)

Benchmarks

Mild Aggressive

Figure 5: Percentage of error after approximating program data.
The two bars are different error percentage after approximating
either one-third or all the data that are classified as approximable
by ASAC.

Second, in the Aggressive injection, errors are injected to all
the variables identified as approximable. For H.264 that has a large
number of variables, we created one more level of inject - Medium.
For this benchmark, we chose the lowest scored one-third as the
Mild injection, 60% for Medium and 100% (all) for Aggressive.
Figure 5 shows the error percentages for the SciMark2 applications
under Mild and Aggressive error injection. Figure 6 shows the
result when Mild and Aggressive error injections were applied to
the JPEG benchmark. We applied error injection to the encode and
decode steps separately to show the effect of error accumulation.
In the Figure 6(e) the errors are aggravated as it takes Figure 6(d)
as its input which already contained the errors injected in encode
step. Therefore, the Aggressive approximation for decode step
is actually more severe than what it would have been if taken in
isolation. Table 5 shows the approximation results for all the Mild,
Medium and Aggressive applied to H.264.

H.264 SNR Y SNR U SNR V BitRate

Correct 36.67 40.74 42.31 149.62

Mild 36.69 37.64 37.65 146.6

Medium 34.05 36.92 36.79 147.12

Aggressive 29.78 32.89 32.99 146.03

Table 5: H.264 Approximation Results

Further Studies on JPEG and H.264. As we do not have man-
ual annotations for JPEG and H.264 benchmarks, we studied the
effect of injecting errors into the variables that ASAC has marked
as non- approximable. Essentially, there were two scenarios. First,
when Aggressive error injection was applied to those variables
deemed non-approximable (i.e., precise), the output of the JPEG
benchmark was a corrupted image file, while the H.264 benchmark
simply terminated pre-maturely with segmentation fault. This is
because ASAC marks all pointers and memory addresses as non-
approximable, hence an Aggressive error injection into mem-
ory addresses naturally resulted in crashes. Next, we tried to in-
ject errors only into variables that ASAC has marked as non-
approximable and are not memory addresses. Figure 7 shows the
encode and decode outputs of JPEG. It clearly shows that ASAC
is able to correctly mark not only approximable data, but also non-
approximable data. For H.264, even a Mild error injection into non-
pointer variables led to the application crashing.

6. Related Works

Emerging complex embedded devices generally face strict energy
constraints. Users want to run a huge variety of application on their
smartphones, tablets, etc. and expect a longer battery life. One way
to achieve this is to trade-off the QoS.

(a) Original (b) Encoding - Mild Approx. (c) Decoding - Mild Approx.

(d) Encoding - Aggressive Approx. (e) Decoding - Aggressive Approx.

Figure 6: JPEG benchmark with various level of approximations separately in Encode and Decode stages. Image (a) is the original image.
Images (b) and (c) are result of introducing mild approximation (in 30% of the variables). Images (d) and (e) are result of introducing
aggressive approximation (in all the variables that are approximable).

There are many popular applications in commercial embedded
devices that do not require a strict QoS as long as they meet
an acceptable threshold [16]. Building on this idea, approximate
computing has gained much attention. It allows programs to relax
their accuracy in order to save on energy consumption. There are
also many works focused on mitigating soft-errors in programs [14,
16, 28].

6.1 Approximation in Programs

Recently there has been proposals on how to allow a disciplined
approximation to relax the accuracy of a program and reduce en-
ergy consumption as a consequence [2, 9, 17, 25, 26, 33]. Approx-
imation is achievable at different levels of abstraction such as code
approximation, program approximation, approximate computer ar-
chitectures and device level approximations. Rinard proposed a
probabilistic bound on erroneous output and thus making programs
robust [24]. Furthermore, in [12] they suggested a trade-off in ac-
curacy by a loop perforation technique to save energy by reducing
computation.

Baek et.al. [2] also suggested a similar trade-off by proposing
a loop and function approximation framework. In their work, the
programmers are expected to provide multiple versions of a func-
tion or a loop structure. The framework consists of a calibration
that generates a QoS model and allows a graceful QoS loss during
runtime to save energy. However, this solution places a demand on
the programmer’s expertise and involvement. With the popularity
of open-source application development for embedded devices, it is
generally not feasible to request multiple versions of a code to allow
approximate computing. In addition, compiling (or re-compiling,
in case of legacy softwares) a program with extra versions of func-

tions and loops would result in code bloat and larger executables
which is not suitable for tight budget and low power devices.

