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ABSTRACT.   In the present paper we investigate the stability of the
ascent and descent of a linear operator   T  when   T  is subjected to a per-
turbation by a linear operator   C  which commutes with   T.   The domains
and ranges of   T   and   C   lie in some linear space   X.   The results are used
to characterize the Browder essential spectrum of   T.   We conclude with a
number of remarks concerning the notion of commutativity used in the pres-
ent paper.

Introduction.  To discuss ascent and descent one must consider iterates of

operators.  Some sort of commutativity of  T and  C is necessary in order to

meaningfully compare operators such as   T    and  (T + C)    and to   "factor" oper-

ator products  (cf. Lemma 1.4).   We shall say a linear operator  C commutes with

T if (i) the domain of  C,  JJ(C), contains the domain of  T, (ii) Cx e 3/(T)  when-

ever x £ J)(T), and (iii) TCx = CTx for x e J)(T  )    This definition coincides

with the usual one when   T and  C ate defined on all of X.  Note that   T com-

mutes with itself if and only if  T maps  i)(T)  into J'(T).
In  $T  we collect together a number of preliminary lemmas about operators

T and   C such that  C commutes with  T.   In  §2  we show by purely algebraic

methods that the finiteness of the ascent or descent of  T is retained by the

operator  T + C when   C commutes with   T and a certain power of  C has finite-

dimensional range.  In general this does not hold if  C is a compact operator,

but similar results may be obtained when some restrictions are placed on   T.

This is shown in  §3, where we consider perturbations by compact operators,

Riesz operators and   T -compact operators.  In §4 we use the results of  §3  to

characterize the Browder essential spectrum.   The main results of this  section

have been announced earlier by the second author (see [9]).   In the final section

we discuss the  commutativity condition used here.  Among other things we show

that there exists a closed operator T such that the only bounded operators com-

muting with  T ate scalar multiples of the identity operator.
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1.  Algebraic properties of commuting operators.  To deal with ascent and

descent one has to consider iterates of an operator.  Let   T and  C be linear

operators with domains and ranges in the linear space  X.  The domains of  T and

C are denoted by 2)(T) and  3)(C) respectively.  The product  of  C and   T is the

linear operator  CT with domain

Î){CT) = U e3Xr)|Tx e3D(C)|
and defined by

CTx = CiTx)       ix £ SD(CT)).

Iterates of T are now defined by induction.  By definition, T   - T, and for 72 > 1 the oper-

ator Tn is defined to be the product of T and T"~\ i.e. T" = TT71'1. T° shall be read

as the identity operator on X.
In this section we collect together a number of lemmas about  T, T + C and

their iterates.

1.1. Lemma.   // C commutes with  T, then — C commutes with  T + C.

Proof.  By definition, 3)(T + C) = ÍD(T), and thus  C3)(7 + C) C 2)(T + C).
Take x in Î)[(T + C)2].  Then x £ 3)(T) = 3)(T + C) and  T* + Cx =

(T + C)x £ BCf + C).  Also,  Cx e 3)(T + C), so Tx e 3)(T + C) = TiT), and
x £ 3)(T2).  From  Cx e CÎ>iT) C 3)(T) C 3)(C) we see that  x £ 3)(C2). Thus we have

(T + C)Cx = TCx + C2x = CTx + C2x = CiT + C)x,

that is, — C commutes with  T + C.

1.2. Lemma.   Suppose that  C commutes with  T.   Then for n = 1, 2, ■ • • ,

(a) ¿SKt") c 5Xr");
(b) C7I(T*) C Jl(Tn), where TiiT")  is the null space of Tn;
(c) 3)(T) C 3)(C");
(d) r"Cmx= CmT"x for all x  in   ®(T"+1) and m = 1, 2, ■ ■ • ;

(e) CTO)"« = T"c"x = C"Tnx = iCTTx for x  m ®(7" + 1);
(f) 3)(T") = 2)[(r + C)"];
(g) (r + c)"x = X"=0(*)r"-'c'x = S"=0(?)c!'t"-'x /or * 272 $(t").

Proof.  The verification of the statements above by induction is straight-

forward (although somewhat tedious) and will be omitted.

Note that (a) and (d) of Lemma 1.2 together imply that  Cm commutes with T

for any m. This observation is useful in the proof of the next lemma.

