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Abstract. We investigate fundamental properties of I-exhaustiveness and I-convergence of real-valued
function sequences, giving some characterizations. Furthermore, we establish new versions of Ascoli and
Helly theorems, giving also applications to measure theory. Finally, we pose an open problem.

1. Introduction

The concept of α-convergence or continuous convergence or stetige Konvergenz of real-valued function
sequences has been known in the literature since the beginning of the last century (see for example [7, 15,
16, 20]). This notion was formulated in the case of an ordered structure by E. Wolk in 1975 ([21]).

In [15] there are some comparisons between the notions and main properties of α-convergence, equicon-
tinuity and exhaustiveness of function sequences. These results have been extended in [9] for the statistical
convergence and in [19] for the I-convergence introduced in [18].

In this paper we prove some properties of (Iα)-convergence, and in particular its relation to α-
convergence. Furthermore, we continue the investigation of I-compactness started in [5], giving a Heine-
type lemma which relates pointwise and uniform I-exhaustiveness and proving some versions of Ascoli
and Helly theorems, which extend earlier results of [12, 15]. Recently some versions of these theorems were
proved in a different setting (see [14]). Also relations with the Alexandroff convergence ([1, 8, 13]) and
strong uniform convergence on finite sets ([4, 8]) and their ideal versions are investigated.

Moreover, some applications of exhaustiveness to measure theory are presented, and in particular we
give the example of a measure sequence, ideal exhaustive but not weakly exhaustive in the classical sense.
Note that in general, in the context of ideal pointwise convergence, the Brooks-Jewett, Nikodým convergence
and Vitali-Hahn-Saks theorems do not hold (see [6]). However, under suitable additional hypotheses, it is
possible to prove some versions of limit theorems even if we require the simpleI-pointwise convergence of
measures. Some results along this line were just proved in [5, 6]. In the last section of this paper we continue
such an investigation, obtaining new limit theorems as applications of the results presented previously.
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2. Modes of ideal convergence

We begin with some basic notions about ideals ofN.

Definition 2.1. a) A family of sets I ⊂ P(N) is called an ideal ofN iff A ∪ B ∈ I whenever A,B ∈ I and for
each A ∈ I and B ⊂ A we get B ∈ I.

b) An ideal I is said to be non-trivial iff I , ∅ andN < I. A non-trivial ideal I is admissible iff it contains
all singletons ofN.

c) Given an ideal I ofN, we call the dual filter associated with I the set F = F (I) := {N \ A : A ∈ I}. A
strictly increasing sequence (nt)t inN is I-thick iff the set {nt : t ∈N} belongs to the dual filter F = F (I).

d) An admissible ideal I of N is a P-ideal iff for any sequence (A j) j in I there are sets B j ⊂ N, j ∈ N,

such that the symmetric difference A j∆B j is finite for all j ∈N and
∞∪
j=1

B j ∈ I (see also [3, 17, 18]).

Remark 2.2. a) Observe that the ideal Ifin of all finite subsets ofN is a P-ideal. Another example of P-ideal
ofN is the ideal Id of all subsets ofN having zero asymptotic density, where the asymptotic density of a
set A ⊂N is defined as

d(A) = lim
n

card(A ∩ {1, . . . ,n})
n

,

(provided that the limit exists). Here the symbol card denotes the cardinality of the set into brackets.
Some further examples of P-ideals can be found, e.g., in [5, 18].
b) When I = Id, the concept of I-thick coincides with that of statistically dense mentioned in [9, 10].

We now define some ideal versions of different type of convergence.
From now on, (X, d) is a metric space, and for all x ∈ X and δ > 0 let us denote by B(x, δ) the set

{z ∈ X : d(z, x) < δ}. For δ > 0, the δ-enlargement of a set A ⊆ X is Aδ :=
∪

x∈A
B(x, δ). We denote by RX, CR(X),

Bd(X) the spaces of all functions f : X→ R, of all continuous functions ofRX, and all bounded functions of
RX (endowed with the sup norm || · ||∞ respectively).

Definition 2.3. a) A sequence (xn)n in X is called I-convergent to x ∈ X iff {n ∈ N : d(xn, x) > ε} ∈ I for any
ε > 0. In this case we write I − limn xn = x (see also [17, 18]).

b) A sequence (xn)n in X I∗-converges to x ∈ X iff there is an I-thick sequence (nt)t ∈ N such that
limt xnt = x.