In EnerJ, Sampson et.al. [25] proposes a type-qualifier based
programming paradigm to facilitate approximation of program
data. This ensures safety in terms of maintaining a distinction be-
tween approximate and precise computation of program data. Only
with explicit programmer’s endorsements, a conversion from pre-
cise to approximate or vice-versa is allowed. It provides an exclu-
sive compiler to generate instructions for the underlying dynamic
voltage scaling-based hardware called “Truffle” to switch between
high and low power modes [9].

Carbin et.al. [4] proposed a technique that classifies code re-
gions into approximable and critical by a training method that uses
fuzzed input data. Depending on the program path taken by differ-
ent inputs, it is able to identify critical program regions and approx-
imable regions. Many works propose program transformations and
code generation techniques to allow approximate computation. The
motivation in these works is to save computation power i.e. loop it-
erations, floating point operations etc. One such method is known
an “loop perforation” where loop iterations are skipped in order to
save computation which results in approximation in the output [29].
Misailovic et.al. [19, 32] proposes probabilistic accuracy tests to al-
low for program level approximations.

However, in many works exploring accuracy energy trade-
off [2][25], one common drawback is the programmer’s involve-
ment, and the issue of scalability. ASAC tries to address both.

6.2 Approximation in Hardware Devices

There are many other works investigating and designing archi-
tectural or device level approximation infrastructures [5, 7, 31].

Chippa et.al. [8] presented a work on characterizing error resilience
in applications based on approximate adders. They also proposed
“Impact”, an approximate adder circuit that saves energy by ap-
proximating addition operations [10]. Liu et.al. [17] proposed a
DRAM refresh mechanism that protects critical data and approx-
imates non-critical data to save refresh energy. There has also been
research works exploring program level error resilience that allows
safe approximation. Shafique et.al. [27] proposes a technique to
discover errors that are masked by program flow and operations
on data. This indicates an inherent error resilience and approxi-
mation capability of a program. However, this is based on static
code analysis and thus is not accurate as a whole program optimiza-
tion framework. Error concerning only statically allocated data and
compile-time inferable computation is exposed to this technique.
Program data that are dynamically allocated or are influenced by
runtime computations are hard to analyse. ASAC is a software test-
ing based framework and thus, is able to analyse all kinds of pro-
gram variables.

(a) Encoding - Mild Approx. (b) Decoding - Mild Approx.

Figure 7: JPEG benchmark with errors in data that are marked as
“Precise” by ASAC.

7. Conclusion

In this paper, we present ASAC, a framework to automatically clas-
sify internal program data as approximable and non-approximable.
We propose a novel sensitivity analysis that makes use of statistical
sampling in performing a controlled perturbation based program
testing. We are able to achieve 86% accuracy in identifying ap-
proximable data as compared to a manually annotated baseline. We
also show that ASAC is scalable, and is able to analyze large ap-
plications such as JPEG and H.264. To the best of our knowledge,
our work is the first to propose such an automated framework for
approximate computing.

Our experimental results show that using our annotations to
approximate program data resulted in program outputs that are
within the acceptable QoS thresholds. ASAC is easy to adapt in
either a compilation or a software testing framework. In addition,
it can be used to provide suggestive annotations for large-scale
programs that are difficult to annotate manually.

As a part of future work, ASAC can be extended to comprise
more complex analysis and study sensitivity of program data across
software versions. We expect ASAC to be a key contribution as
the first automatic framework to classify program data in the field
of approximate computing, which will grow as energy efficiency
demands become more prevalent.

Acknowledgments

The research reported here was supported in part by the Singapore
Ministry of Education Tier 2 Research Grant MOE2010-T2-1-075,

and the A*STAR PSF Research Grant 102-101-0028. We also
thank Manmohan Manoharan for valuable reviews.

References

[1] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman,
and S. Amarasinghe. Language and compiler support for auto-
tuning variable-accuracy algorithms. In Proceedings of the 9th

Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO ’11, pages 85–96, Washington, DC, USA,
2011. IEEE Computer Society. ISBN 978-1-61284-356-8. URL
http://dl.acm.org/citation.cfm?id=2190025.2190056.