Suppose that T  is one-one and onto.  Then the inverse map T~    is well

defined and 3)(T~   ) = X.  Observe that  7        commutes with  T. For 72 = 1, 2, • • • ,
we define  T~n  to be the 72th iterate of T_1, i.e. T~n = iT~l)n. It is easily

seen that  T~* = (T")_1.
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1.3. Lemma. Suppose that C commutes with  T. If T  is one-to-one and maps

3)(T) onto X, then, ¡or n, Ú = 1, 2, • • <,
(i) T-"Cmx = CmT-"x for x £ ®(T);
Cú)iCT~1)nx = CnT~nx ¡or x e X.

Proof.  Also omitted.

1.4. Lemma.  Suppose that  C commutes with  T. If T  is one-to-one and onto

X, then, ¡or n = 1, 2, • • ■ ,

(1) (T+ C)n = (/+ CT-X)nTn = Tnil + CT'1)".

Proof. Since $(/ + CT~ ') = X, ®[(/ + CT" l)"Tn] = 3)(T"). By Lemma 1.3,

(2) (/+ CT-'yx = J^{r>\iCT-1)'x = f^h\c'T->x.

From Lemma 1.2(a)  we  conclude that (/+ Cl      )"x - x e2)(T).   Therefore,

x e®(T) whenever (/+ CT-l)nx £Î>(7).  In this case, CT~lx £®(T2), so that

(2) implies  (/ + Cl      )"x - x ej)ÍT ). Proceeding with the same argument, one

sees that x e®(T") whenever (/ + CT~   )"x €j)iT"). The converse is also true.

Hence 3) ÍT" V + CT~ ')"] = 3) (T"). In view of Lemma 1.2(f), this shows that the
operators in (1) have the same domain.

Now given x £ 2)(Tn), we may write x = T~nw  for some w £ X.   From Lemma

1.2(g) and (2), we have

(7+ C)nx = J^in\clT"-iiT-"w) = (/ + Cr""1)"z^ = (/+ CT-1)"Tnx.

The verification of the second equality in (1) is similar.

2. Finite-dimensional perturbations. In this section  T and C ate linear oper-
ators with domains and ranges in the linear space X.

Following the notation and terminology of [l6], we let n(T) be the nullity of

T, i.e.   the dimension of the null space Jl(T) of T;  and we let d(T) be the de-

ject of T, i.e.   the codimension of the range 5\(T) of T.  The ascent of T, a(T),

is the smallest nonnegative integer p  such that 7iiTp) = JiiTp     );  if no such p

exists, we define  a(T) = + oo.  Similarly, the descent of  T, 8ÍT), is the smallest

nonnegative integer q such that ÍMT9) = %iTq   l), and 8iT) = + «¡  if no such  q
exists.

2.1. Lemma. Suppose that  C  commutes with  T. Then, for k, n = 1, 2, • ■ ■ ,

(a) dim--5ip-< dim %Ck);
n[iT+cr+k-l)nïLiT")    *
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(b) dim-^^- <dimíR(C*).

Proof.   Let  X    be a subspace of "HiT")  such that

TiiT") = Mr + c)n+k~l ] n JUT")! © xv

It follows from Lemma 1.2(g)  that (7 + C)n+k~1  maps  71(7")  into  %iCk).  Since
(7 + C)n+k~l  is one-to-one on  Xp dim X    < dim <R(Cfe).   This proves (a).

To prove (b), let x   , -~,*m be in  cS)iTn+k'~1)  such that  Tn+k~1x v ....

7"+fe_1xm   are linearly independent in  9{(7"+¿~1)  modulo  !R[(T + C)"l

r.iR(7" ). Since  - C  commutes with  7 + C (Lemma 1.1), we may interchange

7 and  7 + C in Lemma 1.2(g).   It follows that, for  i = 1, «••, w,

7"+fe-1x. = (7 + C)"u. + Ckv.,
i ii

for suitable  u.   and  v..   If  ?72>dim<A(C  ), then there exist constants  a ,,•••, a   .
ii , J" l' '    7n

not all zero, such that Sm  ,a C v . = 0, and hence7 =1   i        i        '

2=1 2=1

Since the  a . are not all zero, {7" x i"2-,   is not linearly independent modulo

9U(7 + C)"l n $(7"+fe-1), a contradiction.  Thus  772 < dimíRíC*), which proves
(b).