Note that I∗-convergence of a sequence (xn)n to x always implies I-convergence of (xn)n to x and the
converse is true if and only if I is a P-ideal (see [18]).

c) Let I be an admissible ideal of N, ( fn)n ⊆ RX be a function sequence and x ∈ X. Then ( fn)n is
I-exhaustive at x iff for every ε > 0 there exist a δ > 0 and a set A ∈ I (depending on ε and x) such that
| fn(x) − fn(z)| < ε, whenever n ∈ N \ A and z ∈ B(x, δ). The sequence ( fn)n is said to be I-exhaustive on X iff
( fn)n is I-exhaustive at every x ∈ X (see [5, 19]).

When I = Ifin, the above concept coincides with that of exhaustiveness of a function sequence given in
[15]. If I = Id, then the notion of I-exhaustiveness coincides with that of statistical exhaustiveness given in
[10].

d) A sequence ( fn)n ⊆ RX is uniformly I-exhaustive on X iff for each ε > 0 there are a δ > 0 and a set A ∈ I
(depending on ε) such that | fn(x) − fn(z)| < ε for all n ∈N \ A and d(x, z) < δ.

e) We say that an ( fn)n ⊆ RX is weakly-I-exhaustive at x ∈ X iff for every ε > 0 there is a δ > 0 such that
for each z ∈ B(x, δ) there is a set A ∈ I (depending on ε, x and z) with | fn(x)− fn(z)| < ε for all n ∈N \A. The
sequence ( fn)n is called weakly-I-exhaustive on X iff it is weakly-I-exhaustive at every x ∈ X (see [19]).

When I = Ifin the above notion coincides with that of weak-exhaustiveness of a function sequence
introduced in [15]. If I = Id, then the concept of weak I-exhaustiveness coincides with that of st-weak
exhaustiveness given in [10].

f) A sequence (xn)n in R is I-bounded iff there exists a K > 0 such that {n ∈N : |xn| > K} ∈ I.
A function sequence ( fn)n ⊆ Bd(X) is I-bounded iff there exists a K > 0 such that {n ∈N : || fn||∞ > K} ∈ I.
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g) A sequence ( fn)n ⊆ RX is called (Iα)-convergent to f ∈ RX (shortly fn
Iα→ f ) iff for each x ∈ X and for

every sequence (xn)n in X with I − lim
n

xn = x we have I − lim
n

fn(xn) = f (x) (see [19]).

WhenI = Ifin the above concept coincides with that of (α)-convergence (see [7, 13, 16, 20, 21]). Moreover,
the (Idα)-convergence coincides with the statistically α-convergence given in [10].

h) A sequence ( fn)n ⊆ CR(X) is I-Alexandroff convergent to f ∈ RX (shortly fn
I−Al.→ f ) iff ( fn)n I-converges

pointwise to f ( fn
I−p.w.→ f ) and for every ε > 0 and any set A ∈ P(N) \ I there exist an infinite set

MA = {n1 < n2 < . . . < nk < . . .} ⊆ A and an open coverU = {Un : n ∈N} of X such that for every k ∈N and
x ∈ Uk we have | fnk (x) − f (x)| < ε.

When I = Ifin the above concept coincides with that of Alexandroff convergence (denoted by fn
Al.→ f )

introduced in 1948 by P. S. Alexandroff (see also [1, 8, 13]). When I = Id this notion coincides with that of
statistical Alexandroff convergence introduced in [9, 10]

i) Let F be the family of all finite subsets of X, ( fn)n ⊆ RX, f ∈ RX and I be a fixed admissible ideal

of N. We say that ( fn)n converges I-strongly uniformly to f on F and we write fn
I−T s

F→ f , iff for every ε > 0
and for each B ∈ F there exist a δ > 0 and a set A ∈ I such that for every z ∈ Bδ and n ∈ N \ A we have
| fn(z) − f (z)| < ε.

When I = Ifin the above definition coincides with that of strong uniform convergence of a function
sequence on finite sets (or T s

F convergence) introduced in [4] (see also [9, 10] when I = Id).

Proposition 2.4. With the same notations as above, let I be any fixed admissible ideal, I , Ifin, ( fn)n ⊆ RX, and let
us consider the following statements:

(i) ( fn)n
Iα→ f .

