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Abstract

We present an unsupervised optical flow estimation
method by proposing an adaptive pyramid sampling in the
deep pyramid network. Specifically, in the pyramid down-
sampling, we propose an Content Aware Pooling (CAP)
module, which promotes local feature gathering by avoiding
cross region pooling, so that the learned features become
more representative. In the pyramid upsampling, we pro-
pose an Adaptive Flow Upsampling (AFU) module, where
cross edge interpolation can be avoided, producing sharp
motion boundaries. Equipped with these two modules, our
method achieves the best performance for unsupervised op-
tical flow estimation on multiple leading benchmarks, in-
cluding MPI-SIntel, KITTI 2012 and KITTI 2015. Partic-
uarlly, we achieve EPE=1.5 on KITTI 2012 and F1=9.67%
KITTI 2015, which outperform the previous state-of-the-art
methods by 16.7% and 13.1%, respectively.

1. Introduction

Optical flow estimation is a long lasting research topic
since proposed by Horn and Schunck [6]. It is a fundamen-
tal technique for many computer vision applications [13, 1,
29]. Early methods optimize the pre-defined energy func-
tions with various assumptions and constraints [32, 33, 31,
28]. The learning-based optical flow methods become more
popular than the traditional variational-based counterparts
due to their leading performances in benchmark evaluations
and real-time inference speed.

The DNN-based methods can be classified into super-
vised [3, 25, 8, 34, 9] and unsupervised [22, 19, 42, 18, 14]
approaches. The training of supervised methods require the
ground-truth flow labels, which is hard to obtain. As a re-
sult, these models are primarily trained on large-scale syn-
thetic datasets [3, 2], because obtaining ground-truth anno-
tations for real-world scenarios is prohibitively expensive.
Consequently, the supervised methods may suffer from do-
main transfer problems, where the synthesized images are
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(a) Feature similarity map with and w/o our content aware pooling (CAP).

(b) An example from Sintel Clean benchmark.

Figure 1. Some examples from Sintel Clean benchmark. (a) With
our proposed CAP, the learned features are more representative.
(b) Compared with previous unsupervised methods, UFlow [14],
SimFlow [11], ARFlow [18], and SelFlow [20], our approach pro-
duces sharper and more accurate results at motion boundaries.

different from the real ones.
In unsupervised methods, the ground-truth annotations

are not necessary. The photometric loss is optimized by
warping one image to the other with predicted optical flows.
Without the label guidance, occlusions and motion bound-
aries need special attentions during the unsupervised train-
ing process [14, 21].

The pyramid structure is popular in the optical flow
learning, where global and local motions can be estimated
in a coarse-to-fine manner. We notice that there are two
components that should be improved in the pyramid struc-
ture [34, 9]. One is related to the pyramid downsampling
and the other is the upsampling.

In the process of pyramid downsampling, the network
adopts striding in convolution (SIC) or the pooling to de-
crease the feature sizes. However, the striding or pooling
is fixed with a rectangular size, which may not be optimal
for the feature information gathering. Considering that, a
rectangle may span different image regions, where multiple
irrelevant values are forced to gather together, picking one
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Figure 2. Illustration of our network, where ‘Conv’ represents a convolutional block that contains two convolution layers with kernel size
3 and stride 1, ‘Estimator’ denotes the conventional optical flow estimator, ‘CAP’ is the proposed Content Aware Pooling module, and
‘AFU’ is the proposed Adaptive Flow Upsampling module.

of them may not be optimal, yielding values that are less
representative. On the other side, in the pyramid upsam-
pling, the flows are interpolated from coarse-to-fine. How-
ever, such an interpolation may cross image edges, resulting
in the blur effects in the estimated flows. Even worse, such
errors will be propagated and aggregated when the scale be-
comes finer.

