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1. Introduction

The mounting experimental evidence to the effect that decision makers

tend to violate expected utility theory in a systematic manner when presented

with choices among risky prospects led to the development of new models of

decision making under risk and under uncertainty.
1

These models depart from

expected utility theory and, in particular, from the independence axiom (or

the sure thing principle) that lends this theory its linear structure.

Without the independence axiom, however, the optimal strategy of a player in a

game involving random outcomes and a sequence of moves is, in general,

dynamically inconsistent. In other words, the continuation of an optimal

strategy formulated at the outset, as of a subsequent decision node, may

differ from the optimal continuation strategy as of this node. The issue here

is similar to the problem of intertemporal consumption decisions with time

dependent discount rate analyzed by Strotz (1956). In the spirit of Strotz's

suggestion on how to deal with this problem we proposed in a recent paper

(Karni and Safra (1987)) to model the behavior of a player whose preferences

are nonlinear in the probabilities as follows: We regard the same player at

different decision nodes as different agents. The preferences of agents

representing a given player are represented by the same utility functional and

each agent acts in his own self-interest. Finally, the behavior of the player

in a game is a sequential equilibrium .of a game among his representing

agents.
2

A player whose behavior may be represented in this manner is said to

be behaviorally consistent.
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In Karni and Safra (1987) we applied the notion of behavioral consistency

to the analysis of an ascending bid auction. In this paper we analyze

different ascending bid auction using the same characterization of individual

behavior. The interest in the study of the auction presented in section 2

below is twofold: First, while involving only a slight modification of the

rules, the ascending bid auction considered in this paper leads to a

significant change in the conclusions. In particular, the use of Bayesian

equilibrium replaces the sequential equilibrium concept that seemed natural

for the analysis of the other auction and, more importantly, it is possible to

characterize the equilibrium for the entire class of preferences for which the

equilibrium exists. Second, this auction is, in a sense, equivalent to the

limit of the auction analyzed in our previous paper when the number of bidders

increases. Moreover, the characterization of the solutions is the same as

that of a continuous ascending bid auction with a continuum of types when the

solution of such auction game exists.

We model ascending bid auctions as extensive form games with incomplete

information. Aspects of the game that are common knowledge include the number

of active bidders at each stage; the way in which the outcome of the game

depends on the actions of the players; and the feasible sets of actions of

each player. We assume that beliefs are consistent in the sense of Harsanyi

(1967-68), i.e., there exists a prior probability distribution on the set of

types (preferences) such that each bidder's conditional distribution, given

his own type, is identical to the distribution that would have been computed

• from the given prior according to Bayes' rule. The prior distribution is the
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same for all agents and this fact is common knowledge: We assume also that

the utility of each player depends only on his own type. The solution concept

that we employ in the analysis of the game is the Bayesian-Nash equilibrium

among the agents.

The plan of the remainder of this paper is as follows: In the next

section we present the ascending bid auction game to be analyzed. In section

3 we prove the existence and characterize the nature of a Bayesian equilibrium

of the game when the players have quasi-concave preferences. In section 4 we

discuss the significance of this game from the viewpoint of the theory of

auctions.

2. An Ascending Bid Auction Game

2.1 The Rules. Consider a discrete, noncooperative, ascending bid auction,

in which an object, A, is being auctioned to J, (J 2), bidders. Let

[0,M] be the possible range of prices that bidders may pay for A, i.e., the

probability that anyone is ready to pay more than M is zero, and the

probability that someone is ready to pay more than 0 is 1.
3 

Let Y = 
(Y1,

Y2P —"Yn), yl — 0'
and yl = M, be a partition of [0,M]. The points

YiP

i = 1,...,n, represent prices announced by the auctioneer. We shall refer to

these prices as decision points.