(ii) ( fn)n
α→ f .

(iii) ( fn)n
I−p.w.→ f and ( fn)n is I-exhaustive on X.

(iv) ( fn)n
p.w.→ f and ( fn)n is exhaustive on X.

Then (ii)⇐⇒ (iv), (iv) =⇒ (iii) =⇒(i), (ii) =⇒ (i) and (i); (ii).

Proof. (i) ; (ii): Let y1 , y2 ∈ R and H ∈ I be an infinite set. Since I , Ifin, such a H does exist. Set
fn(x) = y1 for all x ∈ X and n ∈N \H, and fn(x) = y2 for each x ∈ X and n ∈ H. Set f (x) = y1 for any x ∈ X. It
is not hard too see that (i) is fulfilled, but for any sequence (xn)n in X we get that limn fn(xn) does not exist
in the usual sense.

(ii)⇐⇒ (iv): See [15, Theorem 2.6].
(iv) =⇒ (iii): It is an immediate consequence of definitions of I-pointwise convergence and I-exhausti-

veness of a function sequence.
(iii) =⇒ (i): See [19, Theorem 2.5].
(ii) =⇒ (i): Immediate by definition of (Iα)-convergence.

Remark 2.5. The implication (i) =⇒ (iii) was previously proved in [19, Theorem 2.7] for ideals consisting
of all subsets ofNwhich intersect only a finite number of elements of a given infinite partition ofN.

The next proposition is an extension of [15, Corollary 3.2.8] to the context of metric spaces and ideal
convergence.

Proposition 2.6. Let I be any admissible ideal, let ( fn)n
I−p.w.→ f and ( fn)n be I-exhaustive on X. Then f is

continuous and ( fn)n I-converges uniformly to f on every compact subset of X.

Proof. The continuity of f follows from [19, Proposition 2.3]. Let C ⊂ X be any compact set and fix arbitrarily
ε > 0 and x ∈ C. Since ( fn)n is I-exhaustive at x and f is continuous at x, in correspondence with ε and x
there exist Λx ∈ I and an open ball Bx centered at x, with

| fn(z) − fn(x)| ≤ ε/3 and | f (z) − f (x)| ≤ ε/3 (1)
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for each n ∈ N \ Λx and z ∈ Bx. Let us consider the family {Bx : x ∈ C}. Since C is compact, there exists a

finite subfamily {Bx1 , Bx2 , . . ., Bxp }, covering C. Since ( fn)n
I−p.w.→ f , then in correspondence with ε and x1, x2,

. . ., xp there exists Λ0 ∈ Iwith

| fn(x j) − f (x j)| ≤ ε/3, j = 1, . . . , p (2)

whenever n ∈N \Λ0. Set Λ := Λ0
∪(∪p

j=1Λx j

)
. Then Λ ∈ I.

Now, choose arbitrarily z ∈ C: there exists j ∈ {1, 2, . . . , p} such that z ∈ Bx j . Then, from (1) and (2), for
every n ∈N \Λwe get

| fn(z) − f (z)| ≤ | fn(z) − fn(x j)| + | fn(x j) − f (x j)| + | f (x j) − f (z)| ≤ ε.

This ends the proof.

Proposition 2.7. Let (X, d) be a metric space, ( fn)n ⊆ RX, f ∈ RX and I be an admissible ideal of N such that

fn
I−p.w.→ f .

Then the following are equivalent:

(i) ( fn)n is weakly I-exhaustive on X.

(ii) f is continuous on X.

Proof. (i)⇒ (ii): See [19, Proposition 2.14].
(ii)⇒ (i): Let x ∈ X and ε > 0. Since f is continuous at x there is a δ > 0 such that for every z ∈ B(x, δ),

| f (z) − f (x)| < ε
3
. (3)

But fn
I−p.w.→ f , which means that

fn(z) I→ f (z), (4)

fn(x) I→ f (x). (5)

By (4) there exists a set A1 ∈ Iwith

| fn(z) − f (z)| < ε
3
, for all n < A1. (6)

By (5) there exists a set A2 ∈ Iwith

| fn(x) − f (x)| < ε
3
, for all n < A2. (7)

