
ASC-1: An Authenticated Encryption

Stream Cipher

Goce Jakimoski1 and Samant Khajuria2,�

1 Stevens Institute of Technology, USA
2 Aalborg University, Denmark

Abstract. The goal of the modes of operation for authenticated en-
cryption is to achieve faster encryption and message authentication by
performing both the encryption and the message authentication in a sin-
gle pass as opposed to the traditional encrypt-then-mac approach, which
requires two passes. Unfortunately, the use of a block cipher as a building
block limits the performance of the authenticated encryption schemes to
at most one message block per block cipher evaluation.

In this paper, we propose the authenticated encryption scheme ASC-1
(Authenticating Stream Cipher One). Similarly to LEX, ASC-1 uses leak
extraction from different AES rounds to compute the key material that
is XOR-ed with the message to compute the ciphertext. Unlike LEX,
the ASC-1 operates in a CFB fashion to compute an authentication tag
over the encrypted message. We argue that ASC-1 is secure by reducing
its (IND-CCA , INT-CTXT) security to the problem of distinguishing the
case when the round keys are uniformly random from the case when the
round keys are generated by a key scheduling algorithm.

Keywords: authenticated encryption, stream ciphers, message authen-
tication, universal hash functions, block ciphers, maximum differential
probability.

1 Introduction

Confidentiality and message authentication are two fundamental information se-
curity goals. Confidentiality addresses the issue of keeping the information secret
from unauthorized users. Often, this is achieved by encrypting the data using
a symmetric-key encryption scheme. Message authentication addresses the is-
sues of source corroboration and improper or unauthorized modification of data.
To protect the message authenticity, the sender usually appends an authentica-
tion tag that is generated by the signing (tagging) algorithm of some message
authentication scheme.

Although symmetric-key encryption and message authentication have been
mainly studied in a separate context, there are many applications where both
are needed. The cryptographic schemes that provide both confidentiality and

� The research was supported in part by the Center for Wireless Systems and
Applications - CTIF Copenhagen.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 356–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ASC-1: An Authenticated Encryption Stream Cipher 357

authenticity are called authenticated encryption schemes. The authenticated en-
cryption schemes consist of three algorithms: a key generation algorithm, an
encryption algorithm, and a decryption algorithm. The encryption algorithm
takes a key, a plaintext and an initialization vector and it returns a ciphertext.
Given the ciphertext and the secret key, the decryption algorithm returns plain-
text when the ciphertext is authentic, and invalid when the ciphertext is not
authentic. The scheme is secure if it is both unforgeable and secure encryption
scheme [1]. Two block cipher modes of operation for authenticated encryption,
IACBC and IAPM, supported by a claim of provable security were proposed in
[14]. Provably secure authenticated encryption schemes that use a block cipher
as a building block were also presented in [9,10,24]. The previous authenticated
encryption schemes use a block cipher as a building block. The duplex construc-
tion [2] iteratively applies a bijective transformation, and its main application
is authenticated encryption. One can also incorporate some message authentica-
tion mechanisms in a stream cipher. The drawback of this approach is that one
cannot reduce the security of the scheme to a well-known problem such as the
indistinguishability of block ciphers from random permutations. However, this
approach promises better efficiency. One such authenticated encryption scheme
is Helix [7]. Another example of a heuristically designed authenticated encryp-
tion scheme is SOBER-128 [11].

We propose the authenticated encryption scheme ASC-1. The design of the
scheme has roots in message authentication and encryption schemes that use
four rounds of AES [8] as a building block such as the LEX [3] stream cipher,
the ALRED [4,5] MAC scheme, and the MAC schemes proposed in [20,13]. How-
ever, unlike the previous constructions, we use a single cryptographic primitive
to achieve both message secrecy and authenticity. To argue the security of the
scheme, we show that the scheme is secure if one cannot tell apart the case when
the scheme uses random round keys from the case when the round keys are
derived by a key scheduling algorithm. Our information-theoretic security anal-
ysis uses the approach taken in [12,15,16,17,18,19,21,22] to provide differential
probability bounds.

2 ASC-1 Specification

ASC-1 is an authenticated encryption scheme. Its key size can vary depending
on the block cipher that is used. Our block cipher suggestion is AES with 128-bit
key. The encryption and decryption algorithms for a message M = m1||m2||m3

consisting of three 128-bit blocks are depicted in Figure 1.
The schemes uses a 56-bit representation of a counter that provides a unique

initialization vector for each encrypted message. The encryption algorithm de-
rives an initial state X0 and three keys K1,0, K2,0 and K3,0 by applying a block
cipher to 070||00||Cntr, 070||01||Cntr, 070||10||Cntr and l(M)||00000011||Cntr
respectively, where l(M) is a 64-bit representation of the bit length of the mes-
sage M . The message is then processed in a CFB-like mode using the 4R-AES
transformation. The 4R-AES transformation takes as input a 128-bit input state

358 G. Jakimoski and S. Khajuria

and outputs a 128-bit “random” leak ri and a 128-bit output state. The first
leak r1 is used to encrypt the first message block m1. The resulting ciphertext
block c1 is XOR-ed with the output state to give the input state for the second
4R-AES transformation. This process is repeated for all message blocks. The
leak from the last 4R-AES application is ignored, and its output h is encrypted
by K3,0 to give the authentication tag. The ciphertext consists of the counter
value, the ciphertext blocks and the authentication tag.

