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Abiotic and biotic stresses limit the growth and productivity of plants. In the current

global scenario, in order to meet the requirements of the ever-increasing world

population, chemical pesticides and synthetic fertilizers are used to boost agricultural

production. These harmful chemicals pose a serious threat to the health of humans,

animals, plants, and the entire biosphere. To minimize the agricultural chemical footprint,

extracts of Ascophyllum nodosum (ANE) have been explored for their ability to improve

plant growth and agricultural productivity. The scientific literature reviewed in this article

attempts to explain how certain bioactive compounds present in extracts aid to improve

plant tolerances to abiotic and/or biotic stresses, plant growth promotion, and their

effects on root/microbe interactions. These reports have highlighted the use of various

seaweed extracts in improving nutrient use efficiency in treated plants. These studies

include investigations of physiological, biochemical, and molecular mechanisms as

evidenced using model plants. However, the various modes of action of A. nodosum

extracts have not been previously reviewed. The information presented in this review

depicts the multiple, beneficial effects of A. nodosum-based biostimulant extracts

on plant growth and their defense responses and suggests new opportunities for

further applications for marked benefits in production and quality in the agriculture and

horticultural sectors.

Keywords: Ascophyllum nodosum, biostimulants, plant growth, stress tolerance, disease management

INTRODUCTION

The global effects of negative climatic changes have manifested as desertification, increased
atmospheric CO2 and temperature, soil salinization, and nutrient imbalances (e.g., mineral toxicity
and deficiency) and have caused dramatic effects on agricultural production and the quality of crops
(dos Reis et al., 2012). Such abiotic stresses have reduced the growth, development, productivity,
and quality of plants and, in extreme conditions, resulted in death and local extinction of species
(Matesanz et al., 2010; Anderson et al., 2011). Abiotic stresses are reported to have led to an
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average yield loss greater than 50% in most crops (Boyer, 1982;
Vinocur and Altman, 2005). Rice yields declined 15% per 1◦C
rise in mean growing season temperature, measured from 1979
to 2003 (Peng et al., 2004). Additionally, changing climatic
conditions can increase plant susceptibility to pathogens (West
et al., 2012; Elad and Pertot, 2014), further increasing adverse
growing conditions for plants.

The global amount of cultivable land available for agriculture
is continuously shrinking due to urbanization and the adverse
effects of climate change. In order to meet the ever-increasing
demands of the growing human population, world food
production must double by the year 2050 (Qin et al., 2011; Voss-
Fels and Snowdon, 2016). To address the pressures associated
with increasing agricultural productivity to subsequently meet
the rising demands for food, producers have turned to excessive
applications of synthetic (chemical) fertilizers and pesticides.
These harmful chemicals pose both short- and long-term threats
to the health of the entire biosphere (Damalas and Koutroubas,
2016). Therefore, an effective, biological-based alternative is
required in order to reduce dependency on synthetic fertilizers
and pesticides. Plant biostimulants are a new class of crop input,
offering a potential alternative to traditional, agro-chemical
inputs, and, in most cases, can reduce the application rates of
synthetic fertilizers and pesticides by enhancing their efficacy
(Calvo et al., 2014; Van Oosten et al., 2017; Yakhin et al., 2017).

According to the European Biostimulants Industry Council
(EBIC), “plant biostimulants contain substance(s) and/or micro-
organisms whose function when applied to plants or the
rhizosphere is to stimulate natural processes to enhance/benefit
nutrient uptake, nutrient efficiency, tolerance to abiotic stresses,
and crop quality”1. The concept of biostimulants has been
researched since 1933 (Yakhin et al., 2017) but has gained
attention in more recent years as a potential solution to mitigate
the negative impacts of a changing climate on agriculture. It
should be noted that seaweed extracts are but one of the inputs
that are classed as biostimulants.

Seaweeds are multi-cellular, macroscopic organisms found
in coastal, marine ecosystems and are a rich source of
polysaccharides, polyunsaturated fatty acids (PUFAs), enzymes,
and bioactive peptides among others (Courtois, 2009; De
Jesus Raposo et al., 2013; Ahmadi et al., 2015; Shukla et al.,
2016; Okolie et al., 2018). In particular, inter-tidal seaweeds
may be exposed to unfavorable conditions including extreme
variations in temperature, salinity, and light. Seaweeds, as
compared to terrestrial organisms, produce different stress-
related compounds that are essential for their survival in these
environments (Shukla et al., 2016). As such, selected seaweed
resources are important sources of plant biostimulants and
are widely used to promote agricultural productivity (Khan
et al., 2009; Sharma et al., 2014; du Jardin, 2015; Van Oosten
et al., 2017). The most widely researched seaweed, used as a
source for industrial and commercial plant biostimulants, is
the brown, inter-tidal seaweed Ascophyllum nodosum. Various
commercial extracts from A. nodosum have been demonstrated
to improve plant growth, mitigate some abiotic and biotic

1www.biostimulants.eu

stresses while also improving plant defenses by the regulation
of molecular, physiological, and biochemical processes. Of all
sources of seaweed-based biostimulants, those manufactured
fromA. nodosum are perhaps the best studied with variousmodes
of action being proposed (Figure 1). This review focuses on
accumulating current knowledge of the bioactive compounds
presents in A. nodosum extracts and their modes of action
in promoting plant growth in the presence of abiotic and
biotic stresses.

MODES OF EXTRACTION

Various commercial entities utilize different, proprietary
extraction (hydrolysis) procedures for the production of
seaweed-based biostimulants in either liquid or soluble powder
form (Kadam et al., 2013; Michalak and Chojnacka, 2015).
Different extraction methods have been cited in the literature
using both dry and wet biomass (Chojnacka et al., 2015; Michalak
and Chojnacka, 2015; Bleakley and Hayes, 2017). The bioactivity
and composition of A. nodosum biostimulants are not all
identical and are indeed dependent on the extraction methods
employed (Goñi et al., 2016).

Water-Based Extractions
The name of this extraction method is indicative of the process:
biostimulatory compounds are harvested by blending and
hydrating dried seaweed meal in the presence of water (Sharma
et al., 2014). The solid residues are separated using different
filtration methods based on the end use of the biostimulant.
Biostimulants prepared using this method are reportedly rich
in phytohormone-like activity (Blunden and Wildgoose, 1977;
Crouch and van Staden, 1993).

Acid Hydrolysis
In this method, freshly chopped Ascophyllum biomass was
treated with sulfuric acid or hydrochloric acid at 40–50◦C
for 30 min (Sharma et al., 2014). It was reported that acid
hydrolysis removed complex phenolic compounds and increased
de-polymerization of polysaccharides (Flórez-Fernández et al.,
2018). This method is generally used for the extraction of fucose-
containing sulfated polysaccharides (Ale et al., 2012; Flórez-
Fernández et al., 2018). Sulfated algal polysaccharides are a
class of bioactive compounds in algal extracts that promote
plant growth (Fry et al., 1993; Paulert et al., 2009; Shukla
et al., 2016). Marais and Joseleau (2001) purified fucoidans from
A. nodosum by acid hydrolysis. AZAL5 R© is a commercially
available biostimulant manufactured from A. nodosum, which is
extracted through acid hydrolysis (Jannin et al., 2013).

Alkaline Hydrolysis
Alkaline hydrolysis is perhaps the most widely used industrial
hydrolysis process for the production of an extract from
A. nodosum (Craigie, 2011; Sharma et al., 2014; Flórez-
Fernández et al., 2018). This method involves extracting
A. nodosum biomass in NaOH or KOH solutions, at “relatively
low” temperatures, between 70 and 100◦C. This process
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FIGURE 1 | Ascophyllum nodosum extract (ANE) improves the growth of several crops by different modes of action.

breaks down complex polysaccharides into smaller, lower-
molecular-weight oligomers. The alkali treatment ofAscophyllum
biomass produces novel compounds that are not initially
present within the seaweed biomass. These compounds are
a result of the interaction between the hydrolysis chemicals
(KOH) and constituents of the brown seaweed tissues—the
result of degradation, rearrangement, condensation, and base-
catalyzed synthetic reactions (Craigie, 2011). Alkali treatments
of brown seaweed biomass also act on polyphenols in the
tissue to produce a complex array of reaction products, which
are dependent on the hydroxylation pattern of the original
polyphenol (Craigie, 2011). Maxicrop R© (United States), Seasol R©

(Australia), and Acadian R© (Canada) are major commercial
biostimulants that are manufactured using an alkali extraction
process of Ascophyllum.

Microwave-Assisted Extraction
Microwave-assisted extraction (MAE) is suggested to be
an eco-friendly extraction method for the manufacture of
biostimulants from algal biomass, as compared to other solvent-
based extraction procedures (Michalak et al., 2015b). In this
method, slurry prepared from dried algal biomass, in either
water or microwave-supported solvent, is heated by microwave
energy to extract bioactive compounds (Magnusson et al.,
2017; Flórez-Fernández et al., 2018). Microwave heating is
based on dipole polarization and the ionic conduction of
the seaweed-derived bioactive compounds into the solvent
(Lucchesi et al., 2004; Flórez et al., 2015). This extraction
method is favored for its efficient use of time and materials
given the resultant selective extraction of carbohydrates,
proteins, and other fractions (Eskilsson and Björklund,
2000; Routray and Orsat, 2012). Additionally, this extraction
method was found to improve the efficiency of extraction by
controlling sub-critical properties of the solvent (Routray and

Orsat, 2012; Magnusson et al., 2017). MAE has been used
to extract fucoidan, sodium alginate, sugars, and phenolic
compounds from A. nodosum (Yuan and Macquarrie, 2015a,b;
Yuan et al., 2018).