Based on the above observations, we propose an Adap-
tive Pyramid Sampling approach to upgrade the pyra-
mid network structure, including a Content Aware Pool-
ing (CAP) module for the pyramid downsampling and an
Adaptive Flow Upsampling (AFU) module for the pyra-
mid upsampling. The CAP can automatically group image
features, such that the similar features can be gathered lo-
cally before the downsampling. With our CAP, the learned
features become more representative, so as to promote the
overall performance. On the other side, the AFU module
interpolates the flows adaptively, where cross edge interpo-
lation can be avoided, leading to sharper flows at motion
boundaries. Specifically, in the AFU, we propose a sam-
pling regularization loss to constrain the learned adaptive
sampling maps, where the upsampled flow fields can better
fit the object boundaries.

Fig. 1 provides some visualization results on Sintel
Clean dataset. Specifically, Fig. 1(a) shows some feature
similarity maps. We extract features from source and target
images. We choose one feature vector at a position (marked
in red cross) from the source image and calculate its similar-
ity with all features at the target image. We plot the similar-
ity as a heat map, where high similarity values are depicted
in red. As seen, with our CAP, the feature at the ‘red cross’
is quite different from the features at the other places. In
contrast, without our CAP, features at many different places
also have high similarity values. Therefore, our model can
learn more representative features with the proposed con-
tent aware pooling. Fig. 1(b) shows our predicted optical

flow compared with other unsupervised methods. As can be
seen, with the help of AFU, the interpolation can produce
sharp motion boundaries. Equipped with CAP and AFU,
the classical pyramid network has been upgraded, produc-
ing leading performance both quantitatively and qualita-
tively when evaluated on the flow benchmarks [2, 4, 23].
To sum up, our main contributions include:

• We propose a Content Aware Pooling (CAP) module
for the pyramid downampling. The CAP can assem-
ble similar features locally, improving the capability
of feature representation substantially.

• We propose an Adaptive Flow Upsampling (AFU)
module for the pyramid upsampling, where the blurs
caused by cross-edge interpolation can be avoided,
yielding sharper motion boundaries.

• We achieve superior performance over the state-of-the-
art unsupervised methods, evaluated on multiple lead-
ing benchmarks.

2. Related Work
2.1. Supervised Deep Optical Flow

Supervised methods require the annotated ground-truth
flow labels to train the network [7, 41]. FlowNet [3, 10]
was first proposed by training on the flying chair dataset [3].
PWC-Net adopted the pyramid network that learns the mo-
tion from carose to fine, which calculates cost volumes at
each pyramid level [34]. LiteFlowNet proposed to build
lightweight networks for the efficiency [8]. IRR-PWC prop-
soed an iterative residual refinement scheme in the pyramid
network [9]. Recently, RAFT [35] proposed to recurrently
estimate flow fields on 4D correlation volumes, achieving
state-of-the-art performance.

2.2. Unsupervised Deep Optical Flow

Unsupervised methods directly minimize the difference
between two input images, by warping one to the other with



Figure 3. The feature matching visualizations of our CAP module vs. conventional striding in convolution. We extract features from the
source and the target images. We pick a feature vector from the source feature map (red cross), and compute cosine differences with: other
places in the source feature map (SFS), and with all features at the target feature map (FFS). More details are provided in Sec. 3.2. Red
represents high similarity score and blue represents low similarity score. Features by SIC are likely to be similar with other places, while
features by CAP is only similar with themselves.

predicted flow vectors. In this way, there is no need of
ground-truth labels. However, the training becomes more
difficult than supervised methods. Different methods with
different focus have been proposed, including occlusion-
aware losses by forward-backward check [22] and range-
map occlusion check [38], census transform constrain [27],
multi-frame formulation [12], data argumentation [18], data
distillation [19, 20], epipolar constrain [42], depth con-
strains [26, 43] and feature similarity constrain [11]. By
integrating multiple components, UFlow achieves the lead-
ing performance on multiple benchmarks [14].

