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Abstract

Graph Neural Networks (GNN) have been shown to work ef-
fectively for modeling graph structured data to solve tasks
such as node classification, link prediction and graph classi-
fication. There has been some recent progress in defining the
notion of pooling in graphs whereby the model tries to gen-
erate a graph level representation by downsampling and sum-
marizing the information present in the nodes. Existing pool-
ing methods either fail to effectively capture the graph sub-
structure or do not easily scale to large graphs. In this work,
we propose ASAP (Adaptive Structure Aware Pooling), a
sparse and differentiable pooling method that addresses the
limitations of previous graph pooling architectures. ASAP
utilizes a novel self-attention network along with a modified
GNN formulation to capture the importance of each node in
a given graph. It also learns a sparse soft cluster assignment
for nodes at each layer to effectively pool the subgraphs to
form the pooled graph. Through extensive experiments on
multiple datasets and theoretical analysis, we motivate our
choice of the components used in ASAP. Our experimental
results show that combining existing GNN architectures with
ASAP leads to state-of-the-art results on multiple graph clas-
sification benchmarks. ASAP has an average improvement of
4%, compared to current sparse hierarchical state-of-the-art
method. We make the source code of ASAP available to en-
courage reproducible research 1.

1 Introduction

In recent years, there has been an increasing interest in de-
veloping Graph Neural Networks (GNNs) for graph struc-
tured data. CNNs have shown to be successful in tasks in-
volving images (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016) and text (Kim 2014). Unlike these regu-
lar grid data, arbitrary shaped graphs have rich informa-
tion present in their graph structure. By inherently captur-
ing such information through message propagation along
the edges of the graph, GNNs have proved to be more
effective for graphs (Gilmer et al. 2017; Hamilton, Ying,
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and Leskovec 2017). While some of the works focus on
learning node-level representations to perform tasks such
as node classification (Kipf and Welling 2017; Veličković
et al. 2017) and link prediction (Schlichtkrull et al. 2017;
Vashishth et al. 2019), others focus on learning graph-level
representations for tasks like graph classification (Bruna et
al. 2013; Henaff, Bruna, and LeCun 2015; Ying et al. 2018;
Gao and Ji 2019; Lee, Lee, and Kang 2019). In this paper,
we focus on graph-level representation learning for the task
of graph classification.

Briefly, the task of graph classification involves predict-
ing the label of an input graph by utilizing the given graph
structure and initial node-level representations. For exam-
ple, given a molecule, the task could be to predict if it is
toxic. Current GNNs are inherently flat and lack the ca-
pability of aggregating node information in a hierarchi-
cal manner. Such architectures rely on learning node rep-
resentations through some GNN followed by aggregation
of the node information to generate the graph representa-
tion (Vinyals, Bengio, and Kudlur 2016; Li et al. 2016;
Zhang et al. 2018). But learning graph representations in a
hierarchical manner is important to capture local substruc-
tures that are present in graphs. For example, in an organic
molecule, a set of atoms together can act as a functional
group and play a vital role in determining the class of the
graph.

To address this limitation, new pooling architectures have
been proposed where sets of nodes are recursively aggre-
gated to form a cluster that represents a node in the pooled
graph, thus enabling hierarchical learning. DiffPool (Ying et
al. 2018) is a differentiable pooling operator that learns a soft
assignment matrix mapping each node to a set of clusters.
Since this assignment matrix is dense, it is not easily scalable
to large graphs (Cangea et al. 2018). Following that, TopK
(Gao and Ji 2019) is proposed which learns a scalar projec-
tion score for each node and selects the top k nodes. They
address the sparsity concerns of DiffPool but are unable to
capture the rich graph structure effectively. Recently, SAG-
Pool (Lee, Lee, and Kang 2019), a TopK based architecture,
has been proposed which leverages self-attention network to
learn the node scores. Although local graph structure is used
for scoring nodes, it is still not used effectively in determin-
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(a) Input graph (b) Cluster assignment and formation (c) Clusters scoring using LEConv (d) Top scoring clusters are selected (e) Pooled graph
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Figure 1: Overview of ASAP: (a) Input graph to ASAP. (b) ASAP initially clusters 1-hop neighborhood considering all nodes
as medoid2. For brevity, we only show cluster formations of nodes 2 & 6 as medoids. Cluster membership is computed using
M2T attention (refer Sec. 4.2). (c) Clusters are scored using LEConv (refer Sec. 4.3). Darker shade denotes higher score. (d) A
fraction of top scoring clusters are selected in the pooled graph. Adjacency matrix is recomputed using edge weights between
the member nodes of selected clusters. (e) Output of ASAP (f) Overview of hierarchical graph classification architecture.