The auctioneer starts the auction by announcing 
yl 

as the selling

price. He then proceeds to increase the price. At each point, every bidder

must declare whether he is in the game or not. A decision to withdraw is

irreversible. A decision to remain in the game means that the bidder is ready

to pay the price announced for the object being auctioned. The game
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terminates when either only one bidder remains in the game, or when all

eligible bidders, i.e., bidders who, at the previous decision point were in

the game, announce their withdrawal at the same point. In the former case the

remaining bidder gets the object and is charged the price corresponding to the

first decision point at which he is the sole bidder. In the latter case none

of the bidders get the object which remains in the possession of the original

owner. This last rule is the main change in the structure of the game from

the ascending bid auction analyzed in Karni and Safra (1987). There, we

assumed that the tie is broken and the winner is determined by a random draw

from the set of eligible bidders. The present rule is not meant to be a

description of an observed practice, rather it is intended to capture

situations in which, for all practical purposes, withdrawal from the auction

means that the bidder does not win the object. These situations include the

case in which the price goes up by small increments and the participants in

the auction are drawn from a continuous distribution on the set of admissible

preferences (to be defined below). We shall elaborate on these points in

section 4.

2.2. Types and Beliefs. Let L be the set of cumulative probability

distributions on R endowed with the topology of weak convergence. Let 0

be the set of binary relations on L that satisfy weak order, continuity,

monotonicity with respect to first-order stochastic dominance, the reduction

of compound lottery axiom, and smoothness, in the sense of having a Gateaux
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differentiable representation V: L R. Let T C 0 be a finite set. T is

the set of types. Each bidder j in J is characterized by his type (i.e.,

his preferences), which is known only to himself, and his initial wealth,

which is common knowledge. Without loss of generality we assume that all

bidders have the same level of initial wealth, w, w > M.

The beliefs that bidder k in J holds regarding the preferences of the

other bidders, given that he is of type t, are summarized by a conditional

-k J-probability distribution, it( It) defined on T 1. Following the approach

of Harsanyi (1967-68), we assume that these beliefs are consistent in the

sense that they are derived from a joint probability distribution p on T

using Bayes' rule and that this is common knowledge. Formally, let

((k t) then

(1) /1(
-k

where

p(t) =

p(e)/p(t) for all t in T and p-k in Tj-1

P(0.-k
ET
J-1

p(t) represents the initial beliefs that every bidder k has on the type of

bidder j (j k). We assume that for all t in T p(t) > 0.

2.3. The Players. We distinguish between bidders and players. In

particular, we associate with each bidder a set of agents, one agent for each

decision point in Y. Agent (ji) represents bidder j at the decision point

yi. The set of players, N, consists of the Jn agents, namely, N = ((11),

(21),...,(Jn)). By definition each agent in the subset of agents
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corresponding to a given bidder knows the preferences of all the other agents

belonging to this subset. Unlike Selten's (1975) formulation of extensive

games in agent normal form, our representation is motivated by the need to

capture the fact that the same bidder at different decision points evaluates

the strategies differently, and must therefore be regarded as a different

player.

2.4. Announcements and Decisions. At each decision point the respective

agent must announce an element from the set (0,1). The announcements are

made simultaneously. An announcement of 0 by bidder j at the point Yi

in Y indicates that agent j withdraws from the auction at this point.

Since the rules of the auction prohibit re-entry, an announcement of 0 by

(ji) terminates the game for (j(i+k)), k = 1,...,n-i. Similarly, an

• announcement of 1 indicates that agent (ji) is in the auction, i.e., bidder

is ready to pay the price yi for the object. A decision for player (ji)

is an element of the set [0,1], i.e., a e [0,1] is a decision to announce

1 with probability a and to announce 0 with probability (1-a).

2.5. Histories. For all i, i = 2,...,n+1, a history hi

where (h
i 
)3in 

(Y1,

bidder j

is a J-tuple,

is the last decision point at which

acting through his representing agents, announced that he is in

the game. Because there is no history at we define h
1 

— 0. At each

decision point yi, hi iscormonknowledge.LetH.be the set of all

histories at the decision point Yi and let Hi. H. be the subset of
1 1

histories such that (hi)J =
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2.6. Strategies and Beliefs. A strategy for player (ji) is a function

-+ [0,1]. Thus, sii(t,h.) is the probability that player (ji) of

type t will announce 1 given the history hi. Let Si be the set of all

the strategies of player (ji), Si - Sil x S
j2 

x x S
jn

, and

S
1 

x 5
2 

x •.. x Sj. The sets Sji can be identified with a (finite)

Cartesian product of intervals [0,1]. Note that Sji are compact and

convex. The sets of strategies of all players are common knowledge.