2.3. Image Guided Upsampling

Our method is also related to the edge-aware interpola-
tion and upsampling, such as joint bilateral upsampling [15]
and guided image filtering [5]. Apart from the tradi-
tional methods, CNN approaches have also been attempted
to extract guidance feature or guidance filter for upsam-
pling [17, 39, 30]. We compare our AFU module with these
opponents to demonstrate its effectiveness.

3. Algorithm
In this section, we first provide an overview of the net-

work architecture of our method in Sec. 3.1. Then we intro-
duce the proposed Content Aware Pooling (CAP) module
in Sec. 3.2 and Adaptive Flow Upsampling (AFU) module
in Sec. 3.3. Finally, we describe the loss functions used for
unsupervised training in Sec. 3.4.

3.1. Network Architecture

The pipeline of the proposed network is illustrated in
Fig. 2. It takes two frames I1 and I2 as inputs and pro-
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Figure 4. Illustration of our Content Aware Pooling module. For
each feature vector in high resolution feature F i

t , we add it to
its corresponding neighbor position in low resolution feature F̀ i

t

based on the sampling probability kernel gp that is calculated by
adaptive gumbel softmax and reshape operation.

duces an optical flow field V1 that describes the motion of
each pixel in I1 towards I2. The whole network contains
three parts: an adaptive sub-net, a siamese feature encoder
and a flow decoder.

First, we use the adaptive sub-net to extract multi-scale
adaptive sampling maps which will be used later in the CAP
module and the AFU module:{

Gi
1, G

i
2, U

i
1

}
= A(I1, I2), i ∈ {0, 1, ..., N} (1)

whereA is our adaptive sub-net, i is the index of each scale
and small number represents the coarse scale, Gi

1, Gi
2 and
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Figure 5. Illustration of our Adaptive Flow Upsampling module.
The flow vector in high resolution flow field V i

1 (p) is generated
by sampling and fusion according to its sampling kernel up.

U i
1 are adaptive sampling maps. In our implementation, the

adaptive sub-net is designed as a simple U-Net structure de-
tailed in our supplementary files.

Second, in the siamese feature encoder, we extract multi-
scale feature pairs from the input images to cover both
global and local information, which is formulated as:

F̀ i
t = G(F i

t , G
i
t), (2)

F i−1
t = Ci−1(F̀ i

t ) (3)

where t ∈ {1, 2} is index of the input images, G represents
the proposed CAP module, F̀ i

t is the downsampled feature
of F i

t , and Ci is a convolution layer.
After the feature encoding process, we estimate flow

fields by the flow decoder formulated as follows:

V̂ i−1
1 = U(V i−1

1 , U i
1), (4)

V i
1 = D(F i

1, F
i
2, V̂

i−1
1 ), (5)

where U represents our AFU module, V̂ i−1
1 is the upsam-

pled flow from i− 1 scale and E is a flow estimator. Specif-
ically, the flow estimatorD is designed following the recent
work UFlow [14], which contains feature warping, correla-
tion layer, cost volume normalization, a dense convolution
block and a dilated convolution block.

Generally, convolution layers with stride = 2 are used to
downscale feature maps. However, the regular downsam-
pling method based on sliding windows may fuse features
from different objects, reducing the matching accuracy of

pair-wise correlation estimation. To tackle this issue, we
propose CAP module to automatically group similar fea-
tures in downsampling process, referred to as content aware
pooling. Besides, we notice that the commonly used bilin-
ear upsampling may introduce interpolation errors and blur
artifacts during decoding process. Thus, the AFU module
is proposed to ease this problem by adaptively interpolating
flow fields with learnable weights. The details of these two
modules are presented in Sec. 3.2 and Sec. 3.3.

3.2. Content Aware Pooling

As mentioned above, CAP module is proposed to auto-
matically group similar features in the pooling process. The
illustration of our CAP is shown in Fig. 4. The input is a
high resolution feature map F i

t with size ofH×W ×c, and
an adaptive sampling map Gi

t with size of H ×W × 11, in
which 9 channels are used as sampling scores G

i

t and the
rest 2 channels are used as the control parameter σ and τ in
our adaptive gumbel softmax. The output is a downsampled
feature map F̀ i

t with size of H
r ×

W
r × c, where c denotes

the channel number and r is the sampling rate, typically set
to 2 in feature encoding process.