ing the connectivity of the pooled graph. Pooling methods
that leverage the graph structure effectively while maintain-
ing sparsity currently don’t exist. We address the gap in this
paper.

In this work, we propose a new sparse pooling opera-
tor called Adaptive Structure Aware Pooling (ASAP) which
overcomes the limitations in current pooling methods. Our
contributions can be summarized as follows:

• We introduce ASAP, a sparse pooling operator capable
of capturing local subgraph information hierarchically to
learn global features with better edge connectivity in the
pooled graph.

• We propose Master2Token (M2T), a new self-attention
framework which is better suited for global tasks like
pooling.

• We introduce a new convolution operator LEConv, that
can adaptively learn functions of local extremas in a graph
substrucutre.

2 Related Work

2.1 Graph Neural Networks

Various formulation of GNNs have been proposed which use
both spectral and non-spectral approaches. Spectral methods
(Bruna et al. 2013; Henaff, Bruna, and LeCun 2015) aim at
defining convolution operation using Fourier transformation
and graph Laplacian. These methods do not directly gen-
eralize to graphs with different structure (Bronstein et al.

2medoids are representatives of a cluster. They are similar to
centroids but are strictly a member of the cluster.

2017). Non-spectral methods (Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2017; Xu et al. 2018;
Monti et al. 2017; Morris et al. 2018) define convolution
through a local neighborhood around nodes in the graph.
They are faster than spectral methods and easily generalize
to other graphs. GNNs can also be viewed as message pass-
ing algorithm where nodes iteratively aggregate messages
from neighboring nodes through edges (Gilmer et al. 2017).

2.2 Pooling

Pooling layers overcome GNN’s inability to aggregate nodes
hierarchically. Earlier pooling methods focused on deter-
ministic graph clustering algorithms (Defferrard, Bresson,
and Vandergheynst 2016; Fey et al. 2018; Simonovsky and
Komodakis 2017). Ying et al. introduced the first differen-
tiable pooling operator which out-performed the previous
deterministic methods. Since then, new data-driven pooling
methods have been proposed; both spectral (Ma et al. 2019;
Dhillon, Guan, and Kulis 2007) and non-spectral (Ying et
al. 2018; Gao and Ji 2019). Spectral methods aim at cap-
turing the graph topology using eigen-decomposition algo-
rithms. However, due to higher computational requirement
for spectral graph techniques, they are not easily scalable to
large graphs. Hence, we focus on non-spectral methods.

Pooling methods can further be divided into global and
hierarchical pooling layers. Global pooling summarize the
entire graph in just one step. Set2Set (Vinyals, Bengio, and
Kudlur 2016) finds the importance of each node in the graph
through iterative content-based attention. Global-Attention
(Li et al. 2016) uses an attention mechanism to aggregate
nodes in the graph. SortPool (Zhang et al. 2018) summarizes
the graph by concatenating few nodes after sorting them
based on their features. Hierarchical pooling is used to cap-
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ture the topological information of graphs. DiffPool forms a
fixed number of clusters by aggregating nodes. It uses GNN
to compute a dense soft assignment matrix, making it infea-

Property DiffPool TopK SAGPool ASAP

Sparse ✓ ✓ ✓

Node Aggregation ✓ ✓

Soft Edge Weights ✓ ✓

Variable number of clusters ✓ ✓ ✓

Table 1: Properties desired in hierarchical pooling methods.

sible for large graphs. TopK scores nodes based on a learn-
able projection vector and samples a fraction of high scor-
ing nodes. It avoids node aggregation and computing soft
assignment matrix to maintain the sparsity in graph opera-
tions. SAGPool improve upon TopK by using a GNN to con-
sider the graph structure while scoring nodes. Since TopK
and SAGPool do not aggregate nodes nor compute soft edge
weights, they are unable to preserve node and edge informa-
tion effectively.