2.2.   Theorem.  Suppose that  C commutes with  7 and dimiR(C ) < m for

some integer k>\.   Then, if 7 has finite ascent (resp. descent), T + C has fi-

nite ascent (resp. descent).

Proof.  Suppose that ct(7) = p < o».   For n > p, let

71(7")_ 71(7")
a    = dim-=dim-

JI[(t + c)"^"1 ] n 71(7") Jl[(r + c)n*k-1 ] n Jl(r*)

7I[(7 + c)"] .; Jl[(r+c)"]
dim- = dim -

3l[(T + c)"] nftcr"**-1) Ji[(T + c)"]n Jl( r *)

By Lemma 2.1(a), a < dim irî(C) < °°. Since the null spaces of the iterates of

T + C form an increasing nest of subspaces, it follows that there is an integer

N > p  such that a    = a     for n > N.   But this implies

(3) Ji[(r + CY] n 31(7*) = Jl[(T + c)"**-1 ] n 51(7*)
for z > A/ + /e - 1. By Lemma 1.1, we may interchange 7 and 7 + C in Lemma

2.1(a) to conclude that b    < dim ÍR (Cfe) < <x>.  Clearly, b    <b   +   < • • • (for 72 > p),
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and there is an integer M > N + k - 1  such that b   = b „ for n > M. When combined with

(3) this implies that Jl[(T + C)"l = ?I[(T + C)M] for n>M, i.e. a(T + C) < M <«,.
The proof for the case when T has finite descent is similar and will be omitted.
Suppose that  C is a linear operator on X  with the following property: "If T

is a linear operator such that  C  commutes with  T and  aiT) < oo  and 8ÍT) < oo,

then aiT + C) < oo and 8iT + C) < oo." Then, by taking T to be scalar multiples

of the identity operator, we see that

(4) a(A/ + C) < oo   and    8i\I + C) < oo

for all  A.  In the next section we will generalize Theorem 2.2 when  T is a closed

linear operator on a Banach space  X.   If we try to consider a perturbation by a

bounded operator C  (with  3)(C) = X), then (4) implies that the spectrum of C

must consist of a finite set of poles of the resolvent operator (cf. Theorem 4.3 of

[10]).   In particular, (4) implies that Theorem 2.2 will not be true if "C    has fi-

nite-dimensional range" is replaced by "C is compact".   However, this result

does hold if one places some restrictions on  T.  (This will be proved in the next

section.)

It is an open question whether or not the class of operators having some

iterate with finite-dimensional range is characterized by the property mentioned

at the beginning of the preceding paragraph.

3-   Compact perturbations.  In this section   T and  C  are linear operators with

domains and ranges in the Banach space  X, and  T  is a closed operator.  Note

that we do not require 5)(T) to be dense in  X.

3.1.   Proposition.  Suppose that

(5) niT) = diT) < + oo    and     aiT) < + oo.

Then there exists a bounded linear operator B defined on X with finite-dimen-

sional range and such that

(a) BTx = TBx for x £ j)(T); in particular,  ß  commutes with  T;

(b) 0 £ piT + B), i.e.   T + B  has a bounded inverse* defined on X;
(c) if C commutes with  T, then  CBx = BCx for x e 3)(T).

Proof.  By Theorem 4.3 of [7],

(6) X = 7liTp) © %iTp)

where  p = a(T).   Let  B  be the projection of X  onto !H(TP)  along j(iTp).  Clearly,

B  is defined on all of X  and  dim'K(ß) < oo.  Since   T is a closed linear operator

with finite nullity and defect, T  is a Fredholm operator.  Therefore  Tp is a Fred-

holm operator, and consequently JliT1') and  ^KiTp)  ate closed subspaces of X.
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This means that  S   is a bounded linear operator on  X.

It is easy to verify that B   satisfies (a), (b), and (c).

It can be shown that the conditions in (5) imply that  0  is a pole of finite

rank of the resolvent operator  (A- T)~   .  The proof of this for the case when  T

is densely defined is contained in the proofs   of Corollary 4 and Theorem 7 of

[8l   and in the proof of Theorem 2.1 of [lO].   In those references the hypothesis

9)(T) = X was used to establish (6) and was not subsequently needed.   The argu-

ments in [8]   and [lO]  therefore apply to the present situation, and will not be re-

peated here.  The operator B  introduced in the proof of Proposition 3.1 is the spec-

tral projection corresponding to the spectral set  ¡OS (cf. the proof of Lemma 2.7

in [15]).