Fig. 1. The encryption and decryption algorithms of ASC-1. The message consists of
three blocks. The ciphertext consists of the counter value, three ciphertext block and an
authentication tag. The receiver recovers the original message and verifies its validity
by checking whether the re-computed authentication tag is equal to the received one.

The decryption algorithm uses the same secret key and the received counter
value to compute X0, K1,0, K2,0 and K3,0. The leak r1 derived by applying 4R-
AES to X0 is used to decrypt c1 into the original message block m1. The output
of the first 4R-AES is XOR-ed with the first ciphertext block to give the next
input state, and the process is repeated until all message blocks are recovered
and an authentication tag of the message is computed. If the computed tag is
same as the one that was received, then the decrypted message is accepted as
valid.

Although, we use 64-bit and 56-bit representations for the message length
and the counter, we assume that both the maximum message length and the

ASC-1: An Authenticated Encryption Stream Cipher 359

maximum number of messages to be encrypted is 248. The message length might
not be a multiple of the block length. In this case, the last message block mn

with length ln < 128 is padded with zeros to get a 128-bit block m′
n. A 128-bit

ciphertext block c′n is derived as c′n = m′
n ⊕ rn, and it is XOR-ed with the n-th

output state to give the (n + 1)-st input state. However, the sender will not
transmit c′n, but cn, which consists of the first ln bits of c′n. This will enable the
receiver to recover the message length.

The 4R-AES transformation is depicted in Figure 2. Four AES rounds are ap-
plied to the initial state x = (x1, . . . , x16) to give a 128-bit leak r= l1..4||l5..8||l9..12
||l13..16 and an output state y = (y1, . . . , y16). Here, we assume that the key addi-
tion is the first operation of the AES rounds. Four bytes are leaked after the Mix-
Columns transformation in each round. The leak positions are same as in LEX.
However, unlike LEX, we add a whitening key byte before each extracted byte.

Fig. 2. The 4R-AES transfomration

The 4R-AES transformation uses five 128-bit keys: four round keys and one
whitening key. These keys are derived from the 256-bit key K1,0||K2,0 as follows.
The AES-256 key scheduling algorithm is applied to K1,0||K2,0 to derive 14
round keys K1,K2, . . . ,K14. The keys K2,K3,K4 and K5 are used as round
keys in the first 4R-AES transformation. The keys K7,K8,K9 and K10 are used
as round keys in the second 4R-AES transformation. The key K1 is used as a
whitening key in the second 4R-AES transformation, and the key K11 is used as

360 G. Jakimoski and S. Khajuria

a whitening key in the first 4R-AES transformation. The AES-256 key scheduling
algorithm is again applied to K13||K14 to derive 14 keys that are used by the
third and the fourth 4R-AES transformation, and the process is repeated as long
as we need new keys.

3 Authenticated Encryption Based on Leak-Safe AXU
(LAXU) Hash Functions

In this section, we introduce the concept of a leak-safe almost XOR universal
(LAXU) hash function, which is an extension of the notion of an AXU hash
function [23]. We also show how LAXU hash functions can be used to construct
an unconditionally secure authenticated encryption scheme. This construction is
used in the information-theoretic part of the security proof of ASC-1 in Section 4.

Definition 1 (LAXU). A family of hash functions H = {h(m) = (l, h)|m ∈
M, l ∈ {0, 1}k, h ∈ {0, 1}n} is leak-safe ε-almost XOR universal2, written ε-
LAXU2, if for all distinct messages m,m′ ∈ M , for all leaks l ∈ {0, 1}k and any
constant c ∈ {0, 1}n,

Pr
h∈H

[πh(h(m)) ⊕ πh(h(m
′)) = c|πl(h(m)) = l] ≤ ε,

where πh(l, h) = h and πl(l, h) = l are projection functions.

One can use a LAXU hash function family as a building block to construct an
unconditionally secure authenticated encryption scheme as shown in Figure 3.
We assume that the message M consists of d n-bit blocks. Some techniques that
deal with arbitrary length messages are discussed later on. The ciphertext blocks
are computed as follows. A hash function hK1 is selected randomly from H and it
is applied to an initial value IV to get a leak l1 and hash value h1. The leak l1 is
used to encrypt the message blockm1 into a ciphertext block c1 = m1⊕l1. A new
hash function hK2 is randomly drawn from H. It is applied to i2 = h1 ⊕ c1 ⊕ k1,
where k1 is a random key, to get a leak l2 and hash value h2. The leak l2 is used
to encrypt the message block m2 into a ciphertext block c2, and the process is
repeated until the encryption of the last message block md. The authentication
tag τ is computed as τ = KT ⊕hd+1, where KT is a random n-bit key, and hd+1

is the hash value that is obtained by applying a randomly drawn hash function
hKd+1

to cd ⊕ hd. The ciphertext C = IV ||c1||c2|| . . . ||cd||τ is a concatenation of
the initial value, the ciphertext blocks, and the authentication tag.