To address these limitations, we propose ASAP, which
has all the desirable properties of hierarchical pooling with-
out compromising on sparsity in graph operations. Please
see Table. 1 for an overall comparison of hierarchical pool-
ing methods. Further comparison discussions between hier-
archical architectures are presented in Sec. 8.1.

3 Preliminaries

3.1 Problem Statement

Consider a graph G(V, E , X) with N = |V| nodes and |E|
edges. Each node vi ∈ V has d-dimensional feature repre-
sentation denoted by xi. X ∈ R

N×d denotes the node fea-
ture matrix and A ∈ R

N×N represents the weighted adja-
cency matrix. The graph G also has a label y associated with
it. Given a dataset D = {(G1, y1), (G2, y2), ...}, the task
of graph classification is to learn a mapping f : G → Y ,
where G is the set of input graphs and Y is the set of la-
bels associated with each graph. A pooled graph is denoted
by Gp(Vp, Ep, Xp) with node embedding matrix Xp and its
adjacency matrix as Ap.

3.2 Graph Convolution Networks

We use Graph Convolution Network (GCN) (Kipf and
Welling 2017) for extracting discriminative features for
graph classification. GCN is defined as:

X(l+1) = σ(D̂− 1

2 ÂD̂
1

2X(l)W (l)), (1)

where Â = A+ I for self-loops, D̂ =
∑

j Âi,j and W (l) ∈

R
d×f is a learnable matrix for any layer l. We use the initial

node feature matrix wherever provided, i.e., X(0) = X .

3.3 Self-Attention

Self-attention is used to find the dependency of an input on
itself (Cheng, Dong, and Lapata 2016; Vaswani et al. 2017).
An alignment score αi,j is computed to map the importance

of candidates cj on target query qi. In self-attention, target
query qi and candidates cj are obtained from input entities
h = {h1, ..., hn}. Self-attention can be categorized as To-
ken2Token and Source2Token based on the choice of target
query q (Shen et al. 2018).

Token2Token (T2T) selects both the target and candi-
dates from the input set h. In the context of additive attention
(Bahdanau, Cho, and Bengio 2014), αi,j is computed as:

αi,j = softmax(�vTσ(Whi ‖Whj)). (2)

where ‖ is the concatenation operator.

Source2Token (S2T) finds the importance of each candi-
date to a specific global task which cannot be represented
by any single entity. αi,j is computed by dropping the target
query term. Eq. (2) changes to the following:

αi,j = softmax(�vTσ(Whj)). (3)

3.4 Receptive Field

We extend the concept of receptive field RF from pooling
operations in CNN to GNN3. We define RFnode of a pool-
ing operator as the number of hops needed to cover all the
nodes in the neighborhood that influence the representation
of a particular output node. Similarly, RF edge of a pooling
operator is defined as the number of hops needed to cover all
the edges in the neighborhood that affect the representation
of an edge in the pooled graph Gp.

4 ASAP: Proposed Method

In this section we describe the components of our proposed
method ASAP. As shown in Fig. 1(b), ASAP initially con-
siders all possible local clusters with a fixed receptive field
for a given input graph. It then computes the cluster mem-
bership of the nodes using an attention mechanism. These
clusters are then scored using a GNN as depicted in Fig 1(c).
Further, a fraction of the top scoring clusters are selected as
nodes in the pooled graph and new edge weights are com-
puted between neighboring clusters as shown in Fig. 1(d).
Below, we discuss the working of ASAP in details. Please
refer to Appendix Sec. I for a pseudo code of the working of
ASAP.

4.1 Cluster Assignment

Initially, we consider each node vi in the graph as a medoid
of a cluster ch(vi) such that each cluster can represent only
the local neighbors N within a fixed radius of h hops i.e.,
ch(vi) = Nh(vi). This effectively means that RFnode = h
for ASAP. This helps the clusters to effectively capture the
information present in the graph sub-structure.
Let xc

i be the feature representation of a cluster ch(vi) cen-
tered at vi. We define Gc(V, E , Xc) as the graph with node
feature matrix Xc ∈ R

N×d and adjacency matrix Ac = A.
We denote the cluster assignment matrix by S ∈ R

N×N ,
where Si,j represents the membership of node vi ∈ V in

3Please refer to Appendix Sec. D for more details on similarity
between pooling methods in CNN and ASAP.
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cluster ch(vj). By employing such local clustering (Schaef-
fer 2007), we can maintain sparsity of the cluster assignment
matrix S similar to the original graph adjacency matrix A
i.e., space complexity of both S and A is O(|E|).