For any strategy s e S and a history hi e Hi we assign a measure

-ki
A (.;s ,h.) on T in the following manner:

-kl
A (r;s,h

l'
t) - eTJA((ki lr,t)

- k(2 A 
ki 
(r;s,hi,t) - 0 if h. a H

'
.. otherwise

1 l 

-k(i-1)
(

k(i-1)
-ki A r;s,h.,

1-1
t)s (r ,h h )i_i

A (r;s,h 
k(1 

i,t) -  
1)
(r.

'
s
'
ht)sk(i-1)(r,h

i-1
)

reT

where
(kj 

IT ,t) E T is the such that r and t are the types of k

and j respectively.

-
The measure 

ki 
is the posterior probability that any other

player (ji), j k, of type t has for the event that (ki) is of type r,

given s and h. If h is not in H. then k is not in the game and thus

-ki
A (r;s,h. was defined to be zero. We shall see later that the measure

defined in (2) exists.
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Next,wedefinethefunctionsclici:S10,1] that assign to every

strategy s E S and history hi e Hi the probability that player (ji) of

type t assigns to the event that players (ki) announced 1 at

functions are defined as follows:

ki
((3) q s,h. t) —

ki-171

reT

Yi• These

Finally, let Jji be the subset of J\(j) of bidders k for whom

Ohi.fdk yi. Define

(4) Pi iOli.0.1/1vs,t) ---11 .1iclki(s,hvt). 11 1P-(11d-(s,11.0 i4'
l'

ICEP keJJ

kj

where pii(h. Ih. s t) or pii(h. lh ) for short,
+1 I" 1+1 i1 

is (ji)'s probability

of reaching the history h
i+1 

given the current history lh. and the strategy
1

s. We also denote the history hi+1 where all k 0 j announced zero by

(h.,0).
1

2.7. Consesquences. Assume that A is in L, i.e., the object being

auctioned is a lottery ticket. Insofar as player (ji) is concerned, the

outcome of the game as a function of his own decisions may be determined as

follows: Given h., if he announced 0 -- that is, if he withdraws from the

game -- then the outcome is 6
w 

in L where, for all x E R, 6
x 

denotes the

degenerate lottery that assigns the entire probability mass to x (i.e.,
x

is the element of L defined by Sx(z) = 0 for z < x, and
6x(z)

1

otherwise.) If he announces 1, that is, if he remains in the auction, then
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either (a) the auction terminates and he wins (A - y
i
)
' 

(where, for all F

in L, (F - x) is defined by (F - x)(t) = F(x + t), and A — (ii+w)) or (b)

the auction does not terminate at this stage, in which case the outcome is a

lottery with prizes (6
w
, (A - ),...,(A - yn)) with probabilities thatYi+1

reflect the decisions of the subsequent players.

At each decision point the consequences of a decision to a player at that

point is a lottery in L. The consequences to player (ji) of type t of his

decision a at yi, for any history hi E ., and any strategies s G S,

is given bythefunctionGii:[0,1]xTx11.x5 L, defined for j

1,...,J, i = 1,...,n+1 as follows:

(5)

Gj (a,t,h.,$) — 6 if h. a Hi otherwiseW 1 1

Gii(a,t,(h
i-1'

0),$) — A- y11

Gj (a,t,h ,$) = (l-a)6
 
+

Pii(h. 
Ih.)Gi(i+1)(si(i+1

1+1

and, if h (h 0),
n+1 n'

G
j(n+1)(

a,t,hn+1' 
— 6

w
.

t,h
i+1

), t,h
i+1

s)

The first equation indicates that if j is not eligible at yi then he cannot

win the lottery A. The second says that if j is the only remaining bidder,

he wins the lottery A for the price yi_i. The third equation specifies the

general form of the lottery in which (ji) participates in case he chooses to
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play a. Finally, the last equation specifies the resolution of the game if

none of the agents representing bidder j withdraws from the auction. The

outcome in this case is that bidder j is awarded the auctioned object for

the price y
n 

if no other bidder is in the game and S
w 

otherwise.