Ultrasound-Assisted Extraction
Ultrasound-assisted extraction (UAE) is reported as another
eco-friendly method for obtaining bioactive compounds from
algal biomass. Ultrasound waves are high frequency (greater
than 20 kHz), which transmit through solid, liquid, and gas
media by rarefactions (largest distance between wave particles)
and compression (smallest distance between wave particles)
(Kadam et al., 2013). Ultrasound waves were reported to facilitate
the release of bioactive compounds from a variety of seaweed
biomass by cavitation within the extraction solvent (Kadam et al.,
2013, 2015a). When cavitation (i.e., the formation and eventual
implosion of empty spaces or bubbles) occurs near seaweed cell
walls, the transfer of compounds from the cell to the solvent
is facilitated following cellular breakdown (Kadam et al., 2013,
2015a). UAE is a cost-effective and efficient method of extraction
when compared to other extraction protocols based on the
limited equipment needed and the vast array of solvents that can
be used (Kadam et al., 2013). Kadam et al. (2015b, c) optimized
the extraction procedure for the isolation of numerous bioactive
compounds, including laminarin from both A. nodosum and
Laminaria hyperborea.

Enzyme-Assisted Extraction
Enzyme-assisted extraction (E-AE) is an eco-friendly and
efficient extraction method as there are no solvents required by
the process (Kadam et al., 2013). The efficiency of the extraction
lies in the enzymatic degradation of the complex molecules
present in the seaweed cell walls (Wijesinghe and Jeon, 2012;
Kadam et al., 2013). Enzymes are chosen strategically based
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on specific molecules digested from seaweed biomass in
order to release the bioactive compounds (Wijesinghe
and Jeon, 2012). Various carbohydrate-degrading enzymes
and proteases such as Viscozyme, Cellucast, Termamyl,
Ultraflo, carrageenanase, agarase, xylanase, Kojizyme,
Neutrase, Alcalase, and Umamizyme are commonly used
for the extraction of bioactive compounds from seaweeds
(Ahn et al., 2004; Heo et al., 2005; Wijesinghe and Jeon,
2012; Kadam et al., 2013). The application of hydrolytic
enzymes converts the water-insoluble chemical components
of selected seaweed biomass to water-soluble products, thus
eliminating the problem of water solubility of bioactive
compounds (Wijesinghe and Jeon, 2012; Kadam et al., 2013).
To date, there are no publications regarding the extraction
of bioactive compounds from A. nodosum using E-AE. It
has been reported that E-AE extracts of other seaweeds (i.e.,
Ecklonia cava, Ishige okamurae, Sargassum fulvellum, S. horneri,
S. coreanum, S. thunbergii, and Scytosiphon lomentaria) showed
higher antioxidative activity, as compared to commercial
antioxidants (Heo et al., 2005). In the future, this method
might be applied for the extraction of bioactive compounds
from A. nodosum.

Super-Critical Fluid Extraction
The super-critical fluid extraction (SFE) method is yet another
eco-friendly method of bioactive extraction from seaweeds, based
on the lack of toxic solvents required for extraction (Herrero
et al., 2010; Michalak et al., 2016b). This method protects
the parent seaweed material against thermal or biochemical
degradation of the bioactive compounds (Herrero et al., 2010;
Michalak et al., 2015a; da Silva et al., 2016). Bioactive compounds
are extracted in the presence of super-critical organic solvents
(often CO2, based on its critical conditions, availability, and
high diffusivity when mixed with ethanol; Herrero et al., 2010;
Kadam et al., 2013). The higher penetration of the solvent
into the seaweed material during SFE results in better mass
transfer between solvent phases (Michalak et al., 2015a; Messyasz
et al., 2018). Michalak et al. (2016a) showed that super-critical
extracts of A. nodosum enhanced the growth and development
of winter wheat.

Pressurized Liquid Extraction
Pressurized liquid extraction (PLE) was first reported by
Richter et al. (1996). In this method, extraction was carried
out under high pressure (3.5–20 MPa) and temperature (50–
200◦C) (Kadam et al., 2013). The high pressure elevated the
temperature of solvents above their boiling point, facilitating
bioactive compound extraction by increasing the solubility of
complex algal molecules and increasing mass transfer rate
(Kadam et al., 2013; Michalak and Chojnacka, 2015). PLE is a
faster extraction method compared to other methods; however,
Tierney et al. (2013) showed that the application of high
temperatures (50–200◦C) and pressures (500–3,000 psi) during
extraction did not enhance the antioxidant activities of extracts
from A. nodosum, Pelvetia canaliculata, Fucus spiralis, and Ulva
intestinalis, as compared to extracts from the traditional solid
liquid extraction method.

In addition to the aforementioned techniques, different
extraction methods were also used in combination for extracting
protein from A. nodosum extract. Kadam et al. (2017) combined
ultrasound pretreatment with acid and alkali hydrolysis and,
more simply, combined acid and alkali hydrolysis to extract
protein fromA. nodosum. The initial treatment of theA. nodosum
with acid followed by a treatment with alkali was found to
be the most efficient method among all methods investigated
(Kadam et al., 2017). Similarly, combining enzymatic hydrolysis
with alkaline extraction also increases the efficiency of protein
extraction in Palmaria palmata (Maehre et al., 2016). The
combination of extraction methods has not yet been employed
for the extraction of biostimulants from A. nodosum for plant
growth, creating opportunities for the future.

Ascophyllum nodosum

Ascophyllum nodosum is commonly known as rockweed, and
is abundantly distributed throughout the northwest coast
of Europe and the northeastern coast of North America
(Moreira et al., 2017). Craigie (2011) reviewed the unique
characteristics of A. nodosum as a prominent source for the
production and synthesis of biostimulants. One unique feature
of A. nodosum is its mutualistic association with the fungal
endophyte Mycosphaerella ascophylli (Fries and Thorén-Tolling,
1978; Fries, 1979; Garbary and Gautam, 1989; Craigie, 2011).
M. ascophylli protects A. nodosum from desiccation (Garbary
and London, 1995). Further, results published by Prithiviraj et al.
(2011) showed that M. ascophylli-derived fungal sterols present
in the ethyl acetate extract of A. nodosum mitigated salinity
stress in plants.

Based on the review published by Van Oosten et al. (2017),
nearly 47 companies worldwide are currently involved in
manufacturing extracts from A. nodosum for agricultural and
horticultural applications. A. nodosum is a rich source of various
bioactive phenolic compounds such as phlorotannins and unique
polysaccharides, i.e., alginic acid (28%), fucoidans (11.6%),
mannitol (7.5%), and laminarin (4.5%) (Ragan and Jensen,
1977; Holdt and Kraan, 2011; Yuan and Macquarrie, 2015a;
Moreira et al., 2017). Commercially dried andmilled,A. nodosum
meal is reported to contain carbohydrate (44.7 ± 2.1%), ash
(18.6 ± 0.9%), protein (5.2 ± 0.2%), lipids (3.0 ± 0.1%),
phenolics (1.4 ± 0.2%), and other compounds (13.6%) (Yuan
and Macquarrie, 2015b; Moreira et al., 2017). Some of these
compounds showed considerable seasonal variation (Parys et al.,
2009; Craigie, 2011). The bioactive compounds present in
A. nodosum were extracted and utilized to promote plant growth
according to Van Oosten et al. (2017).

ANE IMPROVES FRUIT QUALITY, PLANT
GROWTH, AND YIELD

Commercial, hydrolyzed extracts from A. nodosum (ANE) have
been repeatedly demonstrated to exhibit growth-stimulating
activities in treated plants, when applied repeatedly at very low

Frontiers in Plant Science | www.frontiersin.org 4 May 2019 | Volume 10 | Article 655

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Shukla et al. A. nodosum Extract Improves Stress Tolerance

doses, and are referred to as “biostimulants” (Sharma et al., 2014;
Van Oosten et al., 2017). Table 1 lists publications on the growth-
promoting activities of commercial extracts of A. nodosum. The
applications of different extracts of A. nodosum are repeatedly
demonstrated to improve the growth and productivity of crops
through various modes of action (Figure 1).

Fruit Quality
A foliar spray of A. nodosum improved fruit quality of
watermelons, apples, olives, and grapes (Basak, 2008; Chouliaras
et al., 2009; Abdel-Mawgoud et al., 2010; Frioni et al., 2018). Foliar
application of ANE also increased the ripening rate of grapes
(Norrie et al., 2002; Sabir et al., 2014; Frioni et al., 2018) and
increased oil content and consistency of fruit maturation in olive
(Chouliaras et al., 2009).

Nutrient Acquisition, Accumulation, and
Biosynthesis
Ascophyllum nodosum was reported to improve both the growth
and productivity of agricultural crops by increasing nutrient
availability and uptake (Crouch and van Staden, 1993; Khan
et al., 2009; Craigie, 2011; Sharma et al., 2014; Van Oosten et al.,
2017). Several publications indicated that a foliar application of
ANE to the leaves of Vitis vinifera, after full bloom, increased
the nutrient content of grapevines, specifically the accumulation
of anthocyanins and phenolics (Norrie et al., 2002; Sabir et al.,
2014; Frioni et al., 2018). Two commercial extracts ofA. nodosum,
Rygex R© and Super Fifty R©, enhanced the macronutrient (N, P,
K, Ca, S) and micronutrient (Mg, Zn, Mn, Fe) contents of
tomato fruits (Di Stasio et al., 2018). Similarly, olive plants
(Olea europaea) treated with ANE showed a higher uptake of
K, Fe, and Cu (Chouliaras et al., 2009). When applied at a
rate of 0.1% (v/v), AZAL5 R©, a commercial seaweed extract,
improved root and shoot growth of rapeseed (Brassica napus)
by stimulating nitrogen and sulfate accumulation (Jannin et al.,
2013). Microarray analysis revealed that B. napus plants treated
with AZAL5 R© showed differential regulation of 724 and 298
genes in shoots and roots, respectively, after 3 days of treatment,
while 612 and 439 genes were differentially regulated in the
shoots and roots, respectively, after 30 days of treatment (Jannin
et al., 2013). Treatment with AZAL5 R© increased the nitrate
uptake of B. napus by inducing the expression of BnNRT1.1 and
BnNRT1.2 genes, known to be involved in nitrate assimilation
and amino acid metabolism. Similarly, plants treated with
AZAL5 R© showed higher sulfate accumulation by the induction of
BnSultr1.1 and BnSultr1.2 genes (Jannin et al., 2013). Commercial
extracts Maxicrop R©, Proton R©, and Algipower R© were also reported
to improve the nutrient uptake of grapevines (V. vinifera)
(Turan and Köse, 2004).