4.2 Cluster Formation using Master2Token

Given a cluster ch(vi), we learn the cluster assignment ma-
trix S through a self-attention mechanism. The task here is
to learn the overall representation of the cluster ch(vi) by at-
tending to the relevant nodes in it. We observe that both T2T
and S2T attention mechanisms described in Sec. 3.3 do not
utilize any intra-cluster information. Hence, we propose a
new variant of self-attention called Master2Token (M2T).
We further motivate the need for M2T framework later in
Sec. 8.2. In M2T framework, we first create a master query
mi ∈ R

d which is representative of all the nodes within a
cluster:

mi = fm(x′
j |vj ∈ ch(vi)}), (4)

where x′
j is obtained after passing xj through a separate

GCN to capture structural information in the cluster ch(vi)
4.

fm is a master function which combines and transforms fea-
ture representation of vj ∈ ch(vi) to find mi. In this work
we experiment with max master function defined as:

mi = max
vj∈ch(vi)

(x′
j). (5)

This master query mi attends to all the constituent nodes
vj ∈ ch(vi) using additive attention:

αi,j = softmax(�wTσ(Wmi ‖ x
′
j)). (6)

where �wT and W are learnable vector and matrix re-
spectively. The calculated attention scores αi,j signifies the
membership strength of node vj in cluster ch(vi). Hence, we
use this score to define the cluster assignment matrix dis-
cussed above, i.e., Si,j = αi,j . The cluster representation xc

i

for ch(vi) is computed as follows:

xc
i =

|ch(vi)|∑

j=1

αi,jxj . (7)

4.3 Cluster Selection using LEConv

Similar to TopK (Gao and Ji 2019), we sample clusters
based on a cluster fitness score φi calculated for each clus-
ter in the graph Gc using a fitness function fφ. For a given
pooling ratio k ∈ (0, 1], the top ⌈kN⌉ clusters are se-
lected and included in the pooled graph Gp. To compute
the fitness scores, we introduce Local Extrema Convolu-
tion (LEConv), a graph convolution method which can cap-
ture local extremum information. In Sec. 5.1 we motivate
the choice of LEConv’s formulation and contrast it with the
standard GCN formulation. LEConv is used to compute φ as
follows:

φi = σ(xc
iW1 +

∑

j∈N (i)

Ac
i,j(x

c
iW2 − xc

jW3)) (8)

4If xj is used as it is then interchanging any two nodes in a
cluster will have not affect the final output, which is undesirable.

where N (i) denotes the neighborhood of the ith node in Gc.
W1,W2,W3 are learnable parameters and σ(.) is some acti-
vation function. Fitness vector Φ = [φ1, φ2, ..., φN ]T is mul-
tiplied to the cluster feature matrix Xc to make fφ learnable
i.e.,:

X̂c = Φ⊙Xc,

where ⊙ is broadcasted hadamard product. The function

TOPk(.) ranks the fitness scores and gives the indices î of
top ⌈kN⌉ selected clusters in Gc as follows:

î = TOPk(X̂c, ⌈kN⌉).

The pooled graph Gp is formed by selecting these top

⌈kN⌉ clusters. The pruned cluster assignment matrix Ŝ ∈
R

N×⌈kN⌉ and the node feature matrix Xp ∈ R
⌈kN⌉×d are

given by:

Ŝ = S(:, î), Xp = X̂c(̂i, :) (9)

where î is used for index slicing.