2.8. Payoffs. To complete the description of the game, we define the

payoffs. Let V be a real-valued functional representation of the

preferences of type t, then, given the strategies of the other players, the

history h. and the decision a, the payoff to the (ji) player of type t is

V
t
(G
ji
(a,t,h.,$)).

2.9. The Game. We are now in a position to define the ascending bid auction

game, r, formally as follows:

(Vr , T 
t) AjeJ' 

(S
jieN' teT' ).

3. Bayesian Equilibrium with Behaviorally Consistent Bidders

3.1. Behavioral Consistency. A behaviorally consistent bidder is rational in

the sense that he never deceives himself by choosing a course of action from

which he knows in advance he will deviate when the time to implement this

course of action comes. In other words, a behaviorally consistent bidder j

of type t is a set of players f(ji))7=1 that choose their moves optimally,

given their type and assuming that the other players in the set do the same.

Formally, define a behavior for bidder j of type t, bi, to be an element of

Si restricted to t in T.
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Definition 1: A behavior bi of bidder j of type t is consistent if,

for i = 1,...,n, for all hi e Hi, and for all a E [0,1],

Vt(Gji(01. , >:17t(Gi1(cz,t,h_, s)).1

We denote by B3(t) the set of all consistent behaviors of bidder j of

type t. A behaviorally consistent bidder is a set of players that make their

decisions optimally assuming that the other players in the set do the same.

3.2. Betweenness and Revelation. The value of a lottery A to a bidder of

type t is given by the function v
t 

L -4 R defined by V
t
((A-v

t
)) — V

t
(5w).

If Vt is linear in the probabilities, then a consistent, value-revealing,

behavior constitutes a dominant strategy for bidders of type t. In general,

behavioral consistency does not imply revelation in the sense that bii — 1

for i such that y. < vt(A) and bji = 0 otherwise. There is, however,l

class of preference relations in 0 for which behavioral consistency implies

revelation in this sense regardless of the strategies of the other players.

These preferences are characterized by a property called betweenness. A

preference relation in 0 satisfies betweenness if and only if for all F

and H in L such that F is strictly preferred to H, F is strictly

preferred to the mixture aF + (1-a)H and this mixture is strictly preferred

to H, for all a E (0,1).
4

Theorem 1: If V
t 

satisfies betweenness, then there exists bi in

B(t) such that bji = 0 for yi vt(A) and bji = 1 for

y
i 
< v

t
(A).
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Proof: The proof consists of two parts. In the first part, we show that bji

— 0 for all i such that yi vt(A). Then, using this result, we show that

bii = 1 for all i such that 
yi 

< v
t
(A).

and

Consider y v
t
(A) and any h. e H. Let

L
w 

Gj (0,t,h.,$)
1

L
2 

— 1(h.,0 I hi)(A-yi) + (1-pji(hi3O I hi))Q = Gji(1,t,hi,$)

where Q is a convex combination of S and (A-yi+k) k = 1,...,n-i. Thus,

L2 is a convex combination of S
w 

and (A-yi+k), k 0,1,...,n-i, and

vt(sw)
) Hence, by betweenness, V

t
(L2) V

t
(Sw) — V

t
(Li) and,

again by betweenness, for all a e [0,1], V
t
(Li) >_ V

t
((l-a)Li + aL2).

Hence, a = 0 is a dominant strategy and bi = 0

(b) For any h E & suppose that Yi< vt(A) and b is followed at

yk v
t
(A). Then, L2 defined above is a convex combination of S and

w

A-yi+k where yi  ___ v
t
(A). By betweenness, V

t
(L2) >_ V

t
(Sw) = V

t
(Li). Thus,

for all a e [0,1], t(L2) >_ Vt((l-a)L +aL2) and a = 1 is a dominant

strategy. Hence bji = 1. 0

3.3 Equilibrium. The equilibrium concept that we use to analyze the game

described in section 2 is a Bayesian-Nash equilibrium among the agents.