Ascophyllum nodosum extracts enhanced the growth of leafy
vegetables such as spinach (Spinacia oleracea) and lettuce
(Lactuca sativa) (Cassan et al., 1992; Moller and Smith, 1998; Fan
et al., 2013; Chrysargyris et al., 2018). A root-drench application
of ANE induced the expression of glutamine synthetase in
spinach (Fan et al., 2013), which is responsible for the conversion
of inorganic ammonium to organic glutamine, and also plays

an important role in nitrogen metabolism and assimilation
(Oliveira et al., 2002). In addition to this, root application of
ANE induced the expression of nitrate reductase, an important
enzyme involved in nitrogen assimilation, which catalyzes the
conversion of nitrate to nitrite (Fan et al., 2013). Taken together,
these results suggest that ANE plays an important role in plant
growth by enhancing nutrient uptake through the regulation of
genes involved in nutritional acquisition. Pre-harvest treatment
with 1.0 g/L of ANE through a root-drench improved the quality
and nutrient content of spinach during post-harvest storage (Fan
et al., 2014). The foliar application of 1% Biopost AG200 R© liquid
seaweed extract (Cofuna, France) biweekly for 5 weeks enhanced
the relative growth and quality (post-harvest) of lettuce grown
under K-deficient conditions by increasing antioxidant activity
(Chrysargyris et al., 2018).

Pre-harvest root treatment by ANE (Acadian R©) was reported
to have a profound effect in reducing post-harvest losses by
reducing lipid peroxidation (Fan et al., 2014). The results
presented by Fan et al. (2011) reported that an application of
ANE increased antioxidants and stimulated phenolic compound
biosynthesis in spinach. Furthermore, the ANE-induced
biosynthesis of phenolic antioxidants in spinach, when provided
as a feed intake, protected Caenorhabditis elegans against
oxidative and thermal stress (Fan et al., 2011). Similarly, the
provision of Tasco R©-Forage, a feed supplement (air dried and
milled A. nodosum), improved non-enzymatic antioxidant
compounds such as α-tocopherol, ascorbic acid, and β-carotene
in turf and forage grasses (Allen et al., 2001). Tasco R©-Forage
also induced the activity of the enzymes superoxide dismutase
(SOD), glutathione reductase, and ascorbate peroxidase (APX)
in forage grasses (Allen et al., 2001). AlgaeGreen R©, a commercial
A. nodosum extract, increased the yield and secondary metabolite
content of cabbage (Brassica oleraceae) (Lola-Luz et al., 2013).
Treatment with ANE significantly enhanced vegetative growth as
well as the biosynthesis of bioactive molecules such as phenolics
and flavonoids of Calibrachoa hybrid, a medicinal plant
(Elansary et al., 2016a). ANE-induced biosynthesis of secondary
metabolites further enhanced the antifungal and antibacterial
activity of the extract of Calibrachoa (Elansary et al., 2016a).

A root application of 1.0 g/L ANE was reported to induce the
accumulation of transcripts of betaine aldehyde dehydrogenase
(BADH) and choline mono-oxygenase (CMO) in spinach grown
in vitro (Fan et al., 2013). These enzymes are known to
catalyze a two-step pathway involved in the biosynthesis of
glycine betaine in plants. Glycine betaine, an amphoteric
quaternary ammonium compound, is an efficient, compatible
solute that protects plants against environmental stresses
(Sakamoto and Murata, 2002). The A. nodosum extract used was
shown to contain quaternary ammonium compounds such as
glycine betaine, δ-aminovaleric acid betaine, γ-aminobutyric acid
betaine, and laminine (Blunden et al., 1996; Whapham et al.,
1993; MacKinnon et al., 2010).

Hurtado and Critchley (2018) reviewed the biostimulant
effect of Ascophyllum (Acadian R©) Marine Plant Extract Powder
(AMPEP) in increasing the cultivation and micro-propagation
of the commercially important seaweed, Kappaphycus alvarezii.
The application of AMPEP, a product derived from A. nodosum,
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TABLE 1 | List of extracts manufactured from A. nodosum biomass that were reported to improve plant growth.

S. No. Extract Crop Function References

1 GA14 R© (Goemar, France) Spinacia oleracea Foliar spray improved total fresh biomass Cassan et al., 1992

2 Maxicrop R© Original Tomato Higher chlorophyll content in sprayed plants Whapham et al., 1993

3 Maxicrop R© Capsicum annuum Improved yield and quality Eris et al., 1995

4 Goemar R© Citrus unshiu Early maturation of fruit Fornes et al., 1995

5 A. nodosum extract Kiwi fruit Improved fruit growth, weight, and maturation Chouliaras et al., 1997

A. nodosum extract Tomato, dwarf French

bean, wheat, barley,

maize

Enhanced leaf chlorophyll level

6 Acadian R© (Acadian Seaplants) Vitis vinifera Improved yield and fruit quality Norrie et al., 2002

7 Acadian R© (Acadian Seaplants) Poa pratensis Improved shelf life and transplant rooting Zhang et al., 2003

8 Maxicrop R©, Proton R©, Algipower R© Vitis vinifera Improved copper uptake of grapevine Turan and Köse, 2004

9 Goemar R© Clementine Mandarin

and Navelina Orange

Increased productivity and yield Fornes et al., 2002

10 A. nodosum extract Arabidopsis thaliana Improved plant growth by modulation of concentration and

localization of auxin

Rayorath et al., 2008

11 A. nodosum extract Hordeum vulgare Induced gibberellic-acid-independent amylase activity in

barley and promoted seed germination

Rayorath et al., 2008

12 Goëmar BM 86 R© Apple Improved the fruit quality of apple and have high nitrogen

content

Basak, 2008

13 Acadian R© Marine Plant Extract

Powder (AMPEP)

Kappaphycus striatum AMPEP improves micro-propogation Hurtado et al., 2009

14 A. nodosum extract Olea europaea Showed increased tree productivity and improved their

nutrition status and oil quality parameters

Chouliaras et al., 2009

15 Alge R© Citrullus lanatus Application of extract showed increased growth parameters

and yield responses

Abdel-Mawgoud et al.,

2010

16 Actiwave R© Strawberry Increases fruit yield and quality and acts as iron chelator Spinelli et al., 2010

17 Acadian R© (Acadian Seaplants) Spinacia oleracea Enhances phenolic antioxidant content of Spinach Fan et al., 2011

18 AMPEP Ulva lactuca Reduces ionic liquid induced oxidative stress in Ulva lactuca Kumar et al., 2013

19 A. nodosum extract Medicago sativa Improves root colonization of rhizobial symbionts Khan et al., 2012

20 A. nodosum extract Strawberry Improved plant growth, fruit quality and microbial growth Alam et al., 2013

21 Super Fifty R©, Ecoelicitor R© Lettuce; Oilseed rape Enhanced plant growth and tolerance to biotic and biotic

stresses

Guinan et al., 2012

22 Acadian R© (Acadian Seaplants) Spinacia oleracea Improved yield and nutritional quality Fan et al., 2013

23 Acadian R© (Acadian Seaplants) Spinacia oleracea Improves phenolics and antioxidant content of spinach Fan et al., 2013

24 Alga Special (AS) Vitis vinifera Improved vegetative growth Popescu and Popescu,

2014

25 AZAL5 Brassica napus Promotes plant growth and nutrient uptake Jannin et al., 2013

26 AlgaeGreen R© Brassica oleracea Enhanced biosynthesis of secondary metabolites Lola-Luz et al., 2013

27 Acadian R© (Acadian Seaplants) Spinacia oleracea Preharvest ANE application enhanced post-harvest storage

quality of spinach

Fan et al., 2014

28 Acadian R© (Acadian Seaplants) Carrot Promote plant growth and root yield in carrot associated

with increased root-zone soil microbial activity

Alam et al., 2014

29 Stella Maris™ Calibrachoa hybrida Increased biosynthesis of secondary metabolites and

enhanced antibacterial and antifungal properties of

C. hybrida extract

Elansary et al., 2016a

A. nodosum extract Vitis vinifera Improved growth, yield, berry quality attributes, and leaf

nutrient content of grapevines

Sabir et al., 2014

30 Premium liquid seaweed Allium cepa Improved vegetative growth and yield of onion Hidangmayum and

Sharma, 2017

31 Seaweed extract Zea mays Promotes root morphology and plant nutrition Ertani et al., 2018

32 Acadian R© (Acadian Seaplants) Vitis vinifera Foliar spray has a positive effect on ripening dynamics and

fruit quality

Frioni et al., 2018

33 Rygex R©, Super fifty R© Solanum lycopersicum Increased plant growth and fruit quality and mitigates

salinity stress in tomato plants

Di Stasio et al., 2018

34 Seaweed extract Spinacia oleracea Improved growth, quality, and nutritional value of spinach

grown under drought conditions

Xu and Leskovar, 2015

35 Seasol R© Fragaria ananassa Increased growth response of strawberry root Mattner et al., 2018
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improved the biomass cultivation of K. alvarezii (Marroig
et al., 2016). The results of Tibubos et al. (2017) showed
that AMPEP induced the direct formation of axes in new
plantlets of K. alvarezii. These results provide clear evidence
that the Ascophyllum-derived extract can potentiate growth of
commercially important seaweed crops.