4.4 Maintaining Graph Connectivity

Following (Ying et al. 2018), once the clusters have been
sampled, we find the new adjacency matrix Ap for the

pooled graph Gp using Âc and Ŝ in the following manner:

Ap = ŜT ÂcŜ (10)

where Âc = Ac + I . Equivalently, we can see that A
p
i,j =

∑
k,l Ŝk,iÂ

c
k,lŜl,j . This formulation ensures that any two

clusters i and j in Gp are connected if there is any common
node in the clusters ch(vi) and ch(vj) or if any of the con-
stituent nodes in the clusters are neighbors in the original
graph G (Fig. 1(d)). Hence, the strength of the connection
between clusters is determined by both the membership of

the constituent nodes through Ŝ and the edge weights Ac.

Note that Ŝ is a sparse matrix by formulation and hence the
above operation can be implemented efficiently.

5 Theoretical Analysis

5.1 Limitations of using GCN for scoring clusters

GCNs cannot learn to assign such a fitness score to a cluster
which is a function of the local extremas of its constituent
nodes. Scoring the clusters based on local extremas would
potentially allow us to sample representative clusters from
all parts of the graph. GCN from Eq. (1) can be viewed as an

operator which first computes a pre-score φ̂′ for each node

i.e., φ̂′ = XW followed by a weighted average over neigh-
bors and a non-linearity. If for some node the pre-score is
very high, it can increase the scores of its neighbors, inher-
ently biasing the pooling operators to select a node in the
local neighborhood instead of sampling clusters which rep-
resent the whole graph.

Theorem 1. Let G be a graph with positive adjacency ma-
trix A i.e., Ai,j ≥ 0. Consider any function f(X,A) :
R

N×d × R
N×N → R

N×1 which depends on difference be-
tween a node and its neighbors after a linear transformation
W ∈ R

d×1. For e.g,:

fi = σ(αixiW +
∑

j∈N (i)

βi,j(xiW − xjW ))
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Method D&D PROTEINS NCI1 NCI109 FRANKENSTEIN

SET2SET (Vinyals, Bengio, and Kudlur 2016) 71.60 ± 0.87 72.16 ± 0.43 66.97 ± 0.74 61.04 ± 2.69 61.46 ± 0.47
GLOBAL-ATTENTION (Li et al. 2016) 71.38 ± 0.78 71.87 ± 0.60 69.00 ± 0.49 67.87 ± 0.40 61.31 ± 0.41
SORTPOOL (Zhang et al. 2018) 71.87 ± 0.96 73.91 ± 0.72 68.74 ± 1.07 68.59 ± 0.67 63.44 ± 0.65

DIFFPOOL (Ying et al. 2018) 66.95 ± 2.41 68.20 ± 2.02 62.32 ± 1.90 61.98 ± 1.98 60.60 ± 1.62
TOPK (Gao and Ji 2019) 75.01 ± 0.86 71.10 ± 0.90 67.02 ± 2.25 66.12 ± 1.60 61.46 ± 0.84
SAGPOOL (Lee, Lee, and Kang 2019) 76.45 ± 0.97 71.86 ± 0.97 67.45 ± 1.11 67.86 ± 1.41 61.73 ± 0.76

ASAP (Ours) 76.87± 0.7 74.19± 0.79 71.48± 0.42 70.07± 0.55 66.26± 0.47

Table 2: Comparison of ASAP with previous global and hierarchical pooling. Average accuracy and standard deviation is
reported for 20 random seeds. We observe that ASAP consistently outperforms all the baselines on all the datasets. Please refer
to Sec. 7.1 for more details.

where fi, αi, βi,j ∈ R and xi ∈ R
d.

a) If fitness value Φ = GCN(X,A) then Φ cannot learn f.

b) If fitness value Φ = LEConv(X,A) then Φ can learn f.

Proof. See Appendix Sec. F for proof.

Motivated by the above analysis, we propose to use LEConv
(Eq. 8) for scoring clusters. LEConv can learn to score clus-
ters by considering both its global and local importance
through the use of self-loops and ability to learn functions
of local extremas.

5.2 Graph Connectivity

Here, we analyze ASAP from the aspect of edge con-
nectivity in the pooled graph. When considering h-hop
neighborhood for clustering, both ASAP and DiffPool have
RF edge = 2h + 1 because they use Eq. (10) to define the
edge connectivity. On the other hand, both TopK and SAG-
Pool have RF edge = h. A larger edge receptive field implies
that the pooled graph has better connectivity which is im-
portant for the flow of information in the subsequent GCN
layers.

