

ASC: An Associative-
Computing Paradigm
Jerry Potter, Johnnie Baker, Stephen Scott, Arvind Bansal,

Chokchai Leangsuksun, and Chandra Asthagiri

Kent State University

Today’s increased
computing speeds

allow conventional

sequential machines
to effectively emulate

associative computing

techniques.
Here is a parallel

programming
paradigm designed

for a wide range of

computing engines.

A
ssociative computing evolved in an era when associative memories were

both relatively new and, because they required a comparator at each bit of

memory, relatively expensive. In the early 1970s. Goodyear Aerospace im-

proved upon early associative processing techniques with its Staran SIMD (single in-

struction. multiple data) computer.’ Goodyear realized that the massively parallel
search capability of bit-serial SIMDs could simulate associative searching, with the

cost advantage of sharing the comparison logic (that is, the processing elements) over

all the bits in an entire row of memory. This approach provided two additional ben-
efits: The word widths could be very large (from 256 bits to 64 kilobits), and the data

could be processed in situ using the same PEs.

However, today’s lower hardware costs and increased computing speeds allow par-

allel techniques to be effectively emulated on conventional sequential machines. Ac-

cessing data by associative searching rather than addresses and processing data in mem-

ory require a new programming style. One goal of our research is to develop a parallel

programming paradigm that is suitable for many diverse applications, is efficient to

write and execute, and can be used on a wide range of computing engines, from PCs and

workstations to massively parallel supercomputers.

Our associative-computing (ASC) paradigm is an extension of the general associative

processing techniques developed by Goodyear. We use two-dimensional tables as the

basic data structure. Our paradigm has an efficient associative-based, dynamic mem-

ory-allocation mechanism that does not use pointers. It incorporates data parallelism

at the base level, so that programmers do not have to specify low-level sequential tasks
such as sorting, looping, and parallelization.

Our paradigm supports all of the standard data-parallel and massively parallel

computing algorithms. It combines numerical computation (such as convolution. ma-

trix multiplication, and graphics) with nonnumerical computing (such as compila-

tion, graph algorithms, rule-based systems, and language interpreters).* This article

focuses on the nonnumerical aspects of ASC.

The ASC model
The ASC model is the basis of a high-level associative-programming paradigm

and language. As described in the sidebar, “Properties of the ASC model,” the ex-
tended model provides a basis for algorithm development and analysis similar to the

November 1994 001X-YlhZ'YJ $4 II0 f) 199.4 IEEE 19

PRAM (parallel random-access mem-

ory) models, with the additional provi-

sions that hardware can be built to sup-

port this model and that its primitive

operations are sufficiently rich to allow

efficient use of massive parallelism.’

These features let us develop parallel

algorithms for large problems that can

be abstractly analyzed and executed.

Furthermore, algorithms based on a

common model will have greater appli-

cability and retain their importance
longer than ones based on a specific

computer that may be out of production
within a few years. Briefly. the model

calls for data-parallel execution of in-

structions, constant-time associative

searching, constant-time maximum and
minimum operations, and synchroniza-

tion of instruction streams using control
parallelism. The simplest ASC model

assumes only one instruction stream

(IS). This model can be supported on

existing SIMD computers and is as-

sumed throughout unless we state oth-
erwise.

The sidebar lists the specific properties

that the hardware must have to support

the model. Reflecting these specifications.

the ASC language is characterized by

built-in associative reduction notation, as-

sociative responder iteration, responder-

based flow of control, responder refer-

ence and selection mechanisms, and a

multiple instruction stream capability that

provides dynamic control parallelism on
top of data parallelism. ASC supports re-

cursion and special command constructs

with automatic backtracking for complex

context-sensitive searching. Fundamen-

tal to the nonnumerical focus of ASC are

the unique structure code features and

dynamic memory allocation. The most
important features of ASC are discussed

below. (ASC language syntax is described

in detail in Potter.‘)