We assume that the recipient has knowledge of the secret keys that were
used to encrypt the message. The decryption and verification of the ciphertext
proceeds as follows. First, hK1 is applied to IV to get a leak l1 and hash value
h1. The leak l1 is used to decrypt the ciphertext block c1 into a message block
m1 = c1 ⊕ l1. Then, the hash function hK2 is applied to i2 = h1 ⊕ c1 ⊕ k1
to get a leak l2 and hash value h2. The second message block is obtained as
m2 = c2⊕ l2, and the process is repeated until all message blocks m1,m2, . . . ,md

are decrypted. To verify the authenticity of the received ciphertext, the recipient

ASC-1: An Authenticated Encryption Stream Cipher 361

Fig. 3. An authenticated encryption scheme construction based on a LAXU hash func-
tion family in a CFB-like mode

recomputes the authentication tag τ as τ = hd+1 ⊕KT , where hd+1 is the hash
value that is obtained when applying hKd+1

to cd⊕hd. If the recomputed tag τ is
equal to the received tag τr, then the decryption algorithm outputs the message
M = m1||m2|| . . . ||md. Otherwise, the decryption algorithm outputs reject.
The following theorem establishes the security of the previous construction.

Theorem 1. Suppose that H = {h(m) = (l, h)|m ∈ {0, 1}n, l ∈ {0, 1}n, h ∈
{0, 1}n} is an ε-LAXU2 family of hash functions such that (i) πh(h(m)) is a
bijection, and (ii) Prh∈RH[πl(h(m)) = l|m] = 2−n for any message m and any
leak l. Then, the authenticated encryption scheme depicted in Figure 3 achieves:

1. perfect secrecy. The a posteriori probability that the message is M given a
ciphertext C is equal to the a priori probability that the message is M .

2. unconditionally secure ciphertext integrity. The probability that a computa-
tionally unbounded adversary will successfully forge a ciphertext is at most
qvε, where qv is the number of the verification queries that the adversary
makes.

Proof. The perfect secrecy of the scheme follows from the fact that the initial value
IV is independent of the message, and all li and the key KT have uniform proba-
bility distribution for any possible message. Amore formal analysis is given below.

Pr[M = m1|| . . . ||md|C = IV ||c1|| . . . ||cd||τ] =
=

Pr[M = m1|| . . . ||md]× Pr[C = IV ||c1|| . . . ||cd||τ |M = m1|| . . . ||md]∑
M′ Pr[M′ = m′

1|| . . . ||m′
d]× Pr[C = IV ||c1|| . . . ||cd||τ |M′ = m′

1|| . . . ||m′
d]

=
Pr[M = m1|| . . . ||md]× 2−(d+1)n × Pr[IV]

∑
M′ Pr[M′ = m′

1|| . . . ||m′
d]× 2−(d+1)n × Pr[IV]

= Pr[M = m1|| . . . ||md].

362 G. Jakimoski and S. Khajuria

In the previous analysis, we used the fact that for any message M′:

Pr[C = IV ||c1|| . . . ||cd||τ |M′ = m′
1|| . . . ||m′

d] =

= Pr[c1|| . . . ||cd||τ |IV,M′]× Pr[IV |M′]
= Pr[l = m1 ⊕ c1|| . . . ||md ⊕ cd,KT = hd+1 ⊕ τ |IV,M′]× Pr[IV]

= 2−(d+1)n × Pr[IV].

There are two possible types of attacks when considering the authenticity of
the ciphertext: an impersonation attack and a substitution attack.

In the case of an impersonation attack, the attacker constructs and sends a
ciphertext to the receiver before he sees the encryption of the message. Due to
the fact that the key KT is uniformly random, the probability of success of an
impersonation attack is at most 2−n. If the adversary makes qI impersonation
attempts, then the probability that at least one of this attempts will be successful
ia 1− (1− 2−n)qI ≤ qI × 2−n.

In the case of substitution attack, the adversary has intercepted the ciphertext
of a given message and tries to replace it with a different ciphertext that will be
accepted as valid by the receiver. We will show that the probability of success
in this case is at most qS × ε, where qS is the number of substitution attempts
made by the adversary.

Suppose that C = IV ||c1|| . . . ||cd||τ is the ciphertext of a chosen message M
and C′ = IV ′||c′1|| . . . ||c′d||τ ′ is the substitution ciphertext. If the two ciphertexts
C and C′ differ only in their authentication tags (i.e., τ ′ �= τ , IV ′ = IV and
cj = c′j , 1 ≤ j ≤ d), then the probability of successful substitution is zero.
Therefore, the only interesting case is when the substitution ciphertext C′ and
the original ciphertext C differ in at least one block that is different from the
tag block.