Let A = A1 ∪ A2 ∈ I. Then for every n < A1 ∪ A2 by (3), (6), (7) and the triangle inequality we get that:

| fn(z) − fn(x)| ≤ | fn(z) − f (z)| + | fn(x) − f (x)| + | f (z) − f (x)|
<
ε
3
+
ε
3
+
ε
3
= ε. (8)

By (8) we get that to every z ∈ B(x, δ) there corresponds a set A ∈ I such that | fn(z)− fn(x)| < ε, for all n < A,
and the definition of weak-I-exhaustiveness at x is satisfied. Since x ∈ X was chosen arbitrarily the result
follows.
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Remark 2.8. The notion of weakI-exhaustiveness is strictly weaker than that ofI-exhaustiveness. Indeed,
let I be any admissible ideal ofN, R be endowed with the usual metric and fix an arbitrary point x0 ∈ R.
We consider the sequence fn : R→ R, n ∈N, defined as follows:

fn(x) =


1

2n , x ≤ x0

n, x = x0 +
1
n

1
n , x > x0, x , x0 +

1
n .

Then obviously ( fn)n converges I-pointwise to 0, and thus by Proposition 2.7 ( fn)n is weakly I-exhaustive
at x0. But taking ε = 1/4 it is not hard to see that ( fn)n is not I-exhaustive at x0.

Remark 2.9. Propositions 2.6 and 2.7 were obtained independently in [10] for the statistical case. We thank
Prof. Lj.D.R. Kočinac who gave us the preprint of [10]. Taking it into account we formulate the following
Propositions 2.10, 2.11, 2.12 and 2.13.

The next result is a consequence of Proposition 2.7 and [8, Theorem 2.9] and strengthens [10, Theorem
4.3].

Proposition 2.10. Let (X, d) be a metric space, f ∈ RX, ( fn)n ⊆ CR(X) pointwise convergent to f and I be an
admissible ideal ofN. Then the following are equivalent:

(i) ( fn)n is weakly-I-exhaustive on X

(ii) f is continuous on X

(iii) fn
Al.→ f

(iv) fn
T s
F→ f .

The following result is a strengthening of [10, Proposition 4.4] to the general ideal context.

Proposition 2.11. Let (X, d), ( fn)n, f be as above such that fn
I−p.w.→ f and ( fn)n is I-exhaustive on X. Then

fn
I−T s

F→ f .

The following result is a generalization of [10, Propositions 4.5 and 4.7].

Proposition 2.12. Let ( fn)n ⊆ CR(X) and f ∈ RX be such that fn
I−T s

F→ f . Then fn
I−p.w.→ f and ( fn)n is weakly-I-

exhaustive on X.

Another kind of ideal convergence which preserves continuity of the limit function is the ideal Alexan-
droff convergence (see Def. 2.3 h)). The following proposition strengthen [10, Theorem 4.8], which was
proved in the particular case of the statistical Alexandroff convergence.

Proposition 2.13. Let ( fn)n ⊆ CR(X), f ∈ RX and I be an admissible ideal ofN. If fn
I−Al.→ f , then f is continuous.

3. Compactness and Ascoli-type theorems

We now give the notions of ideal closure and (sequential) compactness with respect to the ideal conver-
gence (see also [5, Definitions 3.1]).

Definition 3.1. Let (X, d) be a metric space.
a) For F ⊂ X and u ∈ X, we say that u is in the I-closure of F iff there is a sequence (xn)n in F such that

I − limn xn = u.
b) A subset F ⊂ X is said to beI-sequentially compact iff every sequence (xn)n in F contains anI-convergent

subsequence (xnk )k with I − limk xnk ∈ F.
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We now recall the following proposition ([5, Proposition 2.5 b)]).

Proposition 3.2. Let I be any admissible ideal and (xn)n be a sequence in R with I − lim
n

xn = x ∈ R. Then there
exists a subsequence (xnq )q of (xn)n, such that lim

q
xnq = x in the usual sense.

Remark 3.3. An immediate consequence of Proposition 3.2 is that the I-closure of a set coincides with its
ordinary closure.

The following result was given in [5, Proposition 3.2].

Proposition 3.4. Let I be any admissible ideal ofN. Then a subset K of X is sequentially compact if and only if it is
I-sequentially compact.

Corollary 3.5. A subset K of X is relatively I-sequentially compact (that is its I-closure is I-sequentially compact)
iff it is relatively sequentially compact.

Proof. It is an immediate consequence of Remark 3.3 and Proposition 3.4.

