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Abstract. The formulation of general relativity discovered by Ashtekar and the
recent resulis obtained in non-perturbative quantum gravity using loop-space tech-
niques are reviewed. The new formulation is based on the choice of a set of Lagrangian
(and Hamiltonian) variables, instead of the spacetime metric. In terms of these new
variables, the dynamical equations are remarkably simplificd and a structural identity
between general relativity and the Yang-Mills theories is revealed. The formalism has
proven to be useful in numercus problems in gravitational physics. In quantum grav-
ity, the new formalism has overcome long-standing difficulties and led to unexpected
results. A non-perturbative approach to quantum theory has been constructed in
terms of the Wilson loops of the Ashtekar connection, This approach, denoted as
loop-space representation, has Jed to the complete solution of the gquantum diffeomonr-
phism constraint in terms of knot states, to the discovery of an infinite-dimensional
class of solutions to the quantum gravitational dynamics, and to certain surprising
indications on the existence of a discrete structure of spacetime around the Planck
length, These results are presented here in a compact self-contained form. The
basic Ashtekar formalism is presented and its applications are outlined. The loop-
space répresentation and the non-perturbative knot states of quantum gravity are
described in detail, with particular regard to their physical interpretation and to the
information they may provide on the microstructure of spacetime.

1. Classical theory

1.1, Why new variables?

The discordance between our basic theory of mechanics—qguantum theory—and our
basic theory of spacetime—general relativity—is a prime open problem in fundamental
physics. In 1988 Abhay Ashtekar introduced a reformulation of general relativity in
terms of a set of variables that replace the spacetime metric. In the following five
years, this formalism has been used in a large number of problems in gravitational
physics. Ashiekar’s target was the quantum gravity issue. And, indeed, the new-
variables formalism has opened a novel line of approach to this problem,

In conjunction with new techniques for dealing with non-perturbative quantum
field theories—in particular, the loop representation—the new formalism has over-
come long-standing difficulties in traditional approaches to quantum gravity. The
new results have brought new drive to the field and have raised hopes for the solution
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of the quantum gravity puzzle. The present report is a review of the new variables
formalism and of these recent developments in quantum gravity.

General relativity is characterized by its great beauty. Einstein's idea of inter-
preting the gravitational force as a modification of the spacetime metric geometry is
so compelling that it is legitimate to ask why would we want to describe the gravi-
tational field in terms of some other kind of variable than the spatetime metiic. In
the Ashtekar reformulation, general refativity is more similar to the rest of theoretical
physics than in the old formulation; however, as T will try to make clear in this review,
far from challenging the beauty of the theory, the new formalism sheds new light and
reveals new aspects of it. General relativity is still capable of providing surprises and
wonders.

This review appears five years on from Ashtekar’s introduction of the new variables.
The formalism is now quite settled, but the applications are still emerging. This review
is far from being definitive; rather, it represents a snapshot of the present state of the
art of the research. As far as the basic new formalism is concerned, this review
contains a synthetic, but complete, description of the theory (section 1). Applications
in classical physics are briefly outlined and the main results are mentioned, at least
as far as I understand them. A few applications, arbitrarily chosen on the grounds of
Laste and of their relevance for the quantization, are described in a little more detail
{section 2).

The new approach to non-perturbative quantum gravity is described in detail. The
focus is more on ideas than on technicalities. My aim is to present a coherent overall
view of the work done so far; the reader should refer to the specific papers for the
technical detaiis. The main problem is how to define a quanium field theory in the
absence of a background metric geometry. The loop representation is an approach
to the solution of this problem. This representation is first introduced in the context
of wel] known theories (section 3). The main results in quantum gravity are then
described, including recent (unpublished} resuits on the physical interpretation of the
exact solutions to the quantum gravitational equations—the knot states—and on the
emergence of a discrete structure at the Planck scale (section 4).

There are two hooks related to the subject of the present report. The first [1] was
published shortly after the introduction of the new formalism. It contains a didactic
introduction to the new ideas, and very useful background material. The second book
[2] is based on a series of lectures that Ashtekar gave in Poona, India, in July-August
1989. There is a certain overlap with the present paper; the present paper is much
more compact, is writien in a language more oriented to a standard physics audience,
and is based on a different perspective. It also includes certain recent developments.
The book contains more details, including all the demonstrations, and develops topics
just touched upon here. As far as the main results are concerned, the present review
paper is complete and essentially self-contained.