Properties of the ASC model

We have applied the ASC paradigm to a wide range of

applications, including image processing (for example,

convolution’), graph algorithms (for example, the minimal

spanning tree), rule-based inference engines (for example,
OPS5’), Associative Prolog,’ graphics (ray tracing3),

database management,4 compilation (first pass5 and opti-

mization’$ and heterogeneous networks.‘! *

Our intention is that ASC be efficiently supported in hard-
ware by a continuum of compute engines. The first step in

this continuum has been to install the ASC language on

conventional sequential computers such as PCs and work-
stations. Second, associative functions and operations can

be sped up by using accelerator cards similar to the one

currently being developed for ARPA9 by Adaptive Solutions

Inc. Conventional SIMD computers provide the third level of

associative functionality. (ASC has been installed on Staran,

Aspro, Wavetracer, and the CM-2.) The highest, most com-

plex, and fastest level would be a multiple instruction stream
SIMD computer built to meet the specifications of the follow-

ing computation model:1°

Cell properties

l Cells consist of a processing element (PE) and a local

memory (see Figure A).
l The memory of an associative computer consists of an

array of cells.

l There is no shared memory between cells. Each PE can

only access the memory in its own cell. The cell’s PE

can be interconnected with a modest network (for exam-

ple, a grid).
l Related data items are grouped together (associated)

into records and typically stored one per cell. We as-

sume that there are more cells than data.

Associative
programming
techniques

Generally, a few basic techniques de-

termine the “feel” of a programming
paradigm, such as pointers in C and tail

recursion or list processing in Lisp and

Prolog. In ASC, the associative search is
the fundamental operation, and its influ-

ence is felt in constant-time operations,

tabular representation of abstract data

structures, responder processing, and
control parallelism.

Constant time operation. Data paral-

lelism is a basic model used in many lan-

guages. ASC uses data parallelism as the

basis for associative searching, which

takes time proportional to the number of

bits in a field, not the number of data

items being searched. Thus, assuming

Figure A. Cellular memory.

Instruction stream (IS) properties

9 Each IS is a processor with a bus to all cells. The IS

processors are interconnected (for example, by a bus,

network, or shared memory). Each IS has a copy of the

program being executed and can broadcast an instruc-

tion to all cells in unit time. The parallel execution of a

command is SIMD in nature.

l Each cell listens to only one IS. Initially, all cells listen to

the same IS. The cells can switch to another IS in re-

sponse to commands from the current IS.

l The number of cells is much larger than the number of I!%.
l An active cell executes the commands it receives from

its IS, while an inactive cell listens to but does not exe-
cute the commands from its IS. Each IS has the ability to

unconditionally activate all cells listening to it.

Associative properties

l An IS can instruct its active cells to perform an associative

search. Successful cells are called responders, while

unsuccessful cells are called nonresponders. The IS can
activate either the set of responders or the set of nonre

that all the data fits in the computer, it

executes in constant time,2 just as com-

parison, addition, and other data-parallel

arithmetic operations do. In addition to

basic pattern searching, ASC makes ex-

tensive use of constant time functions4

(maximum, minimum, greatest lower

bound, and least upper bound). The con-
stant time functions have corresponding

constant-time associative index functions

(maxdex, mindex, prvdex, and nxtdex),

which are used for associative reduction.

For example. the query “What is the

salary of the oldest employee’?” requires

a maximum search on the age field, but
the associated salary. not the age, is the

desired item. The maxdex function in

“salary[maxdex(age$)]” expresses the as-

sociation between the maximum age and

the associated salary. Computers with the
properties specified in the sidebar can ex-

ecute these functions in constant time. In

addition, today’s sequential computers

are powerful enough to emulate these op-

erations for many problems.

Tabular data structures and structure

codes. Tabular data structures (that is, ta-

bles, charts, and arrays) have two advan-

tages for ASC. First, they are ubiquitous;

tables and arrays are a common and natu-
ral organization for databases and many

scientific applications, and users need only

a minimal introduction to manipulate them

effectively. Second, the concept of pro-
cessing an entire column of a table simul-

taneously is easy to comprehend.

There are a number of common abstract

data structures. including stacks. queues.
trees. and graphs. that are normally im-

plemented using address manipulation via

pointers and indexes. In an associative

computer, in contrast, physical address re-

lationships between data are not present.
Instead, structure codes, which are nu-

meric representations of the abstract struc-

sponders. It can also restore the previous set of active

cells. Each of these actions requires one unit of time.
l Each IS has the ability to select an arbitrary responder

from the set of active cells in unit time.

l Each IS can instruct the selected cell to broadcast data

on the bus. All other cells listening to this IS receive the
value placed on the bus in unit time.