Definition 2: s in S is a Bayesian-Nasb. Equilibrium for r if for all

(ji) in N, for all or all
1

a G [0,1],
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Vt03.11-(sjiTt,11.:), t,11 .tNit:(&1"(or,t,h.,$)).

Note that this definition implies that in equilibrium bidders employ

behaviorally consistent strategies.

3.4 Existence. A sufficient condition for the existence of a Bayesian-Nash

equilibrium in r is that the preferences of the bidders are quasi-concave.

Theorem 2: If for all teT V
t 

is quasi-concave then r has a

Bayesian-Nash equilibrium.

Proof: Follows directly from Friedman (1971), Proposition 1.

0

3.5. Characterization. If the set of types consists of preference relations

that satisfy betweenness then an immediate implication of Theorems 1 and 2 is

that there exists an equilibrium of the ascending bid auction game r in

agent-dominant, behaviorally-consistent strategies. Furthermore, the

equilibrium has the revelation property that each bidder is in the auction as

long as the price is short of his personal evaluation of the object and he

withdraws from the auction at the point when the price exceeds his value.

Consequently, the outcome of the auction is Pareto optimal in the sense that

the bidder who values the object most is the winner.

To characterize an equilibrium for the case where quasi-concave

preferences are admitted, we introduce the following additional notation. Let

u
w
:R R be the local utility function of V

t 
at 6

w
. The existence and

continuity of u
w 

follow from the Gateaux differentiability of V
t
. The

assumption that V
t 

satisfies first-order stochastic dominance implies that
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t -t -tu
w 

is monotonic increasing. Let V : L -4 R be defined as V (F) —

fut(x)dF(x) for all F in L, and denote by vt the function vt: L --* Rw w w

defined by 
.(7-t((A _vtw)) = .c.7-t(s 

w 

). 
Thus, vt(A) is the value of A for thew w

preferences induced by the linear approximation of V
t 

at
w
. We shall show

that for bidders with quasi-concave preferences there exists an equilibrium in

behaviorally-consistent strategies such that sui(t,h.) 
= 0 if Yi 

t
(A)

and sji(t h ) belongs to (0,1] for yi < vt(A).

Theorem : If V
t 

is quasi-concave and Y includes v
t
(A) then: (a) For

any s e S the agent-optimal strategy sj e Si of bidders j of type

t requires that sji — 0 for all i such that y. v
t
(A) and, (b)
w

if s is an equilibrium then sji belongs to (0,1] for all yi <

vt(A).

Proof: (a) Consider 
yi 
.

t
(A) and any history hi E H. Let L1 and L2

be defined as in the proof of theorem 1. L
2 

is a convex combination of 6
w

and of lotteries (A-y.) k = 0,1,...,n-i that are stochastically dominated

by (A-v1t4(A)). Thus, 7.t
(8

w) .7t((A-yi+k))
-t

and, by the linearity of V-,

- -
for all a 

t 
[0,1] V (6' ) > 

t
_ V ((l-a)L + aL

2
). We shall show that this

implies that V
t
(61,7) 

t
((l-a)L + aL2) for all a G [0,1]. Suppose, by way

of negation, that there exists a e (0,1] such that V
t
(6

w
) < V

t
((l-a)L +

waL2). Then, by quasi-concavity of V
t
, for all r e (0,1] V

t
( ) < V

t
(L
1 
+

r[(1-a)L
1 
+ aL

2 
- L

1
]) — V

t 
+r[(1-a)L

1 
+ aL

2 
- 6 ]) Thus, at the

w

Gateaux derivative of V in the direction [(1-a)L1 + aL
2 

- is
w

positive. By the Gateaux differentiability of Vt this implies
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fult4(x)d[(1-a)L1 + aL2 - 614](x) > 0,

-
and, equivalently, 

„7t
isi 

< 
((1-a(L1 + aL2), a contradiction. Hence, forw

all a E (0,1] V
t
(Li) = V

t
(6w
) 

_?_ V
t
((1-01,1 + aL2), and a behaviorally

consistent strategy sj may be chosen such that si = 0 for yi v
w
(A).