Let 0 ≤ j ≤ d be the index of the first block where C and C′ differ, and let
Δij+1 = c′j ⊕ cj be the difference at the input of hKj+1 , with c0 = IV and c′0 =
IV ′. Then, due to the ε-LAXU and invertibility properties of H, we have that
Pr[Δhj+1 = 0|M,C,C′] = 0 and ∀Δ∈{0,1}n,Δ�=0 Pr[Δhj+1 = Δ|M,C,C′] ≤ ε,
where Δhj+1 is the difference at the output of hKj+1 . Hence, for the difference
Δij+2 = Δhj+1⊕Δcj+1, we get that ∀Δ∈{0,1}n Pr[Δij+2 = Δ|M,C,C′] ≤ ε. The
probability Pr[Δhj+2 = 0|M,C,C′] is equal to the probability that Pr[Δij+2 =
0|M,C,C′], and is at most ε. When the input difference Δij+2 is nonzero, we get
that ∀Δ∈{0,1}n,Δ�=0 Pr[Δhj+2 = Δ|M,C,C′] ≤ ε. If we continue in this manner,
we get that ∀Δ∈{0,1}n Pr[Δhd+1 = Δ|M,C,C′] ≤ ε. The substitution ciphertext
will be accepted as valid only if h′

d+1⊕KT = τ ′, i.e., only if Δhd+1 = Δτ , where
Δτ = τ ⊕ τ ′. Given the previous analysis, this will happen with probability no
larger than ε.

The probability that at least one out of qS substitution queries will be success-
ful is at most qSε. The probability of success when making at most qv = qI + qS
verification queries is at most qvε due to the fact that ε ≤ 2−n. �

To deal with messages of arbitrary length, one can generate uniformly at random
a key KT for each possible message length. Now, if one substitutes a ciphertext

ASC-1: An Authenticated Encryption Stream Cipher 363

with a different-length ciphertext, then the probability of success will be same as
for the impersonation attack (i.e., 2−n). In ASC-1, this is accomplished by having
the message length as a part of the input when generating K3,0.

4 Security of ASC-1

In this section, we show that if the block cipher used in ASC-1 is secure and one
cannot tell apart the case when ASC-1 uses random round keys from the case
when it uses round keys derived by a key scheduling algorithm, then ASC-1 is
secure authenticated encryption scheme.

4.1 The Information-Theoretic Case

Here, we establish the unconditional security of ASC-1 with random keys. First,
we consider the two round SPN structure of Figure 4. The input x = x1|| . . . ||xn

is an n×m-bit string. The key addition operator is the bitwise XOR operator.

Fig. 4. A two round SPN structure with a leak. Each of the n S-boxes is a non-linear
permutation on {0, 1}m, and the branch number of the linear mixing layer is n + 1.
Without loss of generality, we assume that the leak positions are the first s positions
of v (i.e., l = v1||v2|| . . . ||vs)

364 G. Jakimoski and S. Khajuria

The non-linear substitution layer consists of n S-boxes. Each S-box is a non-linear
permutation that transforms an m-bit string into an m-bit string. The mixing
layer is defined by an n×n matrix. It is linear with respect to bitwise XOR and
its branch number is n+ 1. We omit the mixing layer in the second round since
it does not affect our analysis. The leak l consists of s values v1, . . . , vs.

Each possible key k1,1, . . . , k1,n, k2,1, . . . k2,n, k3,1, . . . , k3,s defines a function
that maps the input x into an output y and a leak l. The collection of such
functions H2R forms a LAXU hash function family.

Lemma 1. Suppose that the keys in the transformation depicted in Figure 4 are
chosen uniformly at random. Then, we have that

Pr[Δy = Δy|x = x,x′ = x′, l = l] = Pr[Δy = Δy|Δx = x⊕ x′].

Proof. Suppose that a function h (i.e., the key k1,1, . . . , k1,n, k2,1, . . . , k2,n, k3,1,
. . . , k3,s) is selected uniformly at random from H2R. Let l be the leak that is
obtained when h is applied to an input x, and let x′ be an input bit string
distinct from x. The probability Pr[Δy = Δy|x = x,x′ = x′, l = l] is the
probability that the output difference y ⊕ y′ is Δy given x = x, x′ = x′ and
l = l. Due to the initial key addition, this probability is equal to the probability
Pr[Δy = Δy|Δx = x ⊕ x′, l = l] that the output difference is Δy given the
input difference is Δx = x⊕ x′ and the leak l. To prove the lemma, we use the
following observations:

1. Pr[Δu|Δx, l] = Pr[Δu|Δx], where Δu = (Δu1, . . . , Δun), Δui = ui ⊕ u′
i.

That is the difference Δu given input difference Δx is independent of the
leak l. This is due to the second key addition, which makes the leak uniformly
distributed for any possible value Δu.