Constant time global operations

l An IS can compute the OR or AND of a binary value in all

active PEs in unit time.

l An IS can identify the cells with the maximum or mini-

mum value in each of its active PEs in constant time.

Control parallelism

l Cells without further work to do are called idle cells and

are assigned to a specified IS, which (among other

tasks) manages the idle cells. An idle cell can be dy-

namically allocated to an IS in unit time. Any subset of

cells can be deallocated and reassigned as idle cells in
constant time.

l If an IS is executing a task that requires two or more

subtasks involving data in disjoint subsets of the active

cells, control (MIMD) parallelism can be invoked by
assigning a subtask to an idle IS. When all subtasks
generated by the original IS are completed, the cells are

returned to the originating IS.

A new programming paradigm called Heterogeneous
Associative Computing7 (HASC) is presently under develop-

ment at Kent State University. From the ASC model, this
paradigm takes the concept of cells and instruction broad-

casting. It uses tabular data and massively parallel searches

that, in an extension of

cuted on the machines

tural information, are associated with the

data. The codes are generated automati-

cally. and appropriately named functions

- for example, parent(), siblingo, and

child0 - are used to manipulate them.

The programmer need be aware only of

the data structure type being used (tree,

graph, and so forth) and not the internal
structure codes themselves.

One of the major advantages of struc-

ture codes is that they allow the data to be

expressed in tabular form so that they can

be processed in a data-parallel manner.

This means that lists, trees, and graphs
can be searched associatively in constant

time instead of having to be sequentially
searched element by element. Tabular

organizations are stored one row per cell

in an associative computer. Thus. any one

field (a column of the table) can be

searched in parallel by broadcasting the
desired value to all cell PEs, which then

compare it with their local values.

exe-

References

1. J.L. Potter, Associative Computing - A Programming Paradigm for
Massive/y Parale/ Computers, Plenum Publishing, N.Y., 1992.

2. J.W. Baker and A. Miller, “A Parallel Production System Extending
OPS5,” Proc. Frontiers of Massive/y Parallel Computation, CS Press,
Los Alamttos, Calif., Order No. 2772-02, 1990, pp. 1 to-t 18.

3. T. Krochta, Parallel Ray Tracing, master’s thesis, Kent State Univ.,
Kent, Ohio, 1986.

4. K. Mamoozadeh, Relational Databases on Associative Processors,
master’s thesis, Dept. of Mathematics and Computer Science, Kent
State Univ., Kent, Ohio, 1986.

5. C. Asthagiri, Context-Sensitive Parsing Using an Associative Proces-
sor, master’s thesis, Dept. of Mathematics and Computer Science,
Kent State Univ., Kent, Ohio, 1986.

6. R. Miles, Optimizing Associative Intermediate Code, master’s thesis,
Dept. of Mathematics and Computer Science, Kent State Univ., Kent,
Ohio, 1993.

7. S.L. Scott and J.L. Potter, “Heterogeneous Associative Computing -
HASC,” 2nd Associative Processing and Applications Workshop,
Syracuse Univ., Syracuse, N.Y., July 1993; Tech. Report CS-9305.
05, Dept. of Mathematics and Computer Science, Kent State Univer-
sity, Kent, Ohio, May 1993.

8. C. Leangsuksun, S.L. Scott, and J.L. Potter, “Implicit Task Mapping
in a Heterogeneous Environment,” Tech Report CS-9409-08, Dept.
of Mathematics and Computer Science, Kent State University, Kent,
Ohio, May 1993.

9. Electronic fng. Times, Feb. 7, 1994, p. 41.

10. J.W. Baker and J.L. Potter, “A Model of Computation for Associative
Computing,” Tech. Report CS-9409-07, Dept. of Mathematics and
Computer Science, Kent State Univ., Kent, Ohio, Sept. 1994.

Additional information is available via WWW at http://nimitz.mcs. kent.edu/
to match commands and data to machines. The result is [-potter, -chokchai, -sscott, -arvind, -ibaker).