1.8 Lagrangian theory

General relativity can be reformulated in terms of two fields: a (real) tetrad field e{‘ )
and a complex connection 4A{;’ . Here the indices g, v, ... are spacetime indices and
run from 0 to 3, and the indices I, J, K, ... are internal indices, which also run from
0 to 3 and are raised and lowered with the Minkowski metric p/Y = [-1,1,1,1]. The
connection 4Af_," is defined to be self-dual, namely to satisfy

AAMN _ 1: MN 4407
‘41‘ —-"—'2'16 iJ A,ﬂ (1.1)
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where eMN 1y is the completely antisymmetric tensor. The action is

Sle,*A] = fd‘*m €16,y ‘L €T (1.2)
where *FJ7 is the Yang-Mills field strength of tAL

4F‘f,f = 5;14-'4£J _ ayﬂlAﬁJ +4A£M 4AUMJ _ 4A£M 4A,UMJ' (13)

The equations of motion that follow from the action (1.2) are

e“”""e,JFg;’ =0 (1.4)

(65168 + LieKLI yevoop (o re, ;) =0 (1.5)
where D, is the covariant derivative defined by *A.

The following theorem then holds.

Theorem. If (el (z),*AL’ (z)) satisfy the equations of motion of the theory (1.4) and
(1.5), the metric
I

gpu(r) = e,u(z) Ei(&‘:) nIJ (16)

is a solution of the vacuum Einstein equations. Similarly, every solution of the vacuum
Einsteln equations can be written in terms of the solution of the theory (1.2) as in

(1.6).
This is the Ashtekar theory in the Lagrangian formalism.

Some comments follow.

(1) The advantages of this formulation, and the simplification that this formulation
brings, will become clear. In particular, it is the Hamiltonian theory that descends
from the action (1.2) that will make results especially simple.

(ii) By emphasizing the role of the connection *AZ7 over the role of the metric, the
similarity between general relativity and Yang~Mills theories is underlined. Again, it
is in the canonical theory that this will become more evident.

(iii) A peculiar feature of this formulation is the use of complex numbers. Complex
numbers enter in this formulation in two distinct way. First, the variables are complex;
second, the action is complex. The puzzling aspect is the second. A complex action is
(to my knowledge) a novel feature in mechanics. As far as the Lagrangian formalism
is concerned, it will be shown in the next section that the imaginary part of the
action (1.2) has no effect on the equations of motion, Thus the imaginary part of the
action is harmless. However, this imaginary term affects the canonical framework. In
constructing the canonical formalism it will be necessary to deal with the {act that
action is complex. This problem will be discussed in detail in section 1.4 and in
appendix A.

{iv) Ashtekar introduced the new formalism [3] in the canonical framework and
using spinors. The bridge between the spinorial formalism and the one used here is
straightforward; it will be given in section 1.4. The Lagrangian formulation was con-
structed by Samuel, and by Jacobson and Smolin [4]. Several slightly different action
formulations, all leading to the same canonical theory, have then appeared. Among
these, there is quite an interesting action written purely in terms of a connection
(without tetrads fields) introduced by Capovilla et ol [5].

(v} In this paper, space is assumed to be compact. Therefore boundary terms are
systematically disregarded. For an analysis of the field fall-off conditions required for
a consistent definition of the theory in the open-space case, see [2].
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1.3. Relation with the Einstein formulation and the geometrical meaning of the new
variables

In this section, the relation between the new variables formalism and the standard
formulation of general relativity is constructed. I start from the metric formulation,
and construct the transformation to the new variables through two intermediate steps,
both of which are well known. The first is the Palatini, or first-order, form of the
thieory; the second is the use of tetrads. The relation to the standard formalism
proves the theorem of the previous section and elucidates the geometrical meaning of
the Ashtekar variables Al and ]

1.8.1. Palatini and telrads formelism. As Palatini realized, general relativity admits
a first-order formulation: it is possible to take the Einstein-Hilbert action

S[g) = f d'z /5" R, 1] (1.7)

and consider the metric and the affine connection I', as independent variables:

STl = [ & Vig™ R0 (1.8)

By varying I it follows that I' = T'[g], namely ar equation that fixes T' as the metric
affine connection defined by g (the Christoffe] symbol). By varying g we get the
vacuum Einstein equations.