For each feature vector F i
t (p) at spatial position p, we

calculate a sampling probability kernel gp(q) from Gi
t(p),

which indicates the probability of F t
i (p) contributing to

the neighbouring region of its corresponding position q ∈
N (p/r) in the low resolution feature F̀ i

t . Then we gener-
ate the feature F̀ i

t by grouping and accumulating all feature
vectors in F i

t according to their sampling probability (the
‘
⊗

’ and ‘Add’ operation in Fig. 4):

F̀ i
t (q) =

∑
p∈N×r(q)

gp(q)F i
t (p), (6)

whereN×r(q) is a set of pixels in F i
t whose sampling prob-

ability kernel covers position q in F̀ i
t .

In order to avoid feature grouping across different re-
gions, we use adaptive gumbel softmax [24, 37] to suppress
small probabilities when producing sampling probability
kernels. The adaptive sampling map Gi

t is first splitted as
sampling scores G

i

t(j,p) and control parameters σ(p) and
τ(p) to control the distribution tendency of sampling ker-
nels, where j is channel index and p is spatial coordinate.
In summary, the adaptive gumbel softmax can be formu-
lated as follows:

x(j,p) =
G

i

t(j,p)− |σ(p)|
sigmoid(τ(p)) + ρ

, (7)

kp(j) =
exp(x(j,p))∑9
k exp(x(k,p))

, (8)

where ρ is a constant to avoid zero denominator and x(j,p)
is the transformed sampling score.



Figure 6. We show qualitative comparisons with the state-of-the-art method UFlow [14] on online evaluation benchmarks, including Sintel
Clean (first row), Final (second row), KITTI 2012 (third row) and 2015 (last row). The error maps of predictions are visualized in the last
two columns. In error maps, brighter regions indicate the larger estimation errors except that visualized by KITTI 2015 benchmark where
correct estimations are displayed in blue and wrong ones in red.

Fig. 3 provides some visualizations of content aware
pooling results by comparing our CAP module with con-
ventional striding in convolution (SIC). We first interpolate
pyramid features into the image size and concatenate them
together. Then feature vector in I1 located by the red cross
is selected to calculate cosine similarity with features of I1
and I2, which is the self feature similarity (SFS) map and
the forward feature similarity (FFS) map, respectively. The
SFS map reveals the discriminative ability of the encoded
features and the FFS map reveals the matching ability be-
tween feature pairs. From Fig. 3, we can see that feature ex-
tracted by SIC method is likely to be similar with neighbor
objects, while feature by our CAP module is only similar
with its corresponding feature vector.

3.3. Adaptive Flow Upsampling

The conventional bilinear upsampling method may in-
terpolate flow vectors across object boundaries leading to
blur artifacts and errors during flow decoding process. To
solve this problem, we design an adaptive flow upsampling
module to adaptively interpolate flow fields with learnable
weights. The detail of our AFU module is shown in Fig. 5.
Given a low resolution flow field V i−1

1 of size H
r ×

W
r × 2

and a high resolution adaptive sampling map U i
1 with size

of H ×W × 11, our goal is to produce a high resolution
flow field V i

1 with size ofH×W ×2. We define p as a spa-
tial coordinate in V i

1 and q ∈ N (p/r) as its corresponding
neighbors in V i−1

1 . The flow vectors in high resolution flow
field V i

1 can be calculated by the following formulation (the
‘
∑

’ and ‘Assign’ operation in Fig. 5):

V i
1 (p) =

∑
q∈N (p/r)

up(q)V i−1
1 (q), (9)

where up(q) is a sampling probability kernel generated
from U i

1 to indicate the contribution probability of V i−1
1 (q)

to V i
1 (p). The flow vectors in high resolution flow field

is generated by adaptively fusing flow vectors in low res-
olution flow field based on sampling probability kernels.
Note that, in order to suppress the probability of flow fusion
across edges, we use adaptive gumbel softmax as in Eq. 7
and Eq. 8 to produce the kernels, where small probabilities
are compressed to zeros.