The following lemma for exhaustive function sequences will be useful to prove our version of the Ascoli
theorem.

Lemma 3.6. Suppose that X is a compact metric space, I is a P-ideal and ( fn)n ⊆ RX is I-exhaustive on X. Then
( fn)n is uniformly I-exhaustive on X.

Moreover, if I is a P-ideal, then there exists an I-thick sequence (nt)t inN such that ( fnt )t is uniformly exhaustive
on X.

Proof. Fix arbitrarily ε > 0. Since ( fn)n isI-exhaustive on X, by hypothesis we know that for every x ∈ X and
ε > 0 there are D = D(x, ε) ∈ I and η = η(x, ε) > 0 with | fn(x) − fn(z)| < ε for each z ∈ X with d(x, z) < η(x, ε)
and n ∈N \D(x, ε). For any x ∈ X set

C(x) := {z ∈ X : d(x, z) < η(x, ε/2)};

B(x) := {z ∈ X : d(x, z) <
1
2
η(x, ε/2)}.

The set B := {B(x) : x ∈ X} is an open covering of X. Since X is a compact metric space, B contains a finite
sub-covering of X, say B′ := {B(x1), . . . ,B(xq)}, where q ∈N.

Let now δ(ε) :=
1
2

min
j∈{1,...,q}

η(x j, ε/2), A(ε) :=
q∪

j=1

D(x j, ε/2), and fix arbitrarily x, z ∈ X with d(x, z) < δ(ε).

There exists j ∈ {1, 2, . . . , q}with x ∈ B(x j) ⊂ C(x j). It is not difficult to check that z ∈ C(x j) and that A(ε) ∈ I,
since I is closed under finite unions.

Let now n ∈N \ A(ε): then n ∈N \D(x j, ε/2) for all j ∈ {1, . . . , q}. Hence,

| fn(x) − fn(x j)| < ε/2, | fn(z) − fn(x j)| < ε/2,

and thus
| fn(x) − fn(z)| ≤ | fn(x) − fn(x j)| + | fn(z) − fn(x j)| < ε/2 + ε/2 = ε

by the above inequalities. So we get uniform I-exhaustiveness of ( fn)n.
We now turn to the final part. By uniform I-exhaustiveness of ( fn)n, in correspondence with j ∈N there

exist A j ∈ I and δ j > 0 with | fn(x) − fn(z)| < 1/ j whenever d(x, z) < δ j and n ∈ N \ A j. Since I is a P-ideal,
by [3, Proposition 1] there is a set A∞ ∈ I such that A j \ A∞ is finite for all j ∈N.

Arguing similarly as in [3, Proposition 3], it is possible to prove that there exists an I-thick sequence
(nt)t inN such that for every ε > 0 there are t ∈ N and δ > 0 with the property that | fnt (x) − fnt (z)| < ε for
any x, z ∈ X with d(x, z) < δ and for all t > t. Thus the assertion of Lemma 3.6 follows.
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We now prove our version of the Ascoli theorem (see [2, 7, 13, 15, 16]) in the context of P-ideals, which
is an extension of [15, Theorem 3.1.1] to the ideal setting.

Theorem 3.7. Let X be a compact metric space, I be a P-ideal, and ( fn)n ⊆ Bd(X). If the set { fn : n ∈ N} is
I-bounded and the sequence ( fn)n is I-exhaustive on X, then ( fn)n contains a uniformly convergent subsequence.
Moreover, the set { fn : n ∈N} is sequentially compact in Bd(X).

Proof. Since ( fn)n is I-exhaustive on X, by Lemma 3.6 there exists an I-thick sequence (nt)t inN, such that
( fnt )t is uniformly exhaustive on X. Let B∗ := {nt : t ∈N}. From I-thickness it follows that B∗ belongs to the
dual filter F (I). Since ( fn)n is I-bounded, then there exists a b > 0 such that A∗ := {n ∈ N : ∥ fn∥∞ > b} ∈ I.
From this it follows that, if B0 := B∗ ∩ (N \ A∗), then B0 ∈ F (I) and the sequence ( fn)n∈B0 is bounded.