ANE IMPROVES PLANT GROWTH BY
REGULATING PHYTOHORMONE
BIOSYNTHESIS IN PLANTS

Phytohormones are low-molecular-weight compounds produced
in very small quantities that regulate several physiological and
developmental processes in plants (Wally et al., 2013; Wani
et al., 2016). The most common phytohormones include auxins
(IAA), cytokinins (CK), abscisic acid (ABA), gibberellic acid
(GA), ethylene, jasmonic acid (JA), and salicylic acid (SA) (Wani
et al., 2016). One reported growth-promoting effect of ANE
was ascribed to the presence of a variety of “phytohormone-
like substances” (Stirk and Van Staden, 1997; Khan et al., 2009;
Craigie, 2011; Sharma et al., 2014; Battacharyya et al., 2015).

There is a wide variation in auxin content in A. nodosum
extracts reported in the literature. A. nodosum was reported
to have a high concentration of indole acetic acid (IAA),
approximately 50 mg/g of dry extract (Kingman and Moore,
1982; Khan et al., 2009), whereas Maxicrop R©, a different
commercial product also prepared from A. nodosum, contained
6.63mg of IAA per gram of dried powder (Sanderson et al., 1987).
By using ultra-performance liquid chromatography–electrospray
tandem mass spectrometry, Wally et al. (2013) confirmed the
presence of 25–35 ng of IAA per dry gram of the extract they
tested. This variation in auxin content is likely to be a function
of the method of extraction and processing, as well as the
geographical location of the raw material harvested including
any possible seasonal variation (Stirk and Van Staden, 1996;
Wally et al., 2013).

SAURs (small auxin-up RNAs) are a group of small auxin-
induced RNAs that reportedly play an important role in cellular,
physiological, and developmental processes (Ren and Gray,
2015). The expression of SAUR33, SAUR59, and SAUR71 were
up-regulated by the foliar application (0.2%) of commercially
available neutral and alkaline extracts from A. nodosum, while
SAUR1 and SAUR50 were down-regulated by both extracts
(Goñi et al., 2016). Buggeln and Craigie (1971) reported
biologically active homologs of auxin-like compounds in alkaline
hydrolysates of A. nodosum. Bioactive compounds present in
a methanolic fraction of this commercial ANE elicited plant
growth by enhancing root tip growth and showed higher GUS
expression in the DR5: GUS transgenic line of Arabidopsis
thaliana (Rayorath et al., 2008). These findings strongly suggested
that the organic fraction of ANE regulated auxin activity in
ANE-treated plants through the regulation of auxin-responsive
promoter elements (AuxRE) (Rayorath et al., 2008).

Cytokinins are derivatives of adenines that possess either an
isoprenoid or aromatic side chain at the N6 position (Frébort
et al., 2011). Previously published reports demonstrated that

various cytokinins and “cytokinin-like compounds” were the
most abundant plant growth regulators present in commercial
extracts of A. nodosum (Stirk and Van Staden, 1997; Khan
et al., 2011; Wally et al., 2013). Maxicrop R© was reported to
contain a complex of cytokinins including zeatin, di-hydrozeatin,
iso-petenyladenine, and iso-petenyladenosine (Sanderson et al.,
1987). Stirk and Van Staden (1996) investigated the cytokinin
activity of the commercial seaweed extract Seamac R© by evaluating
its effect on soybean callus, where Seamac R© induced maximum
soybean callus formation. Khan et al. (2011) and Wally et al.
(2013) showed that a root application of an alkaline extract of
A. nodosum resulted in the activation of the cytokinin-responsive
promoter ARR5. The application of this commercial seaweed
extract to A. thaliana showed a higher concentration of CK and
ABA, coupled with a reduction in IAA levels. This observation
helps to explain the varied mechanisms of actions behind higher
vegetative plant growth and the reduction in the length of
primary roots (Wally et al., 2013).

Wally et al. (2013) showed that the application of an ANE
increased cytokinin concentrations in the tissues of A. thaliana,
particularly trans-zeatin-type and cis-zeatin-type cytokinins. The
first step of cytokinin biosynthesis involves the transfer of
an isoprenoid molecule to adenine by isopentenyl transferases
(IPTs). ANE applications induced the expression of IPT3, IPT4,
and IPT5 in A. thaliana, while the expressions of IPT2 and
IPT9 were unchanged (Wally et al., 2013). In this study,
ANE also regulated the transcript levels of cytosolic and
mitochondrial IPTs (IPT3, IPT4, and IPT5) and induced the
production of isopentenyl-type cytokinins via the mevalonate
(MVA) pathway (Frébort et al., 2011; Wally et al., 2013).
Similar to the expression pattern of IPT3, IPT4, and IPT5,
the expression of CK hydroxylases (CYP735A2), which catalyze
the biosynthesis of trans-zeatin, was higher in ANE-treated
A. thaliana plants (Takei et al., 2004; Wally et al., 2013).
Furthermore, the ANE treatment suppressed the expression of
genes involved in cytokinin degradation (Wally et al., 2013).
The accumulation of cytokinin oxidase 4 (CKX4), involved
in cytokinin catabolism, was reduced in ANE-supplemented
Arabidopsis plants. This suggests that ANE applications induced
a higher metabolic production of cytokinins within treated
plant tissues by differentially regulating cytokinin metabolism.
High cytokinin content in plants was found to delay senescence
(Gan and Amasino, 1995; Lim et al., 2003). Wally et al. (2013)
showed that the ANE application retarded senescence in treated
Arabidopsis by increasing the endogenous cytokinin content.
This result was further supported by the strong inhibition of
expression of Senescence Associate Gene 13 (SAG13) in plants
treated with ANE (Wally et al., 2013).

The root application of ANE modulated the expression of
genes involved in GA biosynthesis and thus resulted in a higher
accumulation of GA24 (Wally et al., 2013). Similarly, a foliar
application of 0.2% ANE on Arabidopsis leaves also regulated
the expression of the GA-responsive genes GASA1 and GASA4,
after 1 week of treatment (Goñi et al., 2016). This published
evidence concluded that ANE treatment regulated endogenous
phytohormone levels and possibly their ratios to one another
within treated plant tissues bymodulating the expression of genes
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involved in their biosynthesis. Subsequently, the modulation of
gene expression improved plant growth and development.

ANE MITIGATES ABIOTIC STRESSES IN
PLANTS

Plants, being sessile, are relentlessly challenged by a variety of
environmental stresses that limit their growth and productivity
(Agarwal et al., 2013; Shukla et al., 2016). Due to the complex
metabolic pathways involved in stress tolerance, limited success
has been achieved in generating stress-tolerant crops through
genetic engineering (Agarwal et al., 2013; Mickelbart et al.,
2015). Another sustainable approach to improve stress tolerance
in plants is the use of extracts from A. nodosum. Table 2

summarizes studies published on the effect of ANE on plants
under abiotic stress.

ANE Improves Salinity Tolerance in
Plants
Soil salinity is a global problem, affecting over 800 million
hectares of land, resulting in massive impacts on agricultural
productivity (Shrivastava and Kumar, 2015; Ferchichi et al.,
2018). Mild salinity stress causes physiological drought in plants,
impairing cell–water relations, inhibiting cell expansion, and,
consequently, reducing growth rate (Hasegawa et al., 2000a).
Long-term exposure to high salinity causes ionic stress by
disturbing the homeostasis of intracellular ions, which results
in membrane dysfunction and attenuation of metabolic activity

and secondary effects, inhibiting growth, and inducing cell death
(Hasegawa et al., 2000b; Yadav et al., 2012; Hasegawa, 2013;
Shukla et al., 2011, 2015). Salinity induces both ionic and
osmotic stresses, thus reducing plant growth and productivity
(Agarwal et al., 2013). Plants have developed strategies to adapt to
salinity stress at molecular, biochemical, and physiological levels
(Agarwal et al., 2013; Hasegawa, 2013; Ferchichi et al., 2018).

Studies revealed that the application of various forms of
ANE improved salinity stress tolerance in Arabidopsis, tomato
(Solanum lycopersicum), passion fruit (Passiflora edulis), and
avocado (Persea americana) (Jithesh et al., 2012, 2018; Bonomelli
et al., 2018; Di Stasio et al., 2018; Jolinda et al., 2018; Shukla et al.,
2018a). Rygex R© and Super Fifty R©, both commercial extracts of
A. nodosum, boosted the accumulation of minerals, antioxidants,
and essential amino acids in tomato fruits grown under salinity
stress (Di Stasio et al., 2018). Salinity stress reduced both
the growth and yield of avocado by almost 50% (Alvarez-
Acosta et al., 2018; Bonomelli et al., 2018). The application of
A. nodosum-based extracts reportedly alleviated the effects of
salinity stress on the growth and productivity of avocado by
improving nutrient uptake. A. nodosum extract-treated avocado
plants showed higher content of Ca2+ and K+ (Bonomelli et al.,
2018). Further, ANE also improved the growth of turf grass
grown under salinity stress by maintaining a higher K+/Na+

content (Elansary et al., 2017).
An ethyl acetate fraction of an A. nodosum extract (EAA)

reportedly induced salinity tolerance in Arabidopsis. To further
investigate the mode of action of ANE inmitigating stress, Jithesh
et al. (2018) carried out a study of the global transcriptomics

TABLE 2 | List of the different extracts from A. nodosum conferring salinity stress tolerance in various crops.