2. Pr[Δy|Δu, l] =
∏s

i=1 Pr[Δyi|Δui, vi] ×
∏n

i=s+1 Pr[Δyi|Δui]. Given the dif-
ference Δu, the probability of having a difference Δyi = yi⊕y′i at the output
of the i-th S-box of the second round is independent of the probability of
having a difference Δyj , j �= i at the output of some other S-box in the
second round.

3. Pr[Δyi|Δui, vi] = Pr[Δyi|Δui], i = 1, . . . , s. After the third key addition,
the input to the S-boxes is uniformly distributed and independent of the vi
values.

Using the previous observations, we can now prove the theorem.

Pr[Δy|Δx, l] =
∑

Δu

Pr[Δy|Δu,Δx, l] Pr[Δu|Δx, l]

=
∑

Δu

Pr[Δy|Δu, l] Pr[Δu|Δx]

=
∑

Δu

Pr[Δu|Δx]×
s∏

i=1

Pr[Δyi|Δui, vi]×
n∏

i=s+1

Pr[Δyi|Δui]

=
∑

Δu

Pr[Δu|Δx]×
s∏

i=1

Pr[Δyi|Δui]×
n∏

i=s+1

Pr[Δyi|Δui]

ASC-1: An Authenticated Encryption Stream Cipher 365

=
∑

Δu

Pr[Δu|Δx]×
n∏

i=1

Pr[Δyi|Δui]

=
∑

Δu

Pr[Δy|Δu]× Pr[Δu|Δx]

= Pr[Δy|Δx]. �

Corollary 1. The family of functions H2R defined by the 2-round transforma-
tion depicted in Figure 4 is ε-LAXU2 with ε = DP2R, where DP2R is the maxi-
mum differential probability of the 2-round SPN structure when there is no leak.

Proof. Due to the previous lemma, we get that Pr[Δy = Δy|x = x,x′ = x′, l =
l] = Pr[Δy = Δy|Δx = x⊕ x′] ≤ DP2R. �

The previous results refer to two round SPN structures. In order to show that one
can use four AES rounds to construct a LAXU hash function, we will first con-
sider the composition of transformations depicted in Figure 5. The next lemma
establishes independence of the differential probability of F1 (resp., F2) from the
leak value l2 (resp., l1). This is due to the key addition operation that follows
F1 and precedes F2.

F1

k1

x1

l1

x2

k

F2

k2 l2

y2

y1

Fig. 5. A composition of a transformation F1, key addition and transformation F2.
The length of the F1’s output y1, the length of the F2’s input x2 and the length of the
key k are equal. Both F1 and F2“leak” a value (l1 and l2 resp.).

Lemma 2. The following holds for the differential probabilities of the transfor-
mations F1 and F2 depicted in Figure 5:

Pr[Δy1=Δy1|Δx1=Δx1, l1= l1, l2 = l2]= Pr[Δy1 = Δy1|Δx1 = Δx1, l1 = l1],

and

Pr[Δy2=Δy2|Δy1=Δy1, l1 = l1, l2 = l2] = Pr[Δy2=Δy2|Δy1=Δy1, l2= l2].

366 G. Jakimoski and S. Khajuria

Proof.

Pr[Δy1 = Δy1|Δx1 = Δx1, l1 = l1, l2 = l2]

=
∑

y1

Pr[Δy1 = Δy1,y1 = y1|Δx1 = Δx1, l1 = l1, l2 = l2]

=
∑

y1

(Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]×

×Pr[y1 = y1|Δx1 = Δx1, l1 = l1, l2 = l2])

=
∑

y1

(Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1]×

×Pr[y1 = y1|Δx1 = Δx1, l1 = l1])

= Pr[Δy1 = Δy1|Δx1 = Δx1, l1 = l1].

Here we used the fact that

Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]

=
Pr[Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]

Pr[y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]

=
Pr[l2 = l2|Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1]

Pr[l2 = l2|y1 = y1, Δx1 = Δx1, l1 = l1]
×

×Pr[Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1]

Pr[y1 = y1, Δx1 = Δx1, l1 = l1]

=
Pr[l2 = l2]× Pr[Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1]

Pr[l2 = l2]× Pr[y1 = y1, Δx1 = Δx1, l1 = l1]

= Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1].

The equalities Pr[l2 = l2|y1 = y1, Δx1 = Δx1, l1 = l1] = Pr[l2 = l2] and
Pr[l2 = l2|Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1] = Pr[l2 = l2] follow from
the fact that the value of the second leak l2 is independent of Δx1, y1, Δy1 and
l1 since x2 is uniformly distributed and independent of these values. Similarly,
we can show that

Pr[y1 = y1|Δx1 = Δx1, l1 = l1, l2 = l2] = Pr[y1 = y1|Δx1 = Δx1, l1 = l1].