3.2.  Theorem.  Suppose that 0 £ piT), and let  C be a compact operator on X

which commutes with  T.   Then

niT + C) = diT+ C) <oo    and     aiT + C) = 8iT + C) < oo.

Proof.   From Lemma 1.4 we see that, for n = 1, 2, • • • ,

JIÜT+ c)"] = ?l[(/+ CT-1)"],     K[(r + c)"} = mi + CT-1)"].

Now CT~     is compact since it is the product of a compact operator and a bound-

ed operator.  The theorem now follows from the Riesz theory for  compact operators.

Theorem 3-2 would not be true if the condition that  C commutes with  T were

removed.   For example, let X  be the Banach space

!l   °°(..., x_v XQ, Xj, •• Oj^K-l < °°
J — oo

Define  T on X by

iTx)    = x     .     for    n = 0, ±1, ±2, ...,n n —I      ! *        *        * '

and let  C be defined by

iCx)   =
for n 4 1,

for   n - 1.

Then  T is a bounded linear operator on  X,  0 e piT) and  C is a compact opera-

tor, but a(T + C) = 8iT + C) = oo.
It is clear from the proof of Theorem 3-2 that the result of the theorem also

holds if C  is a linear operator commuting with  T and such that  CT" 1  has the

same spectral properties as a compact operator, i.e. such that  CT~l  is a Riesz

operator.  Therefore the following lemmas are of interest.
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3.3-   Lemma.  Suppose that  0  € piT), and let  C be a Riesz operator on X

commuting with  7.   Then  CT~     is a Riesz operator.

Proof.  Consider the quotient algebra  [X]/K of the bounded operators on X

modulo the compact operators, and use the well-known fact that an operator in  [Xl

is Riesz if and only if its spectral radius in [Xl/K  is zero.   By Lemma 1.3,

(C7~ X)n = CnT~n, for 72 = 1, 2, 3, • • •   -  Viewing this equation in [X]/K, it is easy

to see that the image of C7_     in [Xl/K has a spectral radius  of zero.

A linear operator C with iD(C)  D  £(7)  is said to be  7   -compact (for k  some

natural number) if, for any sequence  [x^l C £(7 )  satisfying  ||x   || + ||7 x   || <

const., the sequence  \Cx  \ has a convergent subsequence.  If 0  £ piT) and

®(C) D TAT), it is not difficult to show that  C  is   7fe-compact if and only if CT~
is a compact operator on X (cf. [3, P- 20l] ).

3.4.   Lemma.  Suppose that 0  £ piT), and let C be a  7  -compact operator

commuting with  7.   Then  iCT~ )    is a compact operator on X; in particular CT~l

is a Riesz operator.

Proof.  We first prove that  C7_     is a bounded linear operator on  X.   If k = 1

then C7        is compact and hence bounded.  Suppose  k > 1.   Let  \y   I  be a null

sequence in X, and suppose that  C7_1y   —» w in  X.  Then by Lemma 1.3 and   the

boundedness of  f~^        \

CT~ky   =T-(k~l)iCT-ly )^T-(k-l)w.
n Jn

On the other hand, C7_     is bounded and so   CT~  y    must be a null sequence.

This implies w = 0.  It follows that  C7_     has a closed extension.  Since the do-

main of C7_1  is all of X,   C7-1  must itself be closed.   But then  C7_I  is
bounded by the closed graph theorem.

To show that (C7_  )     is compact, we use Lemma 1.3 to see that

<R[(C7-1)*] = Cfe3)(7fe) C C%Tk) = C%iT~k) == %CT~k).

Since C is  7  -compact, C7_    is compact on X.  Thus (C7-1)    is a bounded

operator whose range is contained in that of a compact operator.  A result of

Phillips implies that iCT~l)k is compact (cf. Theorem 2.13.8 of  [6]).

3.5. Theorem.  Suppose that niT) = diT) < <x> and a(7) < °o.  Ler  C commute

with  7 and suppose that  C satisfies at least one of the following conditions:

(i) C is a compact linear operator on  X;

(ii) C  is a Riesz operator;

(iii) C is  T -compact.
Then  T + C  is closed and
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(7) niT + C) = diT + C) <oo     md     aiT + C) = 8iT + C) < oo.