Figure 1. Example struc-

ture codes for vector (a)

and for a two-dimensional

array or matrix (b).

row value

1 95 m 2 17

3 36

4 47

row column value

1 1 92

t-t-t-i

1 2 89

2 1 63

2 2 52

c
(a) (b)

4 20

3
1 I I

10 FIFO VALUE = VALUE [MINDEX (TIME$)]

100 LIFO VALUE = [MAXDEX (TIME$)];

Figure 2. Associative LIFO and FIFO queues using maxi-

mum and minimum function to retrieve associated values.

The simplest structure codes are those

for arrays. For nonnumerical applica-

tions. a vector can be represented by a

row field and a value field as shown in

Figure la. Likewise. we can represent a

two-dimensional array or matrix by a row

field, a column field, and a value field. In

Figure lb, the matrix value at position (1,

2) can be found in constant time by

searching for row 1 and column 2 and re-

trieving the associated value - 89.

(a) (b)

Code

1000

2100

2200

2300

2400

3000

4000

Node

A

B

C

D

E

F

G

m (d) (e)

Frequently. we can represent directly

useful information in the structure code.

For example, the time of arrival is used to

implement FIFO and LIFO queues. For
example, in Figure 2 the FIFO value in

the queue is retrieved using the mindex

function to select the first (smallest or

oldest) time entry and its associated

value.

Figure 4. Quadsected square encoding for (a) binary graph, (b) quadsected square,

(c) recursively quadsected square, (d) structure codes, and (e) binary graph.

Trees and graphs require more sophis-

ticated structure codes. If trees are put
into a canonical form, and the position of

the nodes on every level are numbered

from left to right, we can generate a code

for every node in the tree by starting at

the root of the tree and listing the node

numbers along the path to the node in

question. If the code is left justified with
zero fill, it will support parallel search-

ing. concatenation, insertion, and dele-

tion Figure 3 gives an example of a tree

and its structure codes as represented in

an associative memory. The left and right
siblings of node f can be found in con-

stant time by using the sibdex function -

sibdex(code[node$==‘f’]).

bound and least-upper-bound search

functions to identify codes 1210 and 1230

as being adjacent to 1220, and their asso-

ciated nodes - e and R - as siblings off.

All operations are constant time. This

kind of operation is very useful for ex-

pression parsing.’

fan-out (node 1 branches to 2 and 3) and

binary fan-in (node 2 and 3 converge on

4) shown in Figure 4a are mapped onto

the location code map shown in Figure
4b. A more complex example is given in

Figures 4c, 4d, and 4e, where the control

flow starts in quadrant A and flows into

the upper left-most subdivision of the

two adjacent quadrants (B of BCDE and
F). Each subdivision continues this re-

cursive process until the final two quad-

rants within a subdivision are joined

at their right-most subdivision (C and D
are joined at E, and E and F are joined

at G).

This expression can be read from the

inside out. First, the node field is searched

for the valuef; the response is used to se-

lect the associated structure-code value

(1220) which is passed to the sibdex func-
tion. Sibdex combines the greatest-lower-

Quadsected square codes are structure

codes for graphs that can be applied to
the generation of node domination, node

influencing, and similar information use-

ful in control flow graph analysis. A

quadsected square is a square divided

into four subsquares. The quadrants of a

quadsected square can be recursively

subdivided to any level. The quadsected

square code calculation and manipula-
tion functions are performed in data-par-

allel mode for all nodes of a graph. For

example. given the code for a node, the

dominance relationship between the

node and all other nodes in the graph can

be computed in constant time indepen-
dent of the size of the graph.

We obtain the structure code for a re-
cursively quadsected square (Figure 4d)
by specifying the position of the top-level

subdivision first (as the left-most digit),

then the position of the next recursive

subdivision, and so on, with zero fill used

on the right.