3.4. Unsupervised Losses

In order to train our network in unsupervised setting
where ground-truth is not available, we use a set of unsuper-
vised losses as our training objective. Our main objective is
the photometric loss Ld, which is designed based on the
brightness constancy assumption that the object appearance
should be invariable in input frames. However, occlusion
regions caused by moving objects can not be optimized by
the photometric loss. We explicitly exclude these regions
in the photometric loss by forward-backward consistency
checking [22]. As a result, the photometric loss Ld is for-
mulated as follows:

Ld =

∑
p Ψ
(
I1(p)− I2

(
p + V1(p)

))
·O1(p)∑

pO1(p)
, (10)

where O1 is the occlusion mask generated by forward-
backward consistency checking. ‘1’ indicates the non-
occluded pixel and ‘0’ means the occluded pixel. Ψ is the
robust penalty function [19]: Ψ(x) = (|x|+ ε)q in which q
and ε are set to 0.4 and 0.01.

Following previous works, several loss functions are
used to train our model, including the edge-aware smooth
loss Ls that improves the smoothness of output flow
field [38], the census loss Lc that increases the robust-
ness under illumination changes [22], the boundary dilated
warping loss Lb to learn motions towards outside the im-
age plane [21], the augmentation regularization loss La that



Method KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

train test train test (F1-all) train test train test
Su

pe
rv

is
ed

FlowNetS [3] 8.26 – – – 4.50 7.42 5.45 8.43
FlowNetS+ft [3] 7.52 9.1 – – (3.66) 6.96 (4.44) 7.76
SpyNet [25] 9.12 – – – 4.12 6.69 5.57 8.43
SpyNet+ft [25] 8.25 10.1 – 35.07% (3.17) 6.64 (4.32) 8.36
LiteFlowNet [8] 4.25 – 10.46 – 2.52 – 4.05 –
LiteFlowNet+ft [8] (1.26) 1.7 (2.16) 10.24% (1.64) 4.86 (2.23) 6.09
PWC-Net [34] 4.57 – 13.20 – 3.33 – 4.59 –
PWC-Net+ft [34] (1.45) 1.7 (2.16) 9.60% (1.70) 3.86 (2.21) 5.13
IRR-PWC+ft [9] – – (1.63) 7.65% (1.92) 3.84 (2.51) 4.58
RAFT [35] – – 5.54 – 1.63 – 2.83 –
RAFT-ft [35] – – – 6.30% – 2.42 – 3.39

U
ns

up
er

vi
se

d

BackToBasic [40] 11.30 9.9 – – – – – –
DSTFlow [27] 10.43 12.4 16.79 39% (6.16) 10.41 (6.81) 11.27
UnFlow [22] 3.29 – 8.10 23.3% – 9.38 (7.91) 10.22
OAFlow [38] 3.55 4.2 8.88 31.2% (4.03) 7.95 (5.95) 9.15
Back2Future [12] – – 6.59 22.94% (3.89) 7.23 (5.52) 8.81
NLFlow [36] 3.02 4.5 6.05 22.75% (2.58) 7.12 (3.85) 8.51
DDFlow [19] 2.35 3.0 5.72 14.29% (2.92) 6.18 (3.98) 7.40
EpiFlow [42] (2.51) 3.4 (5.55) 16.95% (3.54) 7.00 (4.99) 8.51
SelFlow [20] 1.69 2.2 4.84 14.19% (2.88) 6.56 (3.87) 6.57
STFlow [36] 1.64 1.9 3.56 13.83% (2.91) 6.12 (3.59) 6.63
ARFlow [18] 1.44 1.8 2.85 11.80% (2.79) 4.78 (3.87) 5.89
SimFlow [11] – – 5.19 13.38% (2.86) 5.92 (3.57) 6.92
UFlow [14] 1.68 1.9 2.71 11.13% (2.50) 5.21 (3.39) 6.50