Proof.   By Proposition 3.1 there exists a bounded linear operator  B  with finite-

dimensional range such that  0 e p(T + B),  BTx = TBx for x e X(T), and  CBx =

BCx for x e TiT).  It follows that - B + C commutes with  T + B.  Furthermore,

since   3  is a compact operator,

(i)'  if  C  is compact, then - B + C is compact;

(ii)'   if C is a Riesz operator, then so is - B + C;
(iii)'  if C  is  Tfe-compact, then   - B + C is (T + B)fe-compact.

To verify this last statement, we note that (T + 8)    and  T    are closed lin-

ear operators  (see [4, Corollary IV. 2.12]) with the same domain.   Thus there ex-

ists a constant M > 0 such that  \\Tkx\\ <M(\\x\\ + || (T + B)kx\\)  fot all x  in  !D(T*).
From this it follows that  C is  (T + B)  -compact.   But  S   is compact, so   - B + C

is  (T + ,9)  -compact.

Next we observe that

T + C = (T + B) + (- B + C).

Formula (7) now follows from Lemma 3-3, Lemma 3.4 and the remark preceding

Lemma 3-3-

It remains to show that  T + C is closed.  Without loss of generality (see the

first part of the proof) we may suppose that  0 e piT).  We know that each of the

conditions (i), (ii) and (iii) implies that CT~    is a bounded linear operator on  X.

By Lemma 1.4, T + C = Til + CT~  ).  Since  T is closed, the last formula implies
T + C  is closed.

The conclusions of Theorem 3-5 remain valid if the condition aiT) < + oo  is

replaced by

2)(T)  is dense in X    and    S(T) < + oo.

To see this we note the following.   From niT) = diT) < + oo  and the fact that

iAT)  is dense in  X, it follows that  Tq  is a densely defined linear operator (see

[4, Theorem IV.2.7(iv)]), where q = SiT).  Since  3\iT)  is closed and has finite

codimension, it follows that  X = ÍJ)(T9) + %iT).  But then  niT) = diT) < + oo  and

SiT) < + oo  imply that a(T) = SiT) < + oo (see Theorem 4.6 of  [7]).  The observa-

tion made above now follows from Theorem 3.5.

Suppose that  C  is a bounded linear operator with the following property: "If

T is a bounded linear operator such that  C  commutes with  T,  niT) = diT) < oo

and  a(7) < + oo, then n(T + C) = d(T + C) < oo and aiT + C) = SiT + C) < oo."

Then, by taking nonzero multiples of the identity operator, we see that

n(A/ + C) = di\I + C) < oo    and    a{\I + C) = S(A/ + C) < oo,
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for all  A ;¿ 0, i.e. C  is a Riesz operator.   Thus condition (ii) in Theorem 3-5 can-

not be weakened if C  is a bounded linear operator defined on all of X.   This re-

sult is essentially Theorem 2.6 in  [l5l-
It is not necessary to consider perturbations by   7-pseudo-compact operators

or by 7-pseudo-compact operators (cf.   [14]).   This follows from the remarks

following Theorem S in §3 of [5].

4.  Invariance of the essential spectrum.  The results of the previous section

can be used to give two characterizations of the essential spectrum of 7,  ess(7),

as defined by F. E. Browder [l].   It is well known (cf. [5], [14]) that if  7  is a
closed linear operator with domain and range in a Banach space  X, then  ess(T)

is the complement in the complex plane of the set

{A £ C| 72(A - 7) = d(\ - 7) < 00 and a deleted neighbourhood of A

is in the resolvent set of T\.

Let S be a set of linear operators whose domains and ranges lie in X. We shall

say that a subset A of the spectrum of 7, oiT), remains invariant under pertur-

bations of 7 by operators in 0  if A C M r.c oiT + S).

In the present section we show that  ess(7) is the largest subset of the spec-

trum which is invariant under compact and certain other commuting perturbations

of  7.  The main results of this section have been announced earlier in  [9].

4.1. Theorem.   Let  T be a closed linear operator on a Banach space  X.   Then

ess(7) is the largest subset of the spectrum of 7 which remains invariant under

perturbations of 7  by Riesz operators which commute with  7.

Proof.  Suppose that  A £ a(7)\ess(7).   Then by Theorem 9.6 of [161, A is a
pole of the resolvent operator, and Theorem 9.1 of [l6] implies that  a( A - 7) < 00.