This concludes the first part of the proof. The second equation of the lemma can
be proved in a similar fashion, and we omit its proof. �

Let us look now at the situation depicted in Figure 6. A keyed non-linear function
F is applied to a vector x of n input values (x1, . . . , xn) to produce a vector
y = (y1, . . . , yn) of n output values. Without loss of generality, we assume that
the first s output values are leaked after a uniformly random key is added to
them. The knowledge of the leak l′ = (l1, . . . , ls) does not change the output
differential probabilities of F .

ASC-1: An Authenticated Encryption Stream Cipher 367

Fig. 6. The first s output values of a non-linear function F are “leaked” after a uni-
formly random key is added to them

Lemma 3. Let o = (l1, . . . , ls, ys+1, . . . , yn) denote the output of the transfor-
mation depicted in Figure 6. The following holds for the output differential prob-
ability Δo:

Pr[Δo(≡ Δy) = Δo|Δx = Δx, l = l, l′ = l′] = Pr[Δo = Δo|Δx = Δx, l = l]

Proof. Since the output values are leaked after the random key is added, they tell
nothing about the values y1, . . . , ys and do not affect the probability of having
output difference Δy.

Pr[Δo(≡ Δy) = Δo|Δx = Δx, l = l, l′ = l′]

=
∑

y

Pr[Δo = Δo,y = y|Δx = Δx, l = l, l′ = l′]

=
∑

y

(Pr[Δo = Δo|y = y,Δx = Δx, l = l, l′ = l′]×

×Pr[y = y|Δx = Δx, l = l, l′ = l′])

=
∑

y

Pr[Δo = Δo|y = y,Δx = Δx, l = l]× Pr[y = y|Δx = Δx, l = l]

= Pr[Δo = Δo|Δx = Δx, l = l]. �

The following theorem follows from the previous analysis.

Theorem 2. Suppose that the initial state and all the keys in ASC-1 are uni-
formly random, then the scheme provides:

– perfect secrecy, and
– unconditional ciphertext integrity, where the probability of success of any

adversary making qv verifying queries is at most qv × 2−113.

Proof. We will show here that if the (round) keys are selected uniformly at
random, then the family of functions defined by four rounds of AES with leak
extraction is an ε-LAXU2 hash function family with ε = 2−113. The first round
key additions in the 4R-AES transformations play the role of the keys ki of the

368 G. Jakimoski and S. Khajuria

construction depicted in Figure 3. Clearly, the transformation defined by four
rounds of AES is a bijection, and the leak values are uniformly random and
independent of the input due to the uniform probability distribution of the keys.
Therefore, the sufficient conditions of Theorem 1 are satisfied, and the scheme
provides perfect secrecy and unconditional ciphertext integrity.

In our analysis, we assume that the key addition is the first round operation
instead of a last one as in the AES specification. Furthermore, all the keys
are independent with uniform probability distribution. We use the following
notation:

– xi, i = 0, . . . , 3 is the input to the i-th round and consists of 16 bytes
xi,0, . . . , xi,15;

– yi, i = 0, . . . , 3 is the output of the MixColumns layer of the i-th round and
consists of 16 bytes yi,0, . . . , yi,15;

– zi, i = 0, . . . , 3 is the state after the leak extraction layer of the i-th round
and consists of 16 bytes zi,0, . . . , zi,15;

– li, i = 0, . . . , 3 is the leak extracted in the i-th round and consists of 4 bytes
li,0, . . . , li,15;

Suppose that x′
0 and x′′

0 are two distinct input values, and let us consider the
output difference Δz3 given the input difference Δx0 = x′

0 ⊕ x′′
0. By applying

the previously presented lemmas, we get:

Pr[Δz3 = Δz3|x′
0 = x′

0,x
′′
0 = x′′

0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3]

= Pr[Δz3 = Δz3|Δx0 = x′
0 ⊕ x′′

0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3]

=
∑

Δz1

(Pr[Δz1 = Δz1|Δx0 = x′
0 ⊕ x′′

0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3]× (1)

×Pr[Δz3 = Δz3|Δz1 = Δz1, Δx0 = x′
0 ⊕ x′′

0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3])

=
∑

Δz1

(Pr[Δz1 = Δz1|Δx0 = x′
0 ⊕ x′′

0 , l0 = l0, l1 = l1]×

×Pr[Δz3 = Δz3|Δz1 = Δz1, l2 = l2, l3 = l3]) (2)

=
∑

Δz1

(Pr[Δz1 = Δz1|Δx0 = x′
0 ⊕ x′′

0 , l0 = l0]×

×Pr[Δz3 = Δz3|Δz1 = Δz1, l2 = l2]) (3)

=
∑

Δz1

Pr[Δz1 = Δz1|Δx0 = x′
0 ⊕ x′′

0]× Pr[Δz3 = Δz3|Δz1 = Δz1] (4)

= Pr[Δz3 = Δz3|Δx0 = x′
0 ⊕ x′′

0]

≤ DP4rAES,

where DP4rAES is the differential probability of the transformation defined by
four rounds (with no leak extraction) of AES when the round keys are random.
The equation (2) follows from Lemma 2, the equation (3) follows from Lemma 3,
and the equation (4) follows from Lemma 1.