S. No. Extract Crop Function References

1 Goemar Citrus unshiu Early maturation of fruit Fornes et al., 1995

2 Acadian R© Agrostis stolonifera Increased heat stress tolerance by seaweed-extract-based cytokinin Zhang and Ervin, 2008

3 Acadian R© A. thaliana Lipophilic component of A. nodosum extract enhanced freezing tolerance

by protecting membrane integrity and modulates the expression of freezing

stress responsive genes

Rayirath et al., 2009;

Nair et al., 2012

4 Stimplex R© Citrus sinensis Improves drought stress tolerance and maintains shoot growth under

drought conditions

Spann and Little, 2011

5 Super Fifty, Ecoelicitor Lettuce; oilseed rape Enhanced plant growth and tolerance to biotic and abiotic stresses Guinan et al., 2012

6 AMPEP Ulva lactuca Reduces ionic liquid induced oxidative stress in Ulva lactuca Kumar et al., 2013

7 Stella MarisTM Calibrachoa hybrida Increased biosynthesis of secondary metabolites and enhanced

antibacterial and antifungal properties of C. hybrida extract

Elansary et al., 2016a

8 Stimplex R© Spiraea nipponica,

Pittosporum

eugenioides

Improve drought tolerance by inducing phytochemical and

antioxidant contents

Elansary et al., 2016b

9 Stella MarisTM Paspalum vaginatum Higher plant growth under prolonged irrigation and saline conditions by

regulating osmotic adjustment and antioxidant defense system

Elansary et al., 2017

10 Algea R© A. thaliana Acclimate plant to the drought stress by improving photosynthesis and

water use efficiency and by regulating stress-responsive gene expression

Santaniello et al., 2017

11 A. nodosum extract Lycopersicon

esculentum

Enhanced tolerance to drought stress in tomato plants by modulating

expression of dehydrins

Goñi et al., 2018

12 A. nodosum extract Phaseolus vulgaris Increased tolerance to the drought stress by affecting proline metabolism Carvalho et al., 2018

13 Acadian R© Glycine max Improve drought tolerance by modulating expression of

stress-responsive gene

Shukla et al., 2018b

14 Seaweed extract Spinacia oleracea Improve growth, quality, and nutritional value of spinach grown under

drought conditions

Xu and Leskovar, 2015
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of EAA-treated Arabidopsis grown under salinity stress. This
study showed that EAA induced the expression of 184 genes on
Day 1 of treatment, further increasing to 257 genes expressed
on Day 5, while 91 and 262 genes were down-regulated on
Days 1 and 5 post-treatment, respectively. Similarly, Goñi et al.
(2016) also compared the transcriptome of Arabidopsis treated
with two different extracts of A. nodosum: both prepared at a
temperature greater than 100◦C, differing in pH and preparation
method (one extract had a neutral pH while the other extract
was alkaline). The application of these two different extracts
induced the expression of a plethora of genes involved in stress
tolerance mechanisms (Goñi et al., 2016). Both studies showed
the induction of different late embryogenesis abundant (LEA)
proteins and dehydrins in Arabidopsis treated with ANE. Thus,
it is evident that various bioactive components of an A. nodosum
extract were able to mitigate salinity stress through various
mechanisms: by protecting cellular structures fromwater loss, via
acting as a hydration buffer, sequestering ions, directly protecting
other proteins or by re-naturing unfolded proteins through
increased expression of LEAs (Wise and Tunnacliffe, 2004; Goyal
et al., 2005; Jithesh et al., 2018).

The molecular and cellular responses of plants to salinity
stress include perception, signal transduction to the cytoplasm
and nucleus, gene expression, and, finally, metabolic alterations
leading to stress tolerance (Agarwal et al., 2006). Salinity stress
signals are first perceived by signalingmolecules such as ABA and
Ca2+, and these molecules start a cascade of events eventually
leading to stress tolerance in plants (Chinnusamy et al., 2004;
Bhatnagar-Mathur et al., 2008; Agarwal et al., 2013). Arabidopsis
treated with an ethyl acetate fraction of ANE (EAA) and grown
under salinity stress showed a higher transcript accumulation of
SnRK2, a gene involved in the activation of the ABA-signaling
network (Coello et al., 2011; Jithesh et al., 2018). Further,
EAA treatments induced genes involved in ABA-dependent
signaling pathways (Jithesh et al., 2018). Transcription factors
(TFs) regulate the expression of various downstream target
genes by interacting with the cis-acting element in promoters
of respective target genes (Yamaguchi-Shinozaki and Shinozaki,
2006; Agarwal and Jha, 2010; Agarwal et al., 2013). The bioactive
component present in A. nodosum extracts has been shown
to regulate the convergence and interaction of various TFs
such as DREB/CBF, COR47, NF-YA, COR15A, AGF2, CCA1,
and LHY1, which confer stress tolerance on plants (Agarwal
and Jha, 2010; Todaka et al., 2012; Goñi et al., 2018; Jithesh
et al., 2018). ANE regulated both post-transcriptional as well
as post-translational regulation of stress-responsive TFs (Shukla
et al., 2018a). The application of ANE down-regulated the
expression of miR396a-5p, which resulted in a reduction in
the expression of its target gene AtGRF7 (Yang et al., 2009;
Shukla et al., 2018a). In Arabidopsis, AtGRF7 down-regulated
the expression of AtDREB2a by binding to its promoter element,
which, in turn, acted as a down-regulator for salinity tolerance
(Shukla et al., 2018a). Lower levels of AtGRF7 in the ANE-
treated plants under salinity stress led to a higher expression
of AtDREB2a and AtRD29 (Shukla et al., 2018a). Similarly,
ANE reduced the expression of miR169 in plants grown under
salinity stress conditions. The miR169 plays an important role

in stress-induced flowering in plants, targeting TF NFYA (Xu
et al., 2014). The application of ANE to plants grown under
salinity stress delayed the induction of ath-miR169g-5p and
showed a higher expression of AtNFYA1. This suggests that
benefits of the application of ANE, as a salinity stress mitigation
strategy, were due to the partial control of miR169 over NFYA1
expression (Zhao et al., 2009; Li et al., 2013; Jithesh et al., 2018;
Shukla et al., 2018a).

Salinity stress leads to the generation of reactive oxygen
species (ROS) in plants, which is a well-known cause of damage to
proteins, lipids, carbohydrates, and DNA, resulting in oxidative
stress, which ultimately results in negative effects on plant
development and growth (Mittler et al., 2004; Gill and Tuteja,
2010; Karuppanapandian et al., 2011). Salinity stress-induced
production of ROS damages cell membranes by changing the
saturation pattern through increased lipid peroxidation (Gossett
et al., 1994; Jain et al., 2001; Miller et al., 2010). ANE application
has been reported to reduce the effects of ROS generated by
salinity stress in turf grass by reducing lipid peroxidation through
higher activity of antioxidative enzymes. The various bioactive
components of A. nodosum extracts reduced salinity-induced
oxidative damage by eliciting the expression of glutathione S
transferase in Arabidopsis (Jithesh et al., 2018). ANE application
also alleviated oxidative damage by modulating the expression
of ath-miR398, regulating the expression of its target gene,
copper/zinc SOD (AtCSD1) (Shukla et al., 2018a).

The application of ANE had a significant influence on
the expression of genes involved in the biosynthesis and
transportation of flavonoids, which protect plants from ROS-
induced oxidative damage during salinity stress (Jithesh et al.,
2018). In addition to the regulation of regulatory genes, it was
reported that ANE applications also regulated the expression
of genes involved in the biosynthesis of carbohydrates (starch,
sucrose, raffinose), amino acids (proline, isoleucine), and sugar
alcohols (inositol, trehalose) (Jithesh et al., 2018). ANE-treated
plants accumulated higher proline tissue levels under saline
conditions (Elansary et al., 2017). Higher proline levels can
mitigate salinity stress by stabilizing sub-cellular structures and
scavenging free radicals while also buffering cellular redox
potentials (Ashraf and Harris, 2004; Ashraf and Foolad, 2007;
Shukla et al., 2015). Salinity stress reduces osmotic potential
and affects water availability, causing physiological drought in
plants. Sugar accumulation maintains total osmotic potential in
plant cells during salt stress (Shukla et al., 2011). In addition to
their role in osmotic adjustments, the availability and inter-organ
transport of sugars play an important regulatory role in salt-
stressed plants (Hare et al., 1998). The data reported by Elansary
et al. (2017) indicated that ANE treatments enhanced the total
non-structural carbohydrates in turf grass exposed to prolonged
salinity, by increasing photochemical efficiency. ANE regulated
the expression of genes involved in the metabolism and transport
of carbohydrates; thus, unspecified bioactive compounds present
in ANE must supply enough carbon and energy to the plant
during stressful conditions.

Ascophyllum nodosum treatments were also reported to
improve nutrient uptake in plants grown under salinity
stress. Supplementation of ANE in growth media deprived of
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phosphorus (P) improved its uptake and homeostasis in salt-
stressed Arabidopsis bymodulating the expression ofmiRNA399,
altering the expression of its target gene AtUBC24. In addition
to miR399, the ANE treatment also modulated the expression
of miR827 and miR2111b, indicating that some components
of ANE and their utilization by plant tissues have the ability
to improve P-uptake in salt-stressed plants (Shukla et al.,
2018a). Similarly, ANE treatments improved the architecture
of Arabidopsis root systems when grown under conditions
combining phosphorus deprivation and salinity stress. ANE
therefore played an important role in sulfur (S) homeostasis
in salt-exposed Arabidopsis by modulating the expression of
miR395 (Shukla et al., 2018a). In addition to the regulation of
sulfur homeostasis, ANE treatments also regulated the expression
of SULTR1;2 and SULTR3;1 in plants grown under both normal
and saline conditions (Goñi et al., 2016; Shukla et al., 2018a).
Thus, ANE prevented the root tip and its meristematic cell
from the injurious consequence of both stresses by regulating
the expression of regulatory RNAs and genes involved in the
efficient relocation of P and S resources (Shukla et al., 2018a).
A clear, beneficial role for ANE has been observed in mitigating
salinity stress due to its ability to improve a plant’s response to
stress, both at the molecular and at the physiological level, as
represented in Figure 2.