Theorem 2. Let the input graph G be a tree of any possi-
ble structure with N nodes. Let k∗ be the lower bound on
sampling ratio k to ensure the existence of atleast one edge
in the pooled graph irrespective of the structure of G and
the location of the selected nodes. For TopK or SAGPool,
k∗ → 1 whereas for ASAP, k∗ → 0.5 as N → ∞.

Proof. See Appendix Sec. G for proof.

Theorem 2 suggests that ASAP can achieve a similar de-
gree of connectivity as SAGPool or TopK for a much smaller
sampling ratio k. For a tree with no prior information about
its structure, ASAP would need to sample only half of the
clusters whereas TopK and SAGPool would need to sample
almost all the nodes, making TopK and SAGPool inefficient
for such graphs. In general, independent of any combination
of nodes selected, ASAP will have better connectivity due
to its larger receptive field. Please refer to Appendix Sec. G
for a similar analysis on path graph and more details.

5.3 Graph Permutation Equivariance

Proposition 1. ASAP is a graph permutation equivariant
pooling operator.

Proof. See Appendix Sec. H for proof.

6 Experimental Setup

In our experiments, we use 5 graph classification bench-
marks and compare ASAP with multiple pooling methods.
Below, we describe the statistics of the dataset, the baselines
used for comparisons and our evaluation setup in detail.

6.1 Datasets

We demonstrate the effectiveness of our approach on 5 graph
classification datasets. D&D (Shervashidze et al. 2011; Dob-
son and Doig 2003) and PROTEINS (Dobson and Doig
2003; Borgwardt et al. 2005) are datasets containing pro-
teins as graphs. NCI1 (Wale, Watson, and Karypis 2008)
and NCI109 are datasets for anticancer activity classifica-
tion. FRANKENSTEIN (Orsini, Frasconi, and De Raedt
2015) contains molecules as graph for mutagen classifica-
tion. Please refer to Table 3 for the dataset statistics.

Dataset Gavg Cavg Vavg Eavg

D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
FRANKENSTEIN 4337 2 16.90 17.88

Table 3: Statistics of the graph datasets. Gavg , Cavg , Vavg

and Eavg denotes the average number of graphs, classes,
nodes and edges respectively.

6.2 Baselines

We compare ASAP with previous state-of-the-art hierarchi-
cal pooling operators DiffPool (Ying et al. 2018), TopK
(Gao and Ji 2019) and SAGPool (Lee, Lee, and Kang 2019).
For comparison with global pooling, we choose Set2Set
(Vinyals, Bengio, and Kudlur 2016), Global-Attention (Li
et al. 2016) and SortPool (Zhang et al. 2018).
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6.3 Training & Evaluation Setup

We use a similar architecture as defined in (Cangea et al.
2018; Lee, Lee, and Kang 2019) which is depicted in Fig.
1(f). For ASAP, we choose k = 0.5 and h = 1 to be
consistent with baselines.5 Following SAGPool(Lee, Lee,
and Kang 2019), we conduct our experiments using 10-fold
cross-validation and report the average accuracy on 20 ran-
dom seeds.

Aggregation type FITNESS CLUSTER

None - -
Only cluster - ✓

Both ✓ ✓

Table 4: Different aggregation types as mentioned in Sec
7.2.

7 Results

In this section, we provide empirical analysis of ASAP by
comparing it with above baselines. Next, we provide some
ablation study of the various components of ASAP.

7.1 Performance Comparison

We compare the performace of ASAP with baseline meth-
ods on 5 graph classification tasks. The results are shown
in Table 2. All the numbers for hierarchical pooling (Diff-
Pool, TopK and SAGPool) are taken from (Lee, Lee, and
Kang 2019). For global pooling (Set2Set, Global-Attention
and SortPool), we modify the architectural setup to make
them comparable with the hierarchical variants. 6. We ob-
serve that ASAP consistently outperforms all the baselines
on all 5 datasets. We note that ASAP has an average im-
provement of 4% and 3.5% over previous state-of-the-art
hierarchical (SAGPool) and global (SortPool) pooling meth-
ods respectively. We also observe that compared to other hi-
erarchical methods, ASAP has a smaller variance in perfor-
mance which suggests that the training of ASAP is more
stable.