ASFlow(ours) 1.26 1.5 2.47 9.67% (2.40) 4.56 (2.89) 5.86

Table 1. Quantitative comparison with state-of-the-art methods on four widely-used datasets using EPE and F1-measure metrics (the lower
the better). Following previous works [14, 11, 18], ‘−’ means the result is not reported in the paper, ‘( )’ indicates images from test set
are used during unsupervised training, and ‘+ft’ means the supervised methods use images of target domain for training, otherwise using
synthetic data like Flying Chairs [3] and Flying Chairs occ [9]. The best unsupervised method is marked in bold and the second best is
marked in blue for better comparison.

introduces the equivariance constrain to encourage the ro-
bustness to variations [18].

In order to ensure the upsampled flow fields to better fit
object boundaries, we design a sampling regularization loss
Lr to constrain the learned adaptive sampling maps {U i

1}.
We first downscale the input image I1 to I01 , whose size is
the same as V 0

1 . Then we iteratively upsample the down-
scaled image and compute a reconstruction loss with the
original image, which is formulated as follows:

Ii1 = U(Ii−11 , U i
1), (11)

Lr =
∑
p

Ψ(I1(p)− IN1 (p)), (12)

where IN1 is the reconstructed image by the iterative upsam-
pling process described in Eq. 11.

Eventually, our loss function is a weighted combination

of above individual loss terms:

L = Ld + λsLs + λcLc + λaLa + λrLr, (13)

where λs, λc, λa and λr are hyper-parameters, set to λs =
0.05, λc = 1, λa = 0.5, λr = 0.1 in our experiments.

4. Experimental Results
4.1. Datasets and Implementation Details

We conduct comprehensive experiments on four widely-
uesd optical flow benchmarks, including MPI-Sintel [2],
KITTI 2012 [4], and KITTI 2015 [23]. MPI-Sintel con-
tains 1,041 training image pairs extracted from the rendered
open-source movie, divided into ‘Clean’ and ‘Final’ passes.
Following previous works [14, 11, 18], we use both versions
of rendering images to train our model. For KITTI 2012 and
2015, we first use the 28,058 image pairs from KITTI raw



Figure 7. Qualitative visualizations of the proposed method on Sintel Clean. The room in flows and error maps are shown in the right
corner of each sample.

CL BDWL ARL CAP AFU KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

ALL NOC OCC ALL NOC OCC ALL NOC OCC ALL NOC OCC

4.52 1.76 19.63 7.58 2.46 30.43 (3.52) (1.87) (12.9) (4.19) (2.59) (13.64)
! 3.39 1.09 16.58 6.89 2.20 28.12 (3.41) (1.62) (13.5) (3.85) (2.17) (13.71)
! ! 1.42 0.91 4.39 3.00 2.12 6.89 (2.84) (1.50) (10.6) (3.60) (2.28) (11.52)
! ! ! 1.37 0.93 3.98 2.64 1.96 6.01 (2.61) (1.33) (10.1) (3.17) (1.92) (10.70)
! ! ! ! 1.29 0.89 3.78 2.53 1.98 5.16 (2.51) (1.27) (9.79) (2.98) (1.79) (9.98)
! ! ! ! 1.30 0.88 3.82 2.57 1.99 5.08 (2.46) (1.23) (9.63) (2.94) (1.73) (10.07)
! ! ! ! ! 1.26 0.87 3.72 2.47 1.93 5.02 (2.40) (1.20) (9.36) (2.89) (1.71) (9.89)

Table 2. Ablation for unsupervised components. CL: census loss [22], BDWL: boundary dilated warping loss [21], ARL: augmentation
regularization loss [18], SGU: self-guided upsampling, PDL: pyramid distillation loss. The best results are marked in bold.

dataset to pre-train the model, and then perform finetuning
on multi-view extension data.