ANE Mitigates Drought Stress in Plants
Both physical and physiological drought negatively impact
plant physiology and thereby crop productivity by impeding
nutrient and water relations, photosynthesis, and assimilate
partitioning (Fahad et al., 2017; Shukla et al., 2018b). It is
estimated that nearly 50% of agricultural crops are affected by
drought stress worldwide (Farooq et al., 2009; Bodner et al.,
2015; Joshi et al., 2016). Notable progress has been made
to mitigate drought stress by using bioactive substances from
A. nodosum (Figure 3). Several studies clearly demonstrated that
the application of different ANEs alleviated drought stress in
soybean (Glycine max), bean (Phaseolus vulgaris), A. thaliana,
tomato (Lycopersicon esculentum), sweet orange (Citrus sinensis),
spinach (Spinacea oleracea), Spiraea nipponica, and lemon
wood (Pittosporum eugenioides) (Spann and Little, 2011; Xu
and Leskovar, 2015; Elansary et al., 2016b; Santaniello et al.,
2017; Carvalho et al., 2018; Goñi et al., 2018; Shukla et al.,
2018b). The bioactive compounds (not yet fully elucidated)
present in A. nodosum extracts when applied to stressed
plants have reduced the deleterious effects of drought stress
by regulating a series of sequential molecular, cellular, and
physiological responses including the modulation of several
genes, resulting in an accumulation of various osmolytes, an
improved antioxidant system, and enhanced gaseous exchange
through stomatal regulation.

Drought stress reduces transpirational cooling, therefore
increasing leaf temperature (Yordanov et al., 2000). Acadian R©,
an alkaline commercial extract of A. nodosum, was shown to
help soybean plants withstand severe drought conditions by
regulating leaf temperature, turgor, and several stress-responsive
genes (Martynenko et al., 2016; Shukla et al., 2018b). Stomatal
conductance is a key variable of a plant’s physiological process

that is influenced during drought stress (Manavalan et al.,
2009). Acadian R© extract-treated plants showed higher stomatal
conductance under drought stress (Shukla et al., 2018b), while
in another study, an acidic extract of Ascophyllum also resulted
in a reduction of stomatal conductance by down-regulating the
expression of AtPIP1;2 and βCA1, key genes involved in the
regulation of CO2 diffusion within the mesophyll (Santaniello
et al., 2017). Stomatal conductance and ABA concentrations are
co-related during drought stress (Manavalan et al., 2009). In
drought-stressed soybean, the application of an alkaline ANE
extract (Acadian R©) modulated the expression of genes involved
in the catabolism of ABA by regulating the expression of
GmCYP707A1a and GmCYP707A3b (Shukla et al., 2018b). In
addition, priming the plants with acid-extracted ANE induced
a partial stomatal closure by down-regulating the expression of
AtMYB60, which is known to be involved in the regulation of
stomatal movement (Santaniello et al., 2017). The presence of
ABA negatively regulated the expression of AtMYB60 during
drought stress. Thus, ANE-treated plants, under drought stress,
induced ABA biosynthesis by boosting the expression of
AtNCED3, which resulted in partial stomatal closure for greater
water-use efficiency (Santaniello et al., 2017). In addition, ANE
treatment also induced the expression of ABA-responsive genes
such as AtRAB18 and AtRD29 in response to drought stress
(Santaniello et al., 2017). Taken together, these findings suggested
that alkaline-extracted ANE has different modes of action in
mitigating drought stress, as compared to acid-extracted ANE.
Alkaline ANE regulated stomatal conductance in an ABA-
independent manner while acid-extracted ANE promotes an
ABA-dependent stomatal closure during drought stress.

Drought-induced stomatal closure leads to a reduction in
CO2 availability, directly reducing the rate of photosynthesis
(Chaves et al., 2003, 2009). Treatment with the various
A. nodosum extracts modulated photochemical efficiencies,
water-use potential, and stomatal conductance of Arabidopsis,
spinach, S. nipponica, and P. eugenioides (Xu and Leskovar,
2015; Elansary et al., 2016b; Santaniello et al., 2017). Acidic-
extracted ANE protected Arabidopsis from drought stress by
inducing partial stomatal closure, thereby preventing water loss
due to transpiration. Furthermore, acid-extracted ANE protected
the photosynthetic apparatus by reducing the expression of
AtRBCS1A and AtRCA, which catalyze Rubisco activation during
photosynthesis (Demirevska et al., 2008; Santaniello et al., 2017).
The alkali process extract of A. nodosum regulated the expression
of GmFIB1a and protected photosystem II (PSII) from drought-
induced damage (Shukla et al., 2018b). GmFIB1a functioned
in an ABA-dependent manner and was involved in photo-
protection during stress (Yang et al., 2006). Thus, in soybean,
alkali-processed ANE extract regulated both ABA-dependent and
ABA-independent pathways for conferring drought tolerance
(Shukla et al., 2018b).

Plants under drought conditions tend to produce ROS that
include superoxide, hydroxyl, perhydroxy, and alkoxy radicals
(Mittler, 2002; Farooq et al., 2009). These ROS entities are
known to damage cellular constituents such as DNA, proteins,
membranes, and lipids (Fu and Huang, 2001). Drought-induced
ROS production results in the peroxidation of the PUFAs
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FIGURE 2 | Depiction of mode of action of Ascophyllum nodosum extract (ANE) in mitigating salinity stress.

FIGURE 3 | The proposed modes of action of three fractions of Ascophyllum nodosum extract (ANE): acidic, neutral, and alkaline ANE when applied to plants

exposed to drought stress.

found in biological membranes (Fu and Huang, 2001; Jiang
and Huang, 2001). The MDA (malondialdehyde) content of
tissues can be used as an indicator of the extent of drought-
induced peroxidative damage (Shukla et al., 2011). As an adaptive
mechanism in response to drought, plants detoxify ROS by
enzymatic and non-enzymatic pathways (Apel and Hirt, 2004;
Baxter et al., 2014). Enzymatic ROS scavenging mechanisms in
plants include SOD, APX, glutathione peroxidase (GPX), and
catalase (CAT) (Miller et al., 2010). ANE applications were
reported to improve drought tolerance by reducing ROS-induced
MDA production in the bean (P. vulgaris) by improving CAT

activity (Carvalho et al., 2018). Similarly, a foliar spray of ANE
reduced lipid peroxidation in Paspalum vaginatum that was
grown under prolonged irrigation (Elansary et al., 2017). Reduced
ROS in ANE-treated P. vaginatum grown under drought stress
was ascribed to increased activity of antioxidative enzymes such
as SOD, CAT, and APX, and the higher production of non-
enzymatic antioxidants, such as ascorbates (Elansary et al., 2017).

Proline is an important osmolyte and a signaling molecule in
plants, and is credited for its role in ROS scavenging as well as
in osmotic adjustment (Valliyodan and Nguyen, 2006). However,
it is not clear whether proline accumulation is a symptom of
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stress, a response to stress, or an adaptive strategy (Carillo, 2018).
Regardless, proline plays an integral role in drought adaptation
by buffering cellular redox potential, stabilizing membranes and
proteins, and inducing the expression of stress-responsive genes
(Singh et al., 2015; Carillo, 2018). ANE was found to improve
proline biosynthesis in P. vulgaris grown under drought stress
(Carvalho et al., 2018). Similarly, a soil treatment of ANE on
S. nipponica and P. eugenioides reportedly ameliorated drought
stress by increasing the accumulation of antioxidants and lipid
peroxidation, thus reducing the ROS content and inherent
stresses (Elansary et al., 2016b). Goñi et al. (2018) showed
that extracts of the same Ascophyllum raw material, prepared
by different extraction methods, regulated drought stress in
treated tomato in different ways. ANE manufactured using a
proprietary process at temperatures greater than 100◦C and an
alkaline pH was more efficient in mitigating drought stress in L.
esculentum (by increased antioxidants, proline, and soluble sugar
accumulation) as compared to ANE manufactured at the same
temperature (T > 100◦C) but at a neutral pH (Goñi et al., 2018).
Dehydrins are produced by plants in response to drought, acting
as intracellular stabilizers, upon targets in both the nucleus and
cytoplasm (Tommasini et al., 2008). Besides the accumulation of
proline and soluble sugars in ANE-treated tomato plants, ANE
treatments also induced the expression of different dehydrin-like
proteins under drought stress. Together, these findings verified
that various extracts from A. nodosum mitigated the severity of
drought stress by regulating intrinsic molecular and biochemical
processes in plants.

ANE Mitigates Freezing Stress in Plants
Nearly 42% of all global land experiences temperatures below
−20◦C, and plants growing in these regions experience freezing
stresses during periodic exposure to temperatures below 0◦C
(Chinnusamy et al., 2007; Miura and Furumoto, 2013). Freezing
stress adversely affects plant growth and development, limiting
agricultural productivity (Miura and Furumoto, 2013). During
freezing stress, intracellular and extracellular ice are formed,
which disrupts the integrity of cells, causing death (Burke et al.,
1976; Weiser et al., 1976). Most temperate crops have an inherent
tendency to acquire tolerance to low temperatures by a process
known as cold acclimation, while tropical and sub-tropical plants
are sensitive to low-temperature stress (Chinnusamy et al., 2003).
Several studies reported that the bioactive compounds present
in various types of extracts from A. nodosum can mitigate
low-temperature stress in plants. The application of ANE on
winter barley improved winter hardiness and increased frost
resistance (Burchett et al., 1998). Rayirath et al. (2009) showed
that the lipophilic fraction of an A. nodosum extract improved
tolerance of A. thaliana grown under freezing conditions.
Under control conditions, the A. thaliana plants grown at
−5.5◦C showed significant chlorosis and tissue damage, whereas
plants treated with the lipophilic fraction of ANE recovered
from freezing-induced damage (Rayirath et al., 2009). This
study also revealed that ANE application reduced freezing-
induced electrolyte leakage by maintaining membrane integrity
during freezing stress. ANE also induced the expression of
cold-responsive genes such as COR15A, RD29A, and CBF3

(Rayirath et al., 2009). In order to further understand the mode
of action of ANE in mediating freezing tolerance in plants, Nair
et al. (2012) carried out global transcriptome and metabolome
analysis of the lipophilic fraction (LPC) of ANE-treated plants
exposed to−2◦C. Global transcriptome analysis revealed that the
LPC of ANE altered the expression of 1,113 genes in response
to freezing stress. Most of these genes were found to be involved
in responses to stress, sugar accumulation, and lipid metabolism.
In response to freezing stress, plants tend to accumulate proline
by simultaneous up-regulation of genes involved in proline
biosynthesis (P5CS1, P5CS2) and down-regulation of genes
involved in proline catabolism (ProDH). Application of the LPC
fraction of ANE increased the proline content in response to
freezing stress by modulating the expression of P5CS1, P5CS2,
and ProdH (Nair et al., 2012). Therefore, ANE improved freezing
tolerance in plants by inducing proline biosynthesis.