Substituting  7 - A for  7  in Proposition 3-1, we see that there exists a bounded

linear operator B  which commutes with  7 — A (and hence commutes with   7), and

A 4 oiT + B).  The operator  B   is Riesz since it has finite-dimensional range.

On the other hand, suppose that  A is in the spectrum of 7  and there is a

Riesz operator B  which commutes with  7  such that A is not in the spectrum of

T + B.  Then - B  commutes with  7 - A+ B  by Lemma 1.1.  Now

ra(7 - A + B) = 47 - A + B) = 0    and    a{T - A + B) = 0.

Then, by Theorem 3-5,

72(7 - A) = 4T - A) < «    and    dT - A) = 5(7 - A) < 00.

Furthermore, 5\[(7 - \)p] is closed, since 7 - A is a Fredholm operator. Using

Theorem 9.4 of [ 161 we can conclude that A is an isolated point of oiT). Thus

A 4 ess(7).
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It follows from the remarks at the end of the preceding section that the set of

Riesz operators considered in Theorem  4.1 cannot be enlarged to contain any

other bounded linear operator defined on all of X.

Theorem 4.1 remains true if "Riesz" is replaced by "compact" (this is the

Corollary in [9l", see also Theorem   1(b) in [17], where this result is proved for

bounded operators) or by "7  -compact" (where  k depends on   the perturbing

operator).   To see this we note that the operator  B  used in the first paragraph of

the proof of Theorem 4.1 is a bounded linear operator with 3)(ß) = X  and further

3  has finite-dimensional range.   This implies that  B  is compact and  B   is 7  -

compact for any  k.  The rest of the argument is the same as the second part of the

proof of Theorem 4.1, when "Riesz" is replaced by "compact" or "7  -compact".

The fact that Theorem 4.1 remains true if "Riesz" is replaced by "7  -com-

pact" is somewhat surprising.   Gustafson and Weidmann  [5]  have shown that, in

general, for   k > 2 the Wolf essential spectrum of  7 is not invariant under  7  -

compact perturbations of  7.

5.   Remarks.  In this section we present a number of remarks concerning the

commutativity condition used in the present paper.

a. The requirement that  C  commutes with  7 is not in general a symmetric

property.  Caradus has given a definition of commutativity which does not have

this deficiency (see Condition 3 in [2l).  We have not used Caradus' definition,

since it is not clear to us how one can compare  7    and (7 + C)    using his def-

inition.   Lemma 1.1 and Lemma 1.2(g) are basic in the present paper.   If they hold

for an operator  C with S)(C) D jD(T)  and  C  commuting with   7 in the sense of

Caradus, it would be desirable to use his definition.

b. Let 7 and C be linear operators with domains and ranges in the Banach

space X, and let 7 be a closed operator. It is interesting to note that under the

conditions of Lemma 3-4 the  7  -compactness of C implies that the map

(8) C: iD(r) ̂  X
is bounded in norm.  The proof of this is based on the following lemma, which is

due to R. D. Nussbaum.

5.1. Lemma.  Suppose that  p(7) ^0 and let  C  be a T-bounded operator

commuting with  7.   Then the map (8) is bounded in norm.

Proof.   See [13, Remark 3l-

5.2.   Proposition.  Suppose that piT) 4 0 and let  C be a  T   -compact opera-

tor commuting with  7.   Then the map (8) is bounded in norm.

Proof.  Without loss of generality we may suppose that  0 £ piT).  Then we
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know from Lemma 3-4 that  CT~   : X—>X is bounded.  Hence, for each x  in

TAT),
\\Cx\\ = \\CiT-lTx)\\= \\iCT~l)Tx\\

<  ||(C77~1)||.1|7-*|| <  IKCT-MIUH + IITxHj.
This implies that  C  is T-bounded.  So we can use Lemma 5.1 to get the desired

result.
c.  The requirement that  C  commutes with  T severely limits the class of per-

turbing operators.   In the following we shall show that there exists a closed oper-

ator  T such that the only bounded operators commuting with  T  are scalar multi-

ples of the identity operator.   The proof of this result is based on a variation of

an argument used earlier by I. S. Murphy (see the proof of Theorem 1 in  [ll]).