[2] W. Baek and T. M. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’10, pages 198–209,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3. . URL
http://doi.acm.org/10.1145/1806596.1806620.

[3] F. Benz, A. Hildebrandt, and S. Hack. A dynamic program anal-
ysis to find floating-point accuracy problems. In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’12, pages 453–462, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. . URL
http://doi.acm.org/10.1145/2254064.2254118.

[4] M. Carbin and M. C. Rinard. Automatically identifying critical input
regions and code in applications. In Proceedings of the 19th Interna-

tional Symposium on Software Testing and Analysis, ISSTA ’10, pages
37–48, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-823-0.
. URL http://doi.acm.org/10.1145/1831708.1831713.

[5] V. Chippa, A. Raghunathan, K. Roy, and S. Chakradhar. Dynamic ef-
fort scaling: Managing the quality-efficiency tradeoff. In Proceedings

of the 48th Design Automation Conference, DAC ’11, pages 603–608,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0636-2. . URL
http://doi.acm.org/10.1145/2024724.2024863.

[6] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar. Scalable effort hardware design: Exploiting algorith-
mic resilience for energy efficiency. In Proceedings of the 47th

Design Automation Conference, DAC ’10, pages 555–560, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0002-5. . URL
http://doi.acm.org/10.1145/1837274.1837411.

[7] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar. Scalable effort hardware design: Exploiting algorith-
mic resilience for energy efficiency. In Proceedings of the 47th

Design Automation Conference, DAC ’10, pages 555–560, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0002-5. . URL
http://doi.acm.org/10.1145/1837274.1837411.

[8] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Anal-
ysis and characterization of inherent application resilience for ap-
proximate computing. In Proceedings of the 50th Annual De-

sign Automation Conference, DAC ’13, pages 113:1–113:9, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2071-9. . URL
http://doi.acm.org/10.1145/2463209.2488873.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Ar-
chitecture support for disciplined approximate programming. In
Proceedings of the Seventeenth International Conference on Ar-

chitectural Support for Programming Languages and Operat-

ing Systems, ASPLOS XVII, pages 301–312, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-0759-8. . URL
http://doi.acm.org/10.1145/2150976.2151008.

[10] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy.
Impact: Imprecise adders for low-power approximate computing. In
Proceedings of the 17th IEEE/ACM International Symposium on Low-

power Electronics and Design, ISLPED ’11, pages 409–414, Piscat-
away, NJ, USA, 2011. IEEE Press. ISBN 978-1-61284-660-6. URL
http://dl.acm.org/citation.cfm?id=2016802.2016898.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. Mibench: A free, commercially representative
embedded benchmark suite. WWC ’01, 2001.

[12] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. In MIT Technical Report. MIT,
2009. URL http://hdl.handle.net/1721.1/46709.

[13] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agar-
wal, and M. Rinard. Dynamic knobs for responsive power-aware
computing. In Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XVI, pages 199–212, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0266-1. . URL
http://doi.acm.org/10.1145/1950365.1950390.

[14] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Compiler-assisted soft error detection under performance and
energy constraints in embedded systems. ACM Trans. Embed. Com-

put. Syst., 8(4):27:1–27:30, July 2009. ISSN 1539-9087. . URL
http://doi.acm.org/10.1145/1550987.1550990.

[15] J. Lee and A. Shrivastava. Static analysis to mitigate soft er-
rors in register files. In Proceedings of the Conference on De-

sign, Automation and Test in Europe, DATE ’09, pages 1367–
1372, 3001 Leuven, Belgium, Belgium, 2009. European Design
and Automation Association. ISBN 978-3-9810801-5-5. URL
http://dl.acm.org/citation.cfm?id=1874620.1874949.

[16] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasub-
ramanian. Mitigating soft error failures for multimedia applica-
tions by selective data protection. In Proceedings of the 2006

International Conference on Compilers, Architecture and Synthe-

sis for Embedded Systems, CASES ’06, pages 411–420, New
York, NY, USA, 2006. ACM. ISBN 1-59593-543-6. . URL
http://doi.acm.org/10.1145/1176760.1176810.

[17] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn.
Flikker: Saving dram refresh-power through critical data parti-
tioning. In Proceedings of the Sixteenth International Confer-

ence on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XVI, pages 213–224, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0266-1. . URL
http://doi.acm.org/10.1145/1950365.1950391.