Metabolite profiling of the LPC fraction of ANE-treated
Arabidopsis plants revealed that protection was achieved by
regulating pools of soluble sugars, sugar alcohols, organic acids,
and lipophilic components such as fatty acids (Nair et al.,
2012). Sugar accumulation helps plants overcome freezing stress
by playing an important role in stabilizing various biological
components such as the cellular membrane and membrane-
bound organelles (Tarkowski and Van den Ende, 2015). The LPC
of ANE failed to improve freezing tolerance in the SFR4mutant of
Arabidopsis, which is known to be defective in the accumulation
of free sugars (Nair et al., 2012). These results suggested that
an ANE treatment, prior to freezing stress exposure, induced
the accumulation of soluble sugars. These results provided
evidence to support the claim that ANE plays an important role
in improving freezing tolerance in plants through molecular,
biochemical, and physiological changes.

ANE IMPROVES PLANT DEFENSES
AGAINST VARIOUS PATHOGENS

Changing climatic conditions and intensive agricultural practices
increase the emergence of infectious plant diseases, causing a
reduction in agricultural productivity (Anderson et al., 2004;
Ayliffe and Lagudah, 2004). Plant diseases are caused by
pathogens such as bacteria, fungi, and viruses (Pieterse and
Dicke, 2007; Stadnik and Freitas, 2014) that disrupt plant
health as well as their productivity. Plants have evolved several
inducible defense mechanisms in order to deter these pathogens
following infection (Conrath et al., 2002; Wiesel et al., 2014).
Two types of disease resistance mechanisms in plants have
been reported: systemic acquired resistance (SAR) and induced
systemic resistance (ISR). In SAR, SA plays a crucial role
of mediating pathogenesis-related (PR) gene activation, while
in ISR, JA, and ethylene (ET) pathways are important for
the induction of broad-spectrum disease resistance (Gaffney
et al., 1993; van Loon et al., 1998). Elicitors are defined as
compounds of biological origin capable of inducing defense
responses in plants (Conrath et al., 2002; Wiesel et al., 2014).
Elicitors are molecules such as lipo-polysaccharides, chitin, and
bacterial flagella. Furthermore, some synthetic chemicals, e.g.,
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chitosan, 2,6-dichloro-isonicotinic acid, β-aminobutyric acid,
methyl jasmonate, and benzothiadiazole, have also been reported
for their ability to induce SAR and ISR against various plant
pathogens (Dixon, 2001; Mercier et al., 2001; Bektas and Eulgem,
2015; Iriti and Varoni, 2015).

Over the course of evolution, various seaweeds have developed
efficient defense mechanisms in order to fight their own natural
pathogens (Potin et al., 1999; Shukla et al., 2016). Less incidence
of pathogen infection is seemingly observed in seaweeds because
they are rich sources of unique bioactive compounds such as
fucans, carrageenans (e.g., i, k, and λ), ulvans, and laminarins
(or fucose containing polymers) (Klarzynski et al., 2003; Sangha
et al., 2010; Vera et al., 2011). These seaweed-based bioactive
compounds are known to induce defense responses against
pathogens by acting as priming or elicitor molecules (Khan et al.,
2009; Sharma et al., 2014; Shukla et al., 2016). These elicitors act as
pathogen-associated molecular patterns (PAMPs) (Sharma et al.,
2014). PAMPs bind to host trans-membrane pattern recognition
receptors (PRRs) and prime the plants by inducing ISR and SAR
responses (Eckardt, 2008; Zipfel, 2009). Primed plants induced
a greater preventative response against the progression of the
pathogen infection as compared to unprimed plants.

It was reported that bioactive compounds present in ANE
elicited defense responses against various pathogens (Patier
et al., 1995; Sharma et al., 2014). Marmarine (IFTCTM, Amman,
Jordan), a commercial extract of A. nodosum, improved plant
defense against Phytopthora melonis in cucumber (Abkhoo and
Sabbagh, 2016). The application of the extract [30 ml per plant,
0.5 or 1% Marmarine, alternating with 2 g L−1 of fungicide
(metalaxyl), applied to 21-day-old seedlings through root drench
and/or foliar spray at 5-day intervals for a total of three
applications] led to enhanced activation of disease resistance
enzymes including peroxidase, polyphenol oxidase, lipoxygenase,
phenylalanine ammonia lyase, and β-1,3-glucanase. This work
highlighted the role of certain seaweed extracts on different plant
enzymes and genes that could result in the induction of defense
mechanisms (or disease resistance) in cucumber (Abkhoo
and Sabbagh, 2016). Similarly, Panjehkeh and Abkhoo (2016)
revealed that the same initial application of A. nodosum extract
Dalgin [Sustainable Agro Solutions (SAS), Spain] alternating with
2 g L−1 of fungicide (metalaxyl), as in the Abkhoo and Sabbagh
(2016) study (30 ml per plant, 0.5 or 1% Dalgin, applied to 21-
day-old seedlings), was able to induce resistance (ISR) against
Phytophthora capsica, a fungal disease in tomato. Similarly, the
alternating application of Stimplex R©, a liquid-based extract of
A. nodosum with fungicide (chlorothalonil, 2 g L−1), reduced the
progression of fungal disease in cucumber through the induction
of defense genes and enzymes (Jayaraman et al., 2011).

The mechanism of A. nodosum extract-induced resistance in
A. thaliana against Pseudomonas syringae pv. tomato DC3000
was carried out by Subramanian et al. (2011). Different extracts
from A. nodosum induced resistance in SA-deficient plants,
while extracts did not elicit an effect on JAR1 (jasmonic acid
resistance 1) mutant. In addition to this, the application of
ANE induced the expression of JA-related genes such as PDF1.2,
while expressions of PR1 and ICS1 were not greatly affected
by ANE (Subramanian et al., 2011). These results suggested

that ANE induced resistance in challenged Arabidopsis by
activating the JA-dependent signaling pathway. Different solvent
fractions exhibited reduced development of disease symptoms
on the leaves, which is correlated with the increased expression
of jasmonic-acid-related gene transcripts (Subramanian et al.,
2011). Kappaphycus and Eucheuma spp., economically important
red algae, were reported to be susceptible to epiphyte infestations
(Loureiro et al., 2012). It was reported that a dip application of
ANE (as a soluble seaweed extract powder, given the acronym
AMPEP—Ascophyllum Marine Plant Extract Powder) elicited a
natural defense mechanism in cultivated Kappaphycus against
the epiphytes Neosiphonia apiculata, Cladophora, and Ulva, by
inducing the phenolic content, free-radical scavenging, and iron
chelation (Loureiro et al., 2010, 2012; Hurtado et al., 2012;
Ali et al., 2018).

Another A. nodosum-derived extract (Stella Maris R©) was
reported to boost plant immunity by elevating the production
of hydrogen peroxide, which ultimately led to an increase in the
concentration of ROS. It was further shown that the expression
of plant immune response genes WRKY30, CYP71A12, and
PR-1 (genes that activate in early, mid, and late phases of
immunity in the plant, respectively) was up-regulated (Cook
et al., 2018). The priming of 3-week-old A. thaliana plants
with 1 g/L of ANE (25 ml per plant through root drench)
2 days prior to inoculation protected against the necrotic
pathogen, Sclerotinia sclerotiorum (Subramanian et al., 2011).
Similarly, Jayaraj et al. (2008) showed that a foliar spray of
ANE to carrot plants significantly reduced the progression of
disease caused by Alternaria radicina and Botrytis cinerea. It
was found that the priming of carrot plants with ANE induced
the activity of defense-related enzymes including peroxidase
(PO), polyphenoloxidase (PPO), phenylalanine ammonia lyase
(PAL), chitinase, and β-1,3-glucanase, as well as increasing the
transcript accumulation of PR-1, PR-5, NPR-1, LTP, chalcone
synthase, and PAL. Based on the available literature, Figure 4 was
prepared to depict elicitors present in ANE, which are known
to improve plant defense responses against different pathogens.
The published evidence suggested that judicious applications
of extracts from ANE could be an effective tool in disease
management (Table 3). This strategy minimizes the use of
chemical-based fungicides and provides an environmentally safe
and sustainable method for the management of plant diseases.

ANE IMPROVES SOIL HEALTH

Soil health, alternatively known as soil quality, is simply defined
as: “the continued capacity of soil to function as a vital
living ecosystem that sustains plants, animals and humans”
(U.S. EPA, 2012). A healthy soil contributes to environmental
management within the biosphere (air, water, and soil) and
the productivity of plants and animals under both natural
and managed systems (Karlen et al., 1997; Doran and Zeiss,
2000). Soils need improvement in order to enhance their ability
to sustain their environmental and biological purposes. Select
seaweed extracts have been studied sufficiently to suggest that
their use as agricultural inputs have two modes of action: (1) they
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FIGURE 4 | Schematic representation of proposed mode of action of Ascophyllum nodosum extract (ANE) in eliciting plant defense against different plant pathogens.

TABLE 3 | List of the different extracts from A. nodosum inducing disease resistance in different plants against different pathogens.