Figures 4a and 4b illustrate the dual

relationship between binary graphs and

quadsected squares. The graph’s binary

Responder processing. The responders
of an associative search are those cells

that successfully matched the associative

search query. Data-parallel operations

22 COMPUTER

e f 9
Node

position 1 2 3

Figure 3. Canonical tree structure and structure codes as repre-

sented in associative memory.

applied to the responders essentially act
as substitutes for the index-based loops

used in Fortran and C. However, it is

sometimes desirable to process each re-

sponder individually. In responder itera-

tion, a responder is arbitrarily selected

and processed using both sequential and

parallel operations. When processing is

complete, the responder is idled and an-

other responder is selected for process-

ing. Responder iteration is an effective

way of using parallel searching to avoid
sorting unordered data.

We use responder selection to achieve
constant-time memory allocation. Idle

cells are assigned to a single instruction

stream. When an IS needs one or more

new cells, they are arbitrarily selected

from the idle pool and allocated to the

requesting IS. When that IS no longer

needs those cells, they are identified by

Sequential

~f.mvaml
control

H root a

next-node b

C allocated field

(4 (b)

Figure 5. Dynamic memory allocation for (a) C-based environment and (b) the

associative computing model.

associative search, released in parallel, to the active processors. (The “loop

and returned to the idle IS. Figure 5 il- while” statement in Figure 6 is an exam-

lustrates the difference between associa- ple of responder iteration.)

tive-memory allocation and C-based

data-parallel memory allocation, where Control parallelism. To this point our

additional fields, not cells, are allocated discussion has centered on data paral-

w....-b 2 Cc 7 4 3 - no a 2

1

-e m 3 6 3 m m yes b 3

-f a3 Do g CC m 00 waiting

ASC-MST-PRIM (root)

initialize candidates to “waiting”

if there are any finite values in root’s field, then
set candidate$ to “yes”

set parent$ to root

set currentbest$ to the values in root’s field

set root’s candidate field to “no”

loop while some candidate$ contain “yes”

for them

restrict mask$ to mindex(current-best$)

set next-node to a node identified in the preceding step

set its candidate to “no”

if the values in next-node’s field are less than

current-best$, then
set current-best$ to value in next-node’s field

set parent$ to next-node

if candidate$ is “waiting” and the value in next-node’s

field is finite

set candidate$ to “yes”

set parent$ to next-node

set currentbest$ to next-node
set current-best$ to the values in next-node’s field

Figure 6. An associative minimal spanning tree algorithm.

Data
parallel +

match PEs

I

Parallel field 1 L-- Assoctative copying

Figure 7. Associative logic programming.

lelism. However, the ASC model ac-

commodates both data and control
parallelism so that the computer can ef-

ficiently use all its cells. The control-par-

allel component depends on the dy-

namic manipulation of instruction

streams in response to associative

searches. The mechanism relies on par-

titioning the responders into mutually

exclusive subsets. For example, the eval-
uation of an IF'S conditional expression

divides the active cells into two mutu-

ally exclusive partitions: one containing

the cells that respond TRUE and one con-

taining the cells that respond FALSE.

These partitions can be processed using

control parallelism by forking the pro-

cess: One IS is assigned to execute the

THEN portion of the IF statement with the

TRUE responders, and another IS is as-

signed to execute the ELSE portion with

the FALSE responders. The IS’s execute
in parallel, each in a data-parallel mode.

The programmer needs no control-

parallel statements, such as FORK or JOIN,

since the control parallelism is inherent

in the statements. Case statements are

another example of control parallelism,

except that there are II partitions-one

for each of the II cases-instead of two
partitions as in the IF-THEN-ELSE.

A significant speedup of up to k in the

runtime of certain algorithms is possible

using an associative computer with a con-

stant number k of instruction streams.

Moreover, if the number of instruction
streams is not restricted to being con-

stant, then new algorithms with lower

complexity times may be possible.

24

Example
applications

An ASC version of Prim’s minimal

spanning tree (MST) algorithm” using as-

sociative-computing techniques with only

one IS is given in Figure 6. The values
given there indicate the state of the algo-

rithm after the first iteration through the
“loop while.” All the statements in the

algorithm execute in constant time. The

data for each node is stored in a record.

and the records are stored with at most

one record per cell. The cell variables are

identified with a “$” symbol following the

variable name. The cost of an edge from

node x to node y is stored in the x$ field

of node y and the y$ field of node x. Each

record also has the additional variables,

candidate$, parent$, and current-best$.