Since X is compact, then X is separable (see [13]). Let {xh : h ∈ N} be a countable dense subset of X.
The boundedness of the sequence ( fn)n∈B0 implies that the sequence ( fn(x1))n∈B0 is bounded inR. Thus there
exists a set K1 ⊂ B0, K1 =: {k(1)

n : n ∈N}, such that the sequence ( fk(1)
n

(x1))n is convergent in the ordinary sense
to a real number y1.

Proceeding by induction, arguing analogously as in the classical case, we obtain that for all h ∈N there
exists a set {k(h)

n : n ∈N}, with the property that

{k(h+1)
n : n ∈N} ⊂ {k(h)

n : n ∈N} ⊂ B0

and such that the sequence ( fk(h)
n

(xh))n is convergent (in the usual sense) to a real number yh.
For all h ∈N, set 1h(x) := fk(h)

h
(x). Note that

lim
h
1h(x j) = y j for all j ∈N. (9)

We claim that the sequence (1k)k is uniformly Cauchy in the ordinary sense. By virtue of the classical results,
for each δ > 0 there exists a finite number s = s(δ) of elements of X, say x j1 , . . ., x js , such that

X =
s∪

r=1

B(x jr , δ). (10)

Fix arbitrarily x ∈ X and ε > 0, and let δ > 0 satisfy the condition of uniform exhaustiveness of the sequence
( fn)n∈B0 . So there exists r ∈ {1, 2, . . . , s(δ)}with

d(x, x jr ) < δ. (11)

By (9), the sequence (1k(x jr ))k is convergent to y jr for each r ∈ {1, . . . , s(δ)}, so there is a positive integer ν
such that

|1k(x jr ) − 1h(x jr )| < ε (12)

whenever h, k ≥ ν and r = 1, . . . , s(δ). Note that the natural number ν can be chosen independently of the
considered point x. Furthermore, thanks to uniform exhaustiveness of the sequence ( fn)n∈B0 and (11), the
integer ν can be chosen with

|1k(x) − 1k(x jr )| < ε (13)

for all k ≥ ν. By (12) and (13) we obtain:

|1k(x) − 1h(x)| ≤ |1k(x) − 1k(x jr )| + |1k(x jr ) − 1h(x jr )| +
+ |1h(x) − 1h(x jr )| (14)

whenever h, k ≥ ν. By (14) we get that the sequence (1k)k is uniformly Cauchy, and hence (1k)k is uniformly
convergent. From this it is easy to deduce sequential compactness of the set { fn : n ∈ N} in Bd(X). This
completes the proof.
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We now prove a Helly-type theorem, which is an extension of [14, Theorem 5.1], where a similar result
is proved in a different context.

Theorem 3.8. Let I be any admissible ideal onN, [a, b] be a compact subinterval of the real line and (1n)n ⊆ R[a,b]

be an equibounded sequence of monotone functions. Assume that the set (1n(x))n is relatively I-sequentially compact
for any x ∈ [a, b].

Then the sequence (1n)n admits a subsequence (hn)n, convergent pointwise to a function h.

Proof. It is an easy consequence of Corollary 3.5 and [12, Helly Theorem].

4. Some applications of exhaustiveness to measures

Let G be any infinite set and Σ ⊂ P(G) be a σ-algebra. We denote by ba(Σ) the set of all real-valued
finitely additive bounded measures onΣ and by ca(Σ) the linear subspace of ba(Σ) consisting of all σ-additive
measures on Σ.

We now give some preliminary definitions, and present the notions of ideal exhaustiveness and ideal
α-convergence in the context of measures.

Definition 4.1. a) For a positiveλ ∈ ba(Σ) and A,B ∈ Σ the (pseudo)-λ-distance between A and B is defined
by dλ(A,B) := λ(A∆B), where ∆ denotes the symmetric difference.
A measure µ ∈ ba(Σ) is λ-continuous at E ∈ Σ iff it is continuous at E on (Σ, dλ). We say that µ is
λ-continuous on Σ iff µ is λ-continuous at every E ∈ Σ. Observe that µ is λ-absolutely continuous iff µ
is λ-continuous at ∅.

b) Let I be any admissible ideal ofN. A sequence (µn)n in ba(Σ) is I-exhaustive at E ∈ Σ iff for each ε > 0
there are a δ > 0 and a set A ∈ I such that |µn(E) − µn(F)| < ε for every F ∈ Σ with dλ(E,F) < δ and for
all n ∈N \ A. We say that (µn)n is I-exhaustive on Σ iff it is I-exhaustive at E, for every E ∈ Σ.