7.2 Effect of Node Aggregation

Here, we evaluate the improvement in performance due to
our proposed technique of aggregating nodes to form a clus-
ter. There are two aspects involved during the creation of
clusters for a pooled graph:

• FITNESS: calculating fitness scores for individual nodes.
Scores can be calculated either by using only the medoid
or by aggregating neighborhood information.

• CLUSTER: generating a representation for the new clus-
ter node. Cluster representation can either be the medoid’s
representation or some feature aggregation of the neigh-
borhood around the medoid.

5Please refer to Appendix Sec. A for further details on hyper-
parameter tuning and Appendix Sec. E for ablation on k.

6Please refer to Appendix Sec. B for more details

We test three types of aggregation methods: ’None’, ’Only
cluster’ and ’Both’ as described in Table 4. As shown in Ta-
ble 5, we observe that our proposed node aggregation helps
improve the performance of ASAP.

Aggregation FRANKENSTEIN NCI1

None 67.4 ±0.6 69.9 ± 2.5
Only cluster 67.5 ±0.5 70.6 ± 1.8
Both 67.8± 0.6 70.7± 2.3

Table 5: Performace comparison of different aggregation
methods on validation data of FRANKENSTEIN and NCI1.

Attention FRANKENSTEIN NCI1

T2T 67.6 ± 0.5 70.3 ± 2.0
S2T 67.7 ± 0.5 69.9 ± 2.0
M2T 67.8± 0.6 70.7± 2.3

Table 6: Effect of different attention framework on pool-
ing evaluated on validation data of FRANKENSTEIN and
NCI1. Please refer to Sec. 7.3 for more details.

7.3 Effect of M2T Attention

We compare our M2T attention framework with previously
proposed S2T and T2T attention techniques. The results are
shown in Table 6. We find that M2T attention is indeed better
than the rest in NCI1 and comparable in FRANKENSTEIN.

Fitness function FRANKENSTEIN NCI1

GCN 62.7±0.3 65.4±2.5
Basic-LEConv 63.1±0.7 69.8±1.9
LEConv 67.8±0.6 70.7±2.3

Table 7: Performance comparison of different fitness scor-
ing functions on validation data of FRANKENSTEIN and
NCI1. Refer to Sec. 7.4 for details.

7.4 Effect of LEConv as a fitness scoring function

In this section, we analyze the impact of LEConv as a fit-
ness scoring function in ASAP. We use two baselines -
GCN (Eq. 1) and Basic-LEConv which computes φi =
σ(xiW +

∑
j∈N (xi)

Ai,j(xiW −xjW )). In Table 7 we can

see that Basic-LEConv and LEConv perform significantly
better than GCN because of their ability to model func-
tions of local extremas. Further, we observe that LEConv
performs better than Basic-LEConv as it has three differ-
ent linear transformation compared to only one in the latter.
This allows LEConv to potentially learn complicated scor-
ing functions which is better suited for the final task. Hence,
our analysis in Theorem 1 is emperically validated.
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7.5 Effect of computing Soft edge weights

We evaluate the importance of calculating edge weights for
the pooled graph as defined in Eq. 10. We use the best model
configuration as found from above ablation analysis and then
add the feature of computing soft edge weights for clusters.
We observe a significant drop in performace when the edge
weights are not computed. This proves the necessity of cap-
turing the edge information while pooling graphs.

Soft edge weights FRANKENSTEIN NCI1

Absent 67.8 ± 0.6 70.7 ± 2.3
Present 68.3± 0.5 73.4± 0.4

Table 8: Effect of calculating soft edge weights on pooling
for validation data of FRANKENSTEIN and NCI1. Please
refer to Sec. 7.5 for more details.