Root and next-node are scalar variables.

If root = II, then the terminology “root’s
field” refers to the field n$. Since one tree

edge is selected by each pass through the
loop and a spanning tree has II - 1 tree

edges, the runtime of this algorithm is

0(n). This is a cost-optimal parallel im-

plementation of Prim’s original MST al-

gorithm, which has a sequential running

time of O(n2). Moreover, no additional

overhead is incurred as the size of the

graph increases, because the algorithm

only requires additional cells and is thus

easily scalable to larger data sets. Finally,
since no networks are used and no task-

forking or join operations are needed, we

have minimized the communications and

synchronization overhead costs.

ASC has been combined with logic pro-

gramming to achieve high-performance in-

telligent reasoning, data-parallel scientific

computing, and efficient information re-

trieval from large knowledge bases: The

strategy in the design of the associative-
logic programming system is to maximize

the use of bit-vector and data-parallel op-

erations and to minimize the movement of

scalar data. Facts, relations, and the left-

hand sides of rules are represented as

records (associations) of parallel fields with

one record per cell. The right-hand sides of

the rules are compiled into an abstract in-
struction set. A simplified schematic of the

model is given in Figure 7.

Some advantages of combining asso-

ciative and logic computing are

(1) the speed of knowledge retrieval

is independent of the number of

ground facts,

(2) knowledge retrieval is possible even

if the information is incomplete, mak-

ing knowledge discovery possible,
(3) relations with a large number of ar-

guments are handled efficiently with

little overhead,

(4) associative lookup is fast, allowing

the tight integration of high-perfor-
mance knowledge retrieval and

data-parallel computation without

any overhead due to data movement

or data transformation, and
(5) the model is efficient for both scalar

and data-parallel computations on

various abstract data types such as

sequences, matrices, bags, and sets.

These advantages suggest that this

paradigm can be successfully applied to

data-intensive problems such as geo-

graphical information systems, image-un-
derstanding systems, statistical knowl-

edge bases, and genome sequencing. For

example. in geographical information

systems, spatial data structures such as

quadtrees and octtrees are represented
associatively with structure codes. As a

result, different regions having the same

values can be identified using associative

searches in constant time.

The integration of data-parallel scien-

tific computing, knowledge base retrieval,

and rule-based reasoning provides neces-

sary tools for image-understanding sys-

tems. Statistical queries can directly ben-

efit from associative searches, associative
representation of structures, data-parallel

arithmetic computations, and data-paral-

lel aggregate functions. Genome se-

quencing requires integration of knowl-

COMPUTER

edge retrieval, efficient insertion and

deletion of data elements, and efficient

manipulation of matrices for the heuristic

matching of sequences.

T
he associative techniques of the

1970s augmented with new tech-

niques - such as structure codes,

dynamic memory allocation, responder

iteration, multiple instruction streams, as-

sociative selection, and reduction nota-

tion and pronouns -form the basis of a

programming paradigm that makes use

of today’s inexpensive computing power

to facilitate parallel programming. The

ASC paradigm uses a tabular-data orga-
nization, massive parallel searching. and

simple syntax, so that the paradigm is eas-

ily comprehensible to computer special-

ists and nonspecialists alike. Furthermore,

the ASC paradigm is suitable for all levels

of computing, from PCs and workstations

to multiple instruction stream SIMDs and

heterogeneous networks. n

Acknowledgments
The authors thank Selim Akl for his helpful

comments. Stephen L. Scott’s work on het-
erogeneous associative computing is sup-
ported by a NASA GSRP-HPCC fellowship
and by NRaD.

References
I. K. Batcher, “Staran Parallel Processor Sys-

tem Hardware,” Proc. National Computer
Cont. AFIPS. 1974. pp. 405-410.

2. J.L. Potter, Associarive Computing - A
Programming Paradigm for Massively
Parallel Computers, Plenum Publishing,
N.Y.. 1992.

3. J.W. Baker and J.L. Potter. “A Model of
Computation for Associative Computing,”
Tech. Report CS-9409.07. Dept. of Math-
ematics and Computer Science, Kent State
Univ.. Kent, Ohio. Sept. lYY4.