(b) Consider yi < v
xt47
(A) and any history h. e H. Let sj be such

that sji = 0 for all y
i 

v
t
(A). In this case L

2 
is a convex combination

of 6
w 

and of lotteries (A-yk), yi yk v1t4(A), which dominate (A-v
t
(A))

according to first-order stochastic dominance. Following the above procedure,

it can be shown that (L
2
) >i/t(5w) = C7t(L

1
). Notice that here we may have

V
t
(L
2
) < V

t
(6

w
). However, if one of the lotteries (A-yk), yi yk < v1t4(A)

appears in L
2 

with strictly positive probability, then "e(L
2
) > ),

otherwise L2 = 5. In the latter case for all a E [0,1] Vt(L2)

V
t
((1-a)L

2 
aL
1
) and sji(t,h ) may be chosen to be equal to 1. In the

former case we get fuw(x)d[L2 - 6](x) > 0. Hence, the Gateaux derivative of

V
t 

at 6
w 

in the direction L
2 

is positive. Thus, there exists a e (0,1]

suctithatlIt((1-01,
1 

--FaL2)>Irt(L
1
)andsji(t,11.), which is equal to the

best of those a's, is positive. 0

Notice that with strictly quasi-concave preferences the equilibrium

strategies are not value-revealing and the outcome of the game is not

necessarily Pareto optimal in the sense described above.

Finally, we are in a position to define M. Let M = maxtv
t
(A) I t G T).

Because M is defined by the set of types, the object A and by 6w, all of

which are independent of the definition of the game, it is clear that no



-16-

circularity was introduced into the definition of M by postponing it until

now. Furthermore, from the definition of M it follows that for all yi in

the prior probability that, in equilibrium, the auction will reach the

point yi is strictly positive. Thus, the beliefs in equation (2) and the

Bayesian-Nash equilibrium are well defined.

4. Concluding Remarks

One aspect of the auction game of section 2, namely the rule that if all

the eligible participants withdraw from the auction at the same point then

nobody gets the object, is not observed in actual auctions. Yet, this rule is

responsible for the great simplification of the analysis and for many of the

results, including the characterization of equilibrium. (For comparison see

Karni and Safra (1987) where a tie in the auction is resolved by a chance

mechanism). Thus, the real issue is not the realism of this rule but to what

extent this model and the results presented here constitute a reasonable

approximation to actual situations. To answer this question we need to

understand the source of difficulty with ties. Any other form of resolution

of ties implies that a decision to withdraw from the auction will have a

lottery as a consequence and the exact nature of this lottery depends on the

number of bidders that are in the game at that decision point. Thus, the

analysis cannot be anchored to S. The critical issue is, therefore, how

important are ties in actual auctions. If ties are not important for

individual decisions, then no essential loss is entailed and significant

simplification is gained by assuming that ties are resolved according to our

rule. Situations in which ties are not important include the case in which
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the participants in the auction are drawn from a distribution with positive

density everywhere on the set of admissible preference relations 0, and the

partition Y is sufficiently refined. In this case the probability of an

actual tie occurring at any given decision point is sufficiently small and a

withdrawal from the auction yields 8
w 

almost surely. In this case the

ascending bid auction described in section 2 is a good approximation.
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1. In the case of decision making under risk, these theories include:

Kahneman & Tversky (1979), Machina (1982), Quiggin (1982), Fishburn

(1983), Chew and MacCrimmon (1979), Chew (1981), (1983), Yaari (1987),

and Dekel (1986). For the case of uncertainty there is Schmeidler (1984)

and its extension in Gilboa (1985).

2. Because of the structure of the games considered below the criticism of

Strotz by Peleg and Yaari (1973) does not apply. For the definition of a

sequential equilibrium, see Kreps & Wilson (1982).

3. M will be defined in the sequel.

4. The functional representation of a preference relation in 0 that

satisfies the betweenness property is both quasi-concave and quasi-convex

on L. For axiomatizations of preference relations in this class see

Fishburn (1983), Chew and MacCrimmon (1979), Chew (1981), and Dekel

(1986).
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