ASC-1: An Authenticated Encryption Stream Cipher 369

Having the previous inequality in mind, we get that the family of functions
defined by four rounds of AES with leak extraction is an ε-LAXU2 hash function
family with ε = DP4rAES ≤ 2−113 [18]. �

4.2 Computational Security Analysis of ASC-1

In the previous subsection, we showed that if all the keys and the initial state are
random, then ASC-1 is unconditionally secure authenticated encryption scheme.
However, the keys and the initial state of ASC-1 are derived by combining a block
cipher in a counter mode and a key scheduling algorithm. The security of the
scheme in this case is based on two assumptions:

– the block cipher (e.g., AES) is indistinguishable from a random permutation,
and

– one cannot tell apart the case when the initial state and the keys are random
from the case when the initial state X0 and the tag key K3,0 are random,
and the round keys are derived by applying a key scheduling algorithm to a
random initial key K1,0||K2,0.

The first assumption is a standard assumption that is used in many security
proofs such as the security proofs of the modes of operation for block ciphers. The
second assumption is a novel one, and should be examined with more scrutiny.
It asserts that an adversary cannot win in the following game. The adversary
is given two oracles, an encryption oracle and a decryption oracle. A random
coin b is flipped. If the outcome is zero, then a large table whose entries are
random strings is generated. The number of entries in the table is equal to
the maximum number of messages that can be encrypted. The length of each
random string in the table is sufficient to encrypt a message of a maximum
length. When the adversary submits an encryption query, the encryption oracle
gets the next random string from the table, extracts the initial value and all
the (round) keys from the random string, and encrypts the message. When the
adversary submits a decryption query, the decryption oracle gets the random
string corresponding to the counter value given in the ciphertext, and uses it to
decrypt the ciphertext. If the outcome of the coin flipping is one, then the random
strings in the table consist of four 128-bit random values: an initial state X0 and
three keys K1,0,K2,0 and K3,0. When the adversary asks an encryption query,
the encryption oracle uses the next available initial state and keys to encrypt the
message following the ASC-1 algorithm. When the adversary asks a decryption
query, the decryption oracle uses the initial state and keys corresponding to the
counter value given in the ciphertext to decrypt the ciphertext. The goal of the
adversary is to guess the outcome of the coin flipping. The adversary wins if it
can guess the value of b with probability significantly greater than 1

2 .
It is not uncommon to make the assumption that the round keys are random

when analyzing the security of cryptographic primitives. For instance, this as-
sumption is always made when proving the resistance of a block cipher to linear
and differential cryptanalysis (e.g., [22]). However, one can easily come up with

370 G. Jakimoski and S. Khajuria

a stream cipher that is secure when the random round keys assumption is made,
but is trivial to break otherwise. Since the design of ASC-1 was inspired by the
LEX stream cipher, we are going to address the known attacks on LEX:

– LEX applies iteratively a block cipher transformation to some initial state.
During this process some bytes are leaked from different rounds (i.e., states),
and then used as randomness to encrypt the message. The attack presented
in [6] analyzes the state differences to find highly probable differentials and
deduce the secret key. However, in our case, we do not use the same round
keys repeatedly. So, in order for a differential cryptanalysis to work, one has
to be able to guess the round key differences as well. Since these round keys
are far apart in the key scheduling process, this does not appear to be an
easy task.

– The attack presented in [25] looks for a repetition of a state, which can
be easily detected due to the fact that same states will generate the same
pseudo-random key material. The state in LEX is a 128-bit string since the
round keys are reused, and it is possible to find collisions. In our case, the
state is a 384-bit string, and finding collisions should not be a straightforward
problem.

– Some modified variants of the previous attacks might work if the key schedul-
ing algorithm generates short cycles. However, the probability of having a
cycle of length less than 264 when considering a random permutation on
{0, 1}256 is at most ≈ 2−128, and we are not aware of the existence of short
cycles.

It is not hard to show that given an adversary AROR that can distinguish the
ciphertext generated by ASC-1 from a random string, one can construct two
adversariesAPRP, which can tell apart the block cipher from a PRP, and AKSOR,
which can distinguish the case when the round keys are random from the case
when the round keys are derived by a key scheduling algorithm, such that at
least one of these adversary wins with significant probability. Namely, the APRP

and AKSOR will use their oracles to simulate ASC-1 and answer AROR’s queries.
The output of APRP and AKSOR will be same as AROR’s output. If the advantage
of AROR is non-negligible, then at least one of APRP and AKSOR will have non-
negligible advantage. A similar result will hold in the case of a forging adversary
AF . So, we have the following informal theorems.

Theorem 3. If the block cipher used by ASC-1 is a pseudo-random permutation
and one cannot tell apart the case when ASC-1 uses random keys from the case
when ASC-1 uses a key scheduling algorithm to derive the round keys, then ASC-
1 is a secure encryption scheme in the Real-Or-Random sense.