4. A. Falkoff. “Algorithms for Parallel
Search Memories.” J. Associntive Corn-
pufing, Mar. 1962. pp. 488-S 11.

5. C. Asthagiri and J.L. Potter. “Associative
Parallel Common Subexpression Elimina-
tion,” Tech. Report CS-9405-06, Dept. of
Mathematics and Computer Science, Kent
State Univ., Kent, Ohio, May 1994.

6. A. Bansal, J.L. Potter, and L. Prasad.
“Data-Parallel Compilation and Extending
Query Power of Large Knowledge Bases.”
Proc. lnt’l ConjI Tools With Artificial Intel-
ligence, CS Press, Los Alamitos, Calif., Or-
der No. 2905-02.1992. pp. 276-283.

Jerry Potter is a professor of computer science
at Kent State University. His research interests
include the continuing development of the as-
sociative-computing paradigm. the integration
of associative SIMD computers with other ar-
chitectures in a heterogeneous supercomputer
environment. and natural-language and artifi-
cial-intelligence processing on SIMD comput-
ers. While at Goodyear Aerospace, he was in-
volved in the software development for the
Staran. Aspro. and MPP SIMD computers.

He received his bachelor’s degree from the
University of Iowa. his master’s from Stevens
fnstltute. and his PhD degree from the Uni-
versity of Wisconsin, Madison.

Johnnie W. Baker is an associate professor
and coordinator for computer science in the
Department of Mathematics and Computer
Science at Kent State University. His research
interests include parallel algorithms. parallel
production systems. applications of parallel
computers in artificial intelligence, and paral-
lel computer modeling.

Baker rcceivcd a BS degree in mathematics
from Hardin Simmons University in 1058 and
an MS and PhD degrees in mathematics in
1965 and 1968. respectively, from the Univer-
sity of Texas at Austin. He has also published
in the areas of Banach spaces and general
topology and has served as an editor for Par-
allel Procr.tsirl,g Letter.5 since 199 1.

Stephen L. Scott is a PhD candidate in the De-
partment of Mathematics and Computer Sci-
ence at Kent Slate Ilniversity. His research in-
terests include heterogeneous, parallel,
distributed, ascociativc. and high-performance
computing. operating systems, networking. ob-
ject-oriented systems. task mapping and
scheduling, and multimedia.

He received a BA degree in 1984 from Thiel
College. Greenville, Pennsylvania and an MS
degree from Kent State University in 19Y2 after
a number of years in the software industry. He
is a member of IEEE. ACM. and AFCEA.

J
Arvind Bansal is an associate professor of
computer science at Kent State University. His
research interests are AI tools and languages
on scalable massively parallel architectures,
associative computing, integration of knowl-
edge retrieval and data-parallel computing,
program transformation tools for paralleliza-
tion. and computational tools for human
genome sequencing.

Bansal obtained his B. Tech in electrical en-
gineering in 1979 and his M. Tech in computer
science in I983 from IIT Kanpur. and his PhD
in computer science from Case Western Re-
serve University in 1988.

Chokchai Leangsuksun is a PhD candidate in
the Department of Mathematics and Com-
puter Science at Kent State University. His rc-
search interests include parallel and hetcro-
gcneous computing, networking, operating
systems, parallel languages and compilers. user
interfaces, and multimedia.

Leangsuksun received the B. Eng. degree
in agricultural/civil engineering from Khon
Kaen University. Thailand, in 1983 and the
MS degree in computer science from Kent
State University in 1989. He is a student mem-
bcr of the ACM.

Chandra Asthagiri is a visiting assistant pro-
fcssor at the Computer Science and Engi-
neering Department at Wright State Univer-
sity in Dayton, Ohio. Her areas of interest are
parallel processing. optimizing compilers, and
databases.

She received her MS and PhD degrees from
Kent State University in 1986 and 1992, as well
as BS and MS degrees in botany from Madras
University in 1970 and 1972.

Readers can contact the authors at the Math
Sciences Building. Kent State University Kent.
OH 44242: e-mail (potter, jbaker, sscott,
chokchai, asthagir. arvind]@mcs.kent.edu.

November 1994 2s