The implementation of the proposed ASFlow is based
on PyTorch toolbox. We train our model on 2 NVIDIA
GeForce GTX 2080Ti GPUs for about 1000k iterations. For
better generalization, we follow previous work [18] to use
basic data augmentation strategies like random crop and
horizontal flip for training. The standard evaluation met-
rics, i.e., average endpoint error (EPE) and the percentage
of erroneous pixels (F1-measure), are used to evaluate the
performance of the predicted optical flow.

4.2. Comparison with State-of-the-Arts

In Tab. 1, We compare our method with State-of-the-Art
(SOTA) works, including both of supervised and unsuper-
vised methods, on four widely-used datasets. The best un-
supervised method is marked in bold and the second best is
marked in blue for better comparison.

Comparison with Unsupervised Methods. As shown in
Tab. 1, our ASFlow consistently achieves better perfor-
mance than other methods on four standard benchmarks.
Specifically, our method achieves an EPE error of 1.5 on
KITTI 2012 test set, which surpasses previous top-ranked

methods UFlow [14] and ARFLow [18] by around 21.1%
(1.9→ 1.5) and 16.7% (1.8→ 1.5), respectively. For KITTI
2015 online evaluation, our method set new records of 2.47
in EPE on training set and 9.67% in F1-measure, which out-
performs previous methods by a large margin. On the most
challenging dataset MPI-Sintel, our method achieves EPE
scores of 4.56 on ‘Clean’ pass for online testing. It obtains
EPE = 5.86 on ‘Final’ pass, outperformimg previous top
methods SimFlow [11] and UFlow [14] by 1.06 and 0.64 in
terms of EPE. It is worth noting that our method is the first
one to achieve the best results on all benchmarks, as shown
in each line of Tab. 1 (best viewed in colors).

Fig. 6 provides some qualitative comparisons with the
previous best method UFlow [14]. As can be seen, our
method is clearly able to make accurate and smooth predic-
tions, especially when handling the tough regions around
foreground boundary.

Comparison with Supervised Methods. We also report
the results of representative supervised methods for com-
prehensive comparison, see Tab. 1. For cross domain evalu-
ation, we consider the ground-truth of optical flow is not
available for training. Thus, the supervised models are
trained on synthetic data such as Flying Chairs [3] and Fly-



ing Chairs occ [9], while the training procedure of the un-
supervised methods can be directly performed only using
target domain images. As can be seen, our method achieves
better performance than all the supervised methods. Espe-
cially in real scenarios like KITTI 2015 dataset, it signifi-
cantly outperforms the well-known supervised methods like
LiteFlowNet [8], PWC-Net [34] and RAFT [35] by a large
margin (7.99, 10.73 and 3.07 in EPE, respectively).

As for in-domain evaluation, our method generally
achieve competitive performance with the supervised meth-
ods. Specially, on KITTI 2012 and 2015 datasets, our
method achieves 1.5 in EPE and 9.67% in F1-measure,
which surprisingly exceed the recent supervised method
like and LiteFlowNet [8].