We shall be dealing with weighted shifts on the Banach space  /    of all ab-

solutely convergent complex sequences (but the result we prove holds for any

Banach space with a Schauder basis).   An element of  /    will be denoted by x =

(*j, *2, • • • )■
Let \a } be a sequence of nonzero complex numbers.  We do not suppose that

ia  } is a bounded sequence.   Further, let  T denote the (possibly unbounded)

weighted shift acting in  /.   with weights  a     a     • •• .  So the domain of  T is the

set

fl(T) = \xelx  2>n*J<+oo   ,
( »=i ,

and on  3Xt)  the operator  T is defined by the following formula:

a     , x     ,      lor n - \n — l    « —I       '
(Tx)_ =

0 for n = 1.

It is easy to see that  T is a closed linear operator with domain and range in  /  .

Let e^ be the element in  Ix  with all coordinates  0 except the nth, which is

equal to 1.  The following lemma is an immediate consequence of the definition  of

T; its proof will be omitted.

5.3-   Lemma.   For n,k = 1, 2, • • • , the element  e    e ÎATk) and Tke    =
n ' n

a a   .,-• • a    ,    ,e   ...n     77 + 1 n+k—ln+k

Now let  C be a bounded linear operator on  /     commuting with  T.  Suppose

(9) Cel=(ßlt ß2,-..).

5.4.   Lemma.   For k= 1, 2, •••, the element  Ce    e3)iTk) and
OO

T Ce. = ?   a .a . , • • • a .  ,   , ß e .   ,.
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Further, TkCe { = CTke j = a^ . .. afeCefc + r

Proof.  Since e    £Î>iTk) for any k, Lemma 1.2(a) shows that  Ce    £§iTk).

Further, we can use Lemma 1.2(d) to show that  T Ce    = CT e      The remainder

of the proof is a straightforward verification and will be omitted.

Note that Lemma 5.4 implies that the action of C  on  e    (k = 1, 2, • • • )  is

determined by  7  and the action of C on  e      Since  C  is bounded on  /  , it follows

that  C is completely determined by  7 and formula (9).

Put

IB R     i*„OT-Lftr+JJ-^£ü!—v.
¡T\   a.a- • • • a .i -y      \    ¿ j

Then  p   (7)  is a linear operator with domain  5)(7m).  So p   (7)e,   is well defined

for k = 1, 2, • • •   .   Note that p   (7)e , = 1ml\ß.e ..   For  k = 1, 2, • • -, we havec m 1 z - l"i    l

m      ßj+l
p   (7)e,   , = ß, e,   .  + >  - a,   . • ■ • a,    e,   .

; = 1      1 j

ak

al

Œa,+i---afe+;A'+i^+i+;j

LL |xi---a<Mi-l^<fi+»y

From these formulas we see that the sequence \p (7)e,| 772 = 1, 2, ••- ! is increas-

ing in norm. Further, using Lemma 5.4, lim _+aaP iT)e. = Ce, for k = 1, 2, ••• .

In particular, this implies that

\\pjT)ek\\<\\C\\ U =1,2, ...).

The last formula shows that each  ô   (7)  is bounded on the set  \e ,, e ., e „ ■ ■ • |.
1 m 1        J       3

But then the same is true for

ßn+Jn = ^2---\hniT)-Pn_liT)\,

where 72 = 1, 2, • • • .
Now suppose that 0 < |a | < |a | < • • •  and that lim   _+oa \a \ = + 00.  Then

Lemma 5.3 shows that none of the powers of 7  is bounded on  \e     e  , e     • • •!.

Combining this result with the conclusion of the previous paragraph, we see that

ßn + 1 = 0 for 72 = 1, 2, • • • .  Hence Ce   = ß e      But then we can use Lemma 5.4

to show that  Ce k = ß ^e k ik = 1, 2, • • •)•  This implies that  C is a multiple of the
identity on  /..

E. A. Nordgren  [12]  has proved that a Donoghue operator (i.e.   a backwards

shift with positive, montone, square summable weight sequence) on /    does not
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commute with any closed, unbounded linear operator.  The present result seems to

be a sort of inverse of Nordgren's result.

d.   Suppose   T is a closed linear operator with a nonempty resolvent set.

Then there always exist bounded operators commuting with  T.  Let /■—>/(T) be

the usual Dunford-Taylor operational calculus.   It is easy to see that f (T) is a

bounded linear operator commuting with  T  for any admissible function /.
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