Theorem 4. If the block cipher used by ASC-1 is a pseudo-random permutation
and one cannot tell apart the case when ASC-1 uses random keys from the case
when ASC-1 uses a key scheduling algorithm to derive the round keys, then ASC-
1 is a secure message authentication scheme in the ciphertext-integrity sense.

ASC-1: An Authenticated Encryption Stream Cipher 371

The definition of Real-Or-Random security of a symmetric encryption scheme
and the definition of a ciphertext integrity for an authenticated encryption
scheme can be found in [1].

5 Conclusions

We have proposed ASC-1, which is an authenticated encryption scheme that
is designed using a stream cipher approach instead of a block cipher mode ap-
proach. We argued the security of ASC-1 by showing that it is secure if one
cannot distinguish the case when the round keys are uniformly random from the
case when the round keys are derived by the key scheduling algorithm of ASC-1.

References

1. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Au-
thenticated Encryption and Other Applications. In: The Second SHA-3 Candidate
Conference (2010)

3. Biryukov, A.: The Design of a Stream Cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

4. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific In-
stance ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS,
vol. 3557, pp. 1–17. Springer, Heidelberg (2005)

5. Daemen, J., Rijmen, V.: The Pelican MAC Function, IACR ePrint Archive,
2005/088

6. Dunkelman, O., Keller, N.: A New Attack on the LEX Stream Cipher. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Heidelberg
(2008)

7. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: Fast
Encryption and Authentication in a Single Cryptographic Primitive. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer, Heidelberg (2003)

8. Advanced Encryption Standard (AES), FIPS Publication 197 (November 26, 2001),
http://csrc.nist.gov/encryption/aes

9. Gligor, V., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption
and XECB Authentication Modes. Presented at the 2nd NIST Workshop on AES
Modes of Operation, Santa Barbara, CA (August 24, 2001)

10. Gligor, V.D., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption
and XECB Authentication Modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 1–20. Springer, Heidelberg (2002)

11. Hawkes, P., Rose, G.: Primitive Specification for SOBER-128,
http://www.qualcomm.com.au/Sober128.html

12. Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D., Cho, I.: Provable Security against
Differential and Linear Cryptanalysis for the SPN Structure. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, pp. 273–283. Springer, Heidelberg (2001)

http://csrc.nist.gov/encryption/aes
http://www.qualcomm.com.au/Sober128.html

372 G. Jakimoski and S. Khajuria

13. Jakimoski, G., Subbalakshmi, K.P.: On Efficient Message Authentication Via Block
Cipher Design Techniques. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 232–248. Springer, Heidelberg (2007)

14. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

15. Kang, J.-S., Hong, S., Lee, S., Yi, O., Park, C., Lim, J.: Practical and Provable Se-
curity Against Differential and Linear Cryptanalysis for Ssubstitution-Permutation
Networks. ETRI Journal 23(4), 158–167 (2001)

16. Keliher, L., Meijer, H., Tavares, S.: New Method for Upper Bounding the Maximum
Average Linear Hull Probability for sPNs. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 420–436. Springer, Heidelberg (2001)

17. Keliher, L., Meijer, H., Tavares, S.: Improving the Upper Bound on the Maximum
Average Linear Hull Probability for Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, pp. 112–128. Springer, Heidelberg (2001)

18. Keliher, L., Sui, J.: Exact Maximum Expected Differential and Linear Probabil-
ity for 2-Round Advanced Encryption Standard (AES). IACR ePrint Archive,
2005/321

19. Matsui, M.: New Structure of Block Ciphers with Provable Security against Differ-
ential and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 205–218. Springer, Heidelberg (1996)

20. Minematsu, K., Tsunoo, Y.: Provably Secure MACs from Differentially-Uniform
Permutations and AES-Based Implementations. In: Robshaw, M.J.B. (ed.) FSE
2006. LNCS, vol. 4047, pp. 226–241. Springer, Heidelberg (2006)

21. Park, S., Sung, S.H., Chee, S., Yoon, E.-J., Lim, J.: On the Security of Rijndael-
Like Structures against Differential and Linear Cryptanalysis. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 176–191. Springer, Heidelberg (2002)

22. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

23. Rogaway, P.: Bucket Hashing and Its Application to Fast Message Authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995)

24. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: Proc. 8th ACM Conf. Comp.
and Comm. Security, CCS (2001)

25. Wu, H., Preneel, B.: Resynchronization Attacks on WG and LEX. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 422–432. Springer, Heidelberg (2006)

	ASC-1: An Authenticated Encryption Stream Cipher
	Introduction
	ASC-1 Specification
	Authenticated Encryption Based on Leak-Safe AXU (LAXU) Hash Functions
	Security of ASC-1
	The Information-Theoretic Case
	Computational Security Analysis of ASC-1

	 Conclusions
	References