S. No. Extract Crop Causal organism Disease Function References

1 Maxicrop R© Triple Strawberry Tetranychus urticae – Reduces the population of two-spotted red

spider mites on treated plants

Hankins and

Hockey, 1990

2 Maxicrop R© Original Arabidopsis Meloidogyne javanica Root-knot Reduces number of females of M. javanica Wu et al., 1998

3 A. nodosum extract

(Acadian Seaplants)

Carrot Alternaria radicina and

Botrytis cinerea

Black rot, Botrytis

blight

Induces expression of defense related

genes or proteins

Jayaraj et al., 2008

4 Stimplex R© (Acadian

Seaplants)

Cucumber Alternaria

cucumerinum,

Didymella applanata,

Fusarium oxysporum,

Botrytis cinerea

Alternaria blight,

Gummy stem

blight, Fusarium

root and stem rot,

Botrytis blight

Stimplex reduces the disease by activating

different-related enzymes and accumulation

of secondary metabolites

Jayaraman et al.,

2011

5 A. nodosum extract

(Acadian Seaplants)

K. alvarezii Polysiphonia

subtilissima

Ice–ice, goose

bumps

Reduces the growth of the epiphyte Loureiro et al.,

2010

6 A. nodosum extract

(Acadian Seaplants)

Arabidopsis Pseudomonas

syringae, Sclerotinia

sclerotiorum

Bacterial speck,

stem rot

Reduces the development of diseases,

which is correlated with expression of

jasmonic-acid-related gene transcript

Subramanian et al.,

2011

7 Marmarine Cucumber Phytophthora melonis Damping-off Induces defense-related enzymes Abkhoo and

Sabbagh, 2016

8 A. nodosum extract

(Acadian Seaplants)

Tomato A. solani, X. campestris

pv vesicatoria

Alternaria blight;

bacterial leaf spot

Reduces incidence of diseases in plants by

the upregulation of JA/ethylene pathway

Ali et al., 2016

9 AMPEP K. alvarezii Neosiphonia apiculata Ice–ice Reduces the biotic stress caused by

endophytes

Ali et al., 2018

10 Dalgin R© Tomato Phytophthora capsici Damping-off Induces expression of defense-related

genes or proteins

Panjehkeh and

Abkhoo, 2016

11 Stella Maris™ Arabidopsis

thaliana

Pseudomonas syringae

DC3000, Xanthomonas

campestris BP109

Inhibited the growth of multiple bacterial

pathogens by inducing the expression of

WRKY30, CYP71A12 and PR-1 gene

Cook et al., 2018
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are biostimulants, as discussed above, that enhance growth and
productivity of crop plants, and (2) they are chelators, directly
contributing to the health of the soil (Khan et al., 2009). ANE
provides natural chelation in the soil due to the presence of
residual alginates present in the hydrolyzed extract, which allows
for an increase in plant-available minerals and increased soil
aeration and water-holding capacity (Spinelli et al., 2010; Craigie,
2011; du Jardin, 2015; Illera-Vives et al., 2015). Actiwave R©, a
metabolic enhancer prepared from A. nodosum, was used as a
natural iron chelator for improved productivity of strawberry
(Spinelli et al., 2010).

Alginic acid is a polysaccharide made up of mannuronic
and guluronic acid units derived from brown seaweeds (Yabur
et al., 2007; Craigie, 2011; Battacharyya et al., 2015). Alginic
acids are a major constituent of the algal cell wall, comprising
between 15 and 30% by dry weight (Yabur et al., 2007; Khan
et al., 2009; Craigie, 2011; Battacharyya et al., 2015). Once
commercially extracted, alginates are able to form natural gums
or gels based on their composition (i.e., ratio ofM:G,mannuronic
acid:guluronic acid) and through their ability to bind water
(Glicksman, 1987; Yabur et al., 2007). Alginates have been found
to improve the physical conditions of soil (Khan et al., 2009;
Illera-Vives et al., 2015). Through natural chelation, alginates
bind to metal ions in the soil forming complex polymers (i.e.,
highmolecular weight), and thesemolecules absorbmoisture and
swell as a result (Khan et al., 2009; Battacharyya et al., 2015). It
is these swollen molecules that increase soil aeration and water-
holding capacity (Khan et al., 2009; Spinelli et al., 2010). Further,
through the aforementioned process, the presence of alginate
in the rhizosphere alters the soil structure to become a more
conducive environment for plant and microbial growth activity
(Battacharyya et al., 2015).

Change in the Host Plant Induces
Change in the Rhizospheric Microbial
Population
The interaction between soil microbes and plants is cyclic in
nature, known loosely as soil community feedback (Bever et al.,
2012). The composition of the soil microbial population is based
on the presence of the plant roots in the soil and compounds
in the soil. Plants will grow with the help of molecules in the
soil provided, in part, by the soil microbial population (Bever
et al., 2012). There are interactions between plant roots (inter-
and intra-species), between plant roots and insects, and between
roots and rhizospheric microbes (Bais and Kaushik, 2010).
Furthermore, there are also complex interactions between the
aforementioned microbes, insects, and roots with root exudates
(Bais and Kaushik, 2010).

The pretreatment of 10-day-old Medicago sativa (alfalfa)
plants with 1 g/L of Acadian R© (Acadian Seaplants Limited,
100 ml total) 2 days prior to inoculation with Sinorhizobium
melilotimore than doubled the number of bacteria present in the
rhizosphere, 12 h post-inoculation as compared to the untreated
control (Khan et al., 2012). The seaweed extract induced the plant
to produce root exudates (i.e., flavonoids) that would attract the
bacteria to the root surface (Khan et al., 2012). Similarly, it is also

reported that the application of ANE and its organic fractions
induced rhizobium nodulation by regulating the legume-rhizobia
signaling process (Khan et al., 2013).

Changes in Modes of Action and/or
Function of Rhizospheric Microbial
Population
The composition of the rhizospheric microbial population is
dependent on a plethora of factors, including soil temperature,
water-holding capacity, oxygen supply, and soil cultivation
practices (i.e., history of fertilizer and pesticide applications
and tillage) (Kilian et al., 2000). A change in any one of these
factors could significantly impact the composition of the various
microbial populations as well as the microbial functionality in the
soil (Kilian et al., 2000). The application of select seaweed extracts
directly to the soil or indirectly to the plant has also been reported
to alter the rhizospheric microbial population.

A soil drench application of Actiwave R© (10 ml of extract
in 20 ml of water per plant) on strawberry plants increased
the rhizospheric microbial population (Spinelli et al., 2010)
and subsequent metabolic activity when applied in lower
concentrations, compared to untreated soils as a result of
stimulation from the bioactive components in the extract (Alam
et al., 2013). The root-drench application of an Ascophyllum
extract improved the growth of strawberries and carrots by
acting as a prebiotic and increasing soil microbial activity
(Alam et al., 2013, 2014).

Conversely, constituents in various seaweed extracts have
shown effectiveness as biocontrol agents against bacteria,
viruses, fungi, and nematodes (Nabti et al., 2017). A soil
drench application of an alkaline seaweed extract (Maxicrop
Original R©, Maxicrop International Limited) to the soil of
A. thaliana plants significantly reduced the number of deleterious
female nematodes (Meloidogyne javanica) and number of eggs,
compared to untreated soils (Wu et al., 1998). This study and
others (Wu et al., 1998) suggested that the betaine constituent
of the extract was responsible for inducing a defense reaction
in A. thaliana and L. esculentum (tomato) against the root-knot
nematode (Wu et al., 1998).

CONCLUSION AND FUTURE
CHALLENGES

In the current agricultural landscape, cultivation practices are
reliant on synthetic chemicals [approximately 200 teragrams (1
Tg = 1012 g) per year worldwide] (Wu et al., 2018) to combat
abiotic and biotic stresses (pesticides) and to promote plant
growth (fertilizers). The short- and long-term negative impacts
of synthetic chemicals on the environment and associated plant
and animal health are becoming more prevalent every day.
However, to sustain the growing human population, agriculture
must be more productive than ever, with less viable resources and
variable growing conditions (i.e., cultivatable soils, access to water
and nutrients, consistent temperatures, etc.). To reduce reliance
on synthetic chemicals, the solution must include multiple
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sources of natural compounds that are proven to promote
crop growth under seemingly inadequate growing conditions
and inherently refuel the surrounding ecosystems with more
beneficial compounds, i.e., perform the roles of the pesticides and
fertilizers without the harmful side effects. The utility of various
extracts of A. nodosum-based products as biostimulants is multi-
faceted: this complex alga and its extracts have shown efficacy
in promoting plant growth and improving crop plant resilience
to environmental perturbations, while being a natural, marine
species, and therefore, when applied correctly (i.e., defined rates
and timings of applications), they pose no harmful effects.
Furthermore, ANE has been reported to act as both a biocontrol
agent and a soil-microbial supplement.

Although the existing evidence for A. nodosum extracts as
biostimulants in agriculture is promising, moving forward, it
is important to focus the research in order to fully saturate
agricultural practices with these extracts. Now that we are
beginning to accumulate evidence on the modes of action
of the extracts, we need to evaluate other aspects of extract
application to optimize the desired mode of action. This push
for more information creates a plethora of research questions:
What is the optimal application rate of ANE, and in what
application method (i.e., drench or spray)? When is the optimal
time of application, and is there need for re-application during
the growing season? If so, at what time intervals? How
do these answers vary between crops and between climatic
locations? Additionally, there are differences between extracts
of A. nodosum based on extraction method and the resultant
composition of the extract. How can current extraction methods
be optimized to reap the most benefits from each extract?

Can extraction methods not previously used with A. nodosum
be adopted industrially (i.e., E-AE)? How do the resultant
extracts compare to currently available (and reasonably well
studied) extracts, and how can we exploit their positive modes
of action? Furthermore, it is important to investigate whether
different modes of application inherently alter the mode of
action of the extracts in improving plant growth through the
integration of modern interdisciplinary science. The application
of the research to real-world producers will be of great benefit
to understand any changes in behavior of the extracts under
environmental conditions, while further identifying the modes of
action will increase the extension of applications of the extracts
into other fields.
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