4.3. Ablation Study

In this section, we conduct a series of ablation expri-
ments to evaluate each component in the proposed net-
work. Following [20, 11], we train our model on train
sets of KITTI and MPI-Sintel. The EPE error over all pix-
els (ALL), non-occluded pixels (NOC) and occluded pixels
(OCC) are reported for quantitative comparisons.
Unsupervised Components. Following the success of
prior works [21, 22, 21], we employ some effective com-
ponents to boost the training of our model in an unsuper-
vised manner. As shown in the first line of Tab. 2, we first
train a baseline model using photometric loss and smooth
loss, without the proposed modules. After adding census
loss [22] (CL), boundary dilated warping loss [21] (BDWL)
and augmentation regularization loss (ARL), it obtains con-
sistent improvements by three metrics on all datasets, which
demonstrates these three modules benefit to boosting a bet-
ter prediction. Meanwhile, the performance of this model
(CL + BDWL + ARL) is equivalent to that reported in pre-
vious best method UFlow [14]. In addition, replacing the
original striding strategy by our CAP in the each stage of
encoder network greatly improves the performance. Simi-
larly, we append our AFU module on decoders, and observe
that the three metrics are clearly reduced (the lower the bet-
ter). Finally, we fully equip the model with both of CAP and
AFU, which brings about 10% performance improvement.
Ablation for Upsampling Modules. There have been
several works attempt to propose general upsampling opera-
tions based on image information, such as JBU [15], GF [5],
DJF [16], DGF [39] and PAC [30]. However, these meth-
ods are not suitable to this challenging task. Here we pro-
pose a task specific upsampling strategy to better serve the
need of optical flow upsampling. To verify the effect of
our method, we carry out extensive comparisons with the
upasampling methods. Specifically, we build a simple pyra-
mid network with the same loss function, and repetitively
change upsampling operations with the modules mentioned
above for fair comparison. As we can see in Tab. 3, our

Method KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Bilinear 1.29 2.53 (2.51) (2.98)
JBU [15] 1.51 3.00 (2.66) (2.98)
GF [5] 1.40 2.90 (2.72) (2.92)

DJF [16] 1.36 2.79 (2.75) (3.20)
DGF [39] 1.41 3.14 (2.69) (3.05)
PAC [30] 1.42 2.65 (2.58) (2.95)
AFU 1.28 2.52 (2.45) (2.90)
AFU-RL 1.26 2.47 (2.40) (2.89)

Table 3. Comparison of our AFU with classical upsampling meth-
ods, such as JBU [15] and GF [5], and deep-based upsampling
methods, such as DJF [16], DGF [39] and PAC [30]. AFU-RL
denotes the sampling regularization loss is used to enable the up-
sampled flow to better fit object boundaries.

Method KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Bilinear 1.51 2.81 (2.75) (3.20)
AVE 1.39 2.75 (2.66) (2.98)
MAX 1.40 2.69 (2.72) (3.02)
SIC 1.30 2.57 (2.46) (2.94)
CAP 1.26 2.47 (2.40) (2.89)

Table 4. Comparison of our CAP with different feature pooling
methods: average pooling (AVE), max pooling (MAX), and strid-
ing in convolution (SIC).

AFU achieves the best performance over all the competi-
tors. This is because AFU can adaptively interpolate flow
fields with learnable weights in pyramid decoders, so that
the blur artifacts caused by cross-edge interpolation can be
avoided, see column 4 of Fig. 7.

Ablation for Feature Pooling Strategies. Tab. 4 reports
the comparison of our CAP with typical pooling strategies,
including average pooling (AVE), max pooling (MAX), and
striding in convolution (SIC). For fair comparison, all the
experiments are conducted under the same setting. As we
can see, our CAP consistently obtain better scores than oth-
ers on four datasets. As mentioned in Sec. 3.2, the features
are adaptively grouped based on content and appearance
similarity, which helps the network to maintain spatial de-
tails of different objects. Experimental results demonstrate
the obtained distinctive information is crucial for recover-
ing the optical flow on thin stuffs as shown in Fig. 7 (first
sample, column 3 and 5).

5. Conclusion
We have presented ASFlow, an adaptive pyramid sam-

pling method for unsupervised optical flow estimation. Two
modules have been proposed, content aware pooling (CAP)
for the pyramid downsampling and adaptive flow upsam-
pling (AFU) for the upsampling. We compare our method
with previous representative optical flow methods on the
several leading benchmarks. In the further, we will explore
the proposed two modules in the other applications, espe-
cially the CAP for the high-level vision tasks.
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