8 Discussion

8.1 Comparison with other pooling methods

DiffPool DiffPool and ASAP both aggregate nodes to
form a cluster. While ASAP only considers nodes which are
within h-hop neighborhood from a node xi (medoid) as a
cluster, DiffPool considers the entire graph. As a result, in
DiffPool, two nodes that are disconnected or far away in the
graph can be assigned similar clusters if the nodes and their
neighbors have similar features. Since this type of cluster
formation is undesirable for a pooling operator (Ying et al.
2018), DiffPool utilizes an auxiliary link prediction objec-
tive during training to specifically prevent far away nodes
from being clustered together. ASAP needs no such addi-
tional regularization because it ensures the localness while
clustering. DiffPool’s soft cluster assignment matrix S is
calculated for all the nodes to all the clusters making S a
dense matrix. Calculating and storing this does not scale eas-
ily for large graphs. ASAP, due to the local clustering over
h-hop neighborhood, generates a sparse assignment matrix
while retaining the hierarchical clustering properties of Diff-
pool. Further, for each pooling layer, DiffPool has to prede-
termine the number of clusters it needs to pick which is fixed
irrespective of the input graph size. Since ASAP selects the
top k fraction of nodes in current graph, it inherently takes
the size of the input graph into consideration.

TopK & SAGPool While TopK completely ignores the
graph structure during pooling, SAGPool modifies the TopK
formulation by incorporating the graph structure through the
use of a GCN network for computing node scores φ. To en-
force sparsity, both TopK and SAGPool avoid computing the
cluster assignment matrix S that DiffPool proposed. Instead
of grouping multiple nodes to form a cluster in the pooled
graph, they drop nodes from the original graph based on a
score (Cangea et al. 2018) which might potentially lead to
loss of node and edge information. Thus, they fail to lever-
age the overall graph structure while creating the clusters.
In contrast to TopK and SAGPool, ASAP can capture the
rich graph structure while aggregating nodes to form clus-
ters in the pooled graph. TopK and SAGPool sample edges

from the original graph to define the edge connectivity in
the pooled graph. Therefore, they need to sample nodes
from a local neighborhood to avoid isolated nodes in the
pooled graph. Maintaining graph connectivity prevents these
pooling operations from sampling representative nodes from
the entire graph. The pooled graph in ASAP has a better
edge connectivity compared to TopK and SAGPool because
soft edge weights are computed between clusters using upto
three hop connections in the original graph. Also, the use of
LEConv instead of GCN for finding fitness values φ further
allows ASAP to sample representative clusters from local
neighborhoods over the entire graph.

8.2 Comparison of Self-Attention variants

Source2Token & Token2Token T2T models the mem-
bership of a node by generating a query based only on
the medoid of the cluster. Graph Attention Network (GAT)
(Veličković et al. 2017) is an example of T2T attention in
graphs. S2T finds the importance of each node for a global
task. As shown in Eq. 3, since a query vector is not used
for calculating the attention scores, S2T inherently assigns
the same membership score to a node for all the possible
clusters that node can belong to. Hence, both S2T and T2T
mechanisms fail to effectively utilize the intra-cluster infor-
mation while calculating a node’s cluster membership. On
the other hand, M2T uses a master function fm to gener-
ate a query vector which depends on all the entities within
the cluster and hence is a more representative formulation.
To understand this, consider the following scenario. If in a
given cluster, a non-medoid node is removed, then the un-
normalized membership scores for the rest of the nodes will
remain unaffected in S2T and T2T framework whereas the
change will reflect in the scores calculated using M2T mech-
anism. Also, from Table 6, we find that M2T performs bet-
ter than S2T and T2T attention showing that M2T is better
suited for global tasks like pooling.

9 Conclusion

In this paper, we introduce ASAP, a sparse and differentiable
pooling method for graph structured data. ASAP clusters
local subgraphs hierarchically which helps it to effectively
learn the rich information present in the graph structure. We
propose Master2Token self-attention framework which en-
ables our model to better capture the membership of each
node in a cluster. We also propose LEConv, a novel GNN
formulation that scores the clusters based on its local and
global importance. ASAP leverages LEConv to compute
cluster fitness scores and samples the clusters based on it.
This ensures the selection of representative clusters through-
out the graph. ASAP also calculates sparse edge weights for
the selected clusters and is able to capture the edge connec-
tivity information efficiently while being scalable to large
graphs. We validate the effectiveness of the components of
ASAP both theoretically and empirically. Through extensive
experiments, we demonstrate that ASAP achieves state-of-
the-art performace on multiple graph classification datasets.
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