[18] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 42(1):55–61, Feb. 2000.
ISSN 0040-1706. . URL http://dx.doi.org/10.2307/1271432.

[19] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential pro-
grams with statistical accuracy tests. ACM Trans. Embed. Comput.

Syst., 12(2s):88:1–88:26, May 2013. ISSN 1539-9087. . URL
http://doi.acm.org/10.1145/2465787.2465790.

[20] T. Naughton, W. Bland, G. Vallee, C. Engelmann, and S. L. Scott.
Fault injection framework for system resilience evaluation: Fake faults
for finding future failures. In Proceedings of the 2009 Workshop on

Resiliency in High Performance, Resilience ’09, pages 23–28, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-593-2. . URL
http://doi.acm.org/10.1145/1552526.1552530.

[21] S. Palaniappan, B. Gyori, B. Liu, D. Hsu, and P. Thiagara-
jan. Statistical model checking based calibration and analysis
of bio-pathway models. In A. Gupta and T. Henzinger, ed-
itors, Computational Methods in Systems Biology, volume 8130
of Lecture Notes in Computer Science, pages 120–134. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-40707-9. . URL
http://dx.doi.org/10.1007/978-3-642-40708-6-10.

[22] R. Pozo and B. Miller. Scimark 2.0. www.math.nist.gov/scimark2/.

[23] F. M. Quintao Pereira, R. E. Rodrigues, and V. H. Sperle Cam-
pos. A fast and low-overhead technique to secure programs
against integer overflows. In Proceedings of the 2013 IEEE/ACM

International Symposium on Code Generation and Optimization

(CGO), CGO ’13, pages 1–11, Washington, DC, USA, 2013.
IEEE Computer Society. ISBN 978-1-4673-5524-7. . URL
http://dx.doi.org/10.1109/CGO.2013.6494996.

[24] M. Rinard. Probabilistic accuracy bounds for fault-tolerant compu-
tations that discard tasks. In Proceedings of the 20th Annual Inter-

national Conference on Supercomputing, ICS ’06, pages 324–334,

New York, NY, USA, 2006. ACM. ISBN 1-59593-282-8. . URL
http://doi.acm.org/10.1145/1183401.1183447.

[25] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman. Enerj: Approximate data types for safe
and general low-power computation. In Proceedings of the

32Nd ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’11, pages 164–174, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. . URL
http://doi.acm.org/10.1145/1993498.1993518.

[26] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage
in solid-state memories. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-46, pages
25–36, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2638-
4. . URL http://doi.acm.org/10.1145/2540708.2540712.

[27] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel. Exploit-
ing program-level masking and error propagation for constrained
reliability optimization. In Proceedings of the 50th Annual De-

sign Automation Conference, DAC ’13, pages 17:1–17:9, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2071-9. . URL
http://doi.acm.org/10.1145/2463209.2488755.

[28] A. Shrivastava, J. Lee, and R. Jeyapaul. Cache vulnerabil-
ity equations for protecting data in embedded processor caches
from soft errors. In Proceedings of the ACM SIGPLAN/SIGBED

2010 Conference on Languages, Compilers, and Tools for Em-

bedded Systems, LCTES ’10, pages 143–152, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-953-4. . URL
http://doi.acm.org/10.1145/1755888.1755910.

[29] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Ri-
nard. Managing performance vs. accuracy trade-offs with loop
perforation. In Proceedings of the 19th ACM SIGSOFT Sympo-

sium and the 13th European Conference on Foundations of Soft-

ware Engineering, ESEC/FSE ’11, pages 124–134, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0443-6. . URL
http://doi.acm.org/10.1145/2025113.2025133.

[30] SPEC-CPU2006. Spec benchamrks. www.spec.org/cpu2006/.

[31] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Quality programmable vector processors for ap-
proximate computing. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-46, pages 1–
12, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2638-4. .
URL http://doi.acm.org/10.1145/2540708.2540710.

[32] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Ran-
domized accuracy-aware program transformations for efficient ap-
proximate computations. In Proceedings of the 39th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’12, pages 441–454, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1083-3. . URL
http://doi.acm.org/10.1145/2103656.2103710.

[33] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Ran-
domized accuracy-aware program transformations for efficient ap-
proximate computations. In Proceedings of the 39th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’12, pages 441–454, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1083-3. . URL
http://doi.acm.org/10.1145/2103656.2103710.