c) A sequence (µn)n in ba(Σ) is weakly-I-exhaustive at E ∈ Σ iff for every ε > 0 there is a δ > 0 such that
for every F ∈ Σ with dλ(E,F) < δ there is a set A ∈ I with |µn(E) − µn(F)| < ε for all n ∈ N \ A. We say
that (µn)n is weakly-I-exhaustive on Σ iff it is weakly-I-exhaustive at every E ∈ Σ.

d) We say that (µn)n (Iα)-converges to µ at E ∈ Σ iff for every sequence (En)n inΣwithI− limn dλ(En,E) = 0
we get I− limn µn(En) = µ(E). The sequence (µn)n (Iα)-converges to µ on Σ iff it (Iα)-converges to µ at
every E ∈ Σ.

Remark 4.2. Observe that Propositions 2.4 and 2.7 can be formulated and proved similarly in the measure
setting by using [5, Theorem 4.16].

Proposition 4.3. Let I be any fixed admissible ideal, I , Ifin, Σ be a σ-algebra, λ ∈ ba(Σ) non-negative, (µn)n be a
sequence in ba(Σ) and µ ∈ba(Σ) (in the sense of Definitions 4.1), and let us consider the following statements:

(i) (µn)n is (Iα)-convergent to µ
(ii) (µn)n is (α)-convergent to µ
(iii) (µn)n I-converges pointwise to µ and (µn)n is I-exhaustive

on Σ
(iv) (µn)n converges pointwise to µ and (µn)n is exhaustive on Σ.
Then (ii)⇐⇒ (iv), (iv) =⇒ (iii) =⇒(i), (ii) =⇒(i) and (i); (ii).

Proof. (i); (ii): Let Σ = P(N), λ(A) :=
∑
n∈A

1
2n , A ∈ Σ, and H := {q1, . . . , qn, . . .} ∈ I be an infinite set. Since

I , Ifin, such a H does exist. Set µ(A) = 0 for all A ∈ Σ, and µi(A) = 0 whenever A ∈ Σ and i ∈ N \H. For
each n ∈ N, let δn be the Dirac measure defined by setting δn(A) = 1 if A ∈ Σ and n ∈ A, and δn(A) = 0 if
A ∈ Σ and n < A. Let E = ∅ and En = {n}, n ∈ N. We get limn λ(En) = 0, but δn(En) = 1 for all n ∈ N. Set
µqn (A) = δn(A) for every n ∈ N and A ∈ Σ. It is not hard to see that (i) is fulfilled, but limn µn(En) does not
exist in the ordinary sense.

The other parts can be proved similarly as in Proposition 2.4.
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Remark 4.4. Implication (i)⇒ (iii) was proved in [5, Theorem 4.16] for ideals consisting of all subsets ofN
which intersect a finite number of elements of a given infinite partition ofN.

Note that, when the ideal involved I , Ifin satisfies this property, the sequence µn, n ∈ N, defined in
Proposition 4.3, (i); (ii), is an I-exhaustive measure sequence, by virtue of [5, Theorem 4.16]. However,
this sequence is not Ifin-exhaustive, and it is even not weakly-Ifin-exhaustive at ∅. Indeed, observe that
for every ϑ > 0 there is a cofinite set E ⊂ N, with the property that λ(E∆∅) = λ(E) < ϑ. Note that for
every cofinite subset M ⊂ N it is possible to find an integer n large enough with qn ∈ M ∩ E ∩ H, so that
1 = δn(E) = µqn (E).

Similarly as in Proposition 2.7 we get the following

Proposition 4.5. Let I be an admissible ideal ofN, (µn)n, µ and λ be as above such that (µn)n I-converges setwise
to µ on Σ. Then the following are equivalent:

(i) (µn)n is weakly-I-exhaustive on Σ

(ii) µ is λ-continuous on Σ.

Problem 4.6. Find a pseudometric space (Σ, dλ), a sequence (µn)n in ba(Σ), an admissible ideal I of N and a set
E ∈ Σ such that (µn)n is weakly-I-exhaustive at E but (µn)n is not I-exhaustive at E.
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[8] A. Caserta, G. Di Maio,L. Holá, Arzelà’s theorem and strong uniform convergence on bornologies, J. Math. Anal. Appl. 371 (2010)

384–392.
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