The tetrad formalism consists in substituting the metric with four linearly inde-
pendent covariant vector fields ef‘, related to the metric by equation {1.6). They define

the 50(3, 1) connection w/”[e], usually denoted as the spin connection, by
8[#351 + w[’w[e]eﬁ] =0 (1.9)

{(this is the second Cartan structure equation). The Einstein-Hilbert action can be
rewritlen in terms of the tetrads:

Sle] :/dq.-r e efe’ R, [ae]] (1.10)

where ¢ is the determinant and ef,‘ the inverse of the matrix e{,, The Riemann curvature
is related to the curvature of the spin connection by

RE.olglell = efe, ; REJ[wle]] (L.11)
s0 that

Sfe] = /d“a. e effey R]T[wle]]. (1.12)

The first-order formalism, & la Palatini, and the use of the tetrads can be combined:
tetrads e and spin connection w can be considered as independent variables. The action

Sle,w] = /d% e effel R [w] (1.13)
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is again equivalent to the Einstein-Hilbert action. The equations of motion for w are
w = wle]; namely w is fixed to be the spin connection defined by e (via equation (1.9)).
The equations for e are the vacuum Einstein equations.

Geometrically, we are dealing with a vector Lorentz bundle over the spacetime
manifold. The I, J indices denote the vector components in the Lorentz fibre. w is
a connection on the bundle, and ¢ is a soldering form, namely a one-to-one mapping
between the fibre and the tangent space, at every point of the spacetime manifold.
These formulations are well known; in the next section I define the transformation to
the Ashtekar formulation.

1.8.2. The transformation {o the new variables. The integral
Tle,w] /d“x e effey e oy RMN[W] (1.14)

can be added to the action (1.13} without affecting the equations of motion. This
follows from the fact that the integral T[e] = T[e,wle]] is a topological term, i.e. is
invariant under local variations of e. :

Let us subtract the integral T{e,w}, multiplied by one half the imaginary unit, to
Sle,w]:

S'le,w] = Sle,w] — 3iT(e,w] = fd“z eeffey (Rilw] - Jie™” yn BRIV . (1.15)

The imaginary term has no effect on the equations of motion, therefore §'[e,w] is
another good action for general relativity. Now, given the spin connection w, consider
the complex quantity

A ] = Wl - Lie yn wMN (1.16)

which is denoted as the self-dual spin connection. The curvature of this sell-dual spin
connection *A will be denoted *F1J. The key observation is that this curvature is
related to the curvature of w simply by

FIPARN = Ry [w] - St g RIAN (], (1.17)
This means that the curvature of the self-dual spin connection is the self-dual part

of the curvature. Now, this sell-dual part of the curvature is precisely the term in
parenthesis in (1.15). So the action can be rewritten as

Stew) = [ s ectes FEIAD = [ % eye,y FEPAWY . (118)

Finally, consider a change of Lagrangian variables from (e,w) to (e,%4). The action
becomes

Sfe, 4] = f d*z ¢z, ; *FHI[1A) 77 (1.19)

which is precisely the action (1.2). The new Lagrangian variable ‘4 is a complex
variable, but it is not an arbitrary complex number, because it has to be related
to a real w by equation (1.16). It is straightforward to see that this requirement is
equivalent to the self-duality condition equation (1.1}

General relativity has been re-expressed in terms of a self-dual connection *A and
a tetrad field e, with action (1.2): in this way, the Lagrangian Ashtekar formalism is
recovered, and its equivalence with general relativity is demonstrated,
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1.3.3. Geomelry. The above derivation displays the geometrical meaning of the (four-
dimensional) Ashtekar connection: *4 is the self-dual part of the spin connection. In
faet, the second equation of motion {1.5) fixes %4 to be the self-dual part of the spin-
connection defined by e, namely it is equivalent to

4A{“’[e} = u;"[e] - %ie”MN wa[e]. (1.20)

where wi ¥[e] is defined in equation (1.9). By inserting *Af7[e] in the other equation
of motion {1.4), it follows that the Ricci tensor vanishes.

From the geometrical point of view, the formalisim exploits the fact that the com-
plexified Lorentz algebra so(3,1;C) (or so(4,C)) is the direct sum of two complex
s0(3, C') algebras (its self-dual and antiself-dual part). In other words, the generators
X 17 of the Lorentz group have the property that the two sets W7 = X7/ 4ie}l XMV
and 27 = X —ield y XMN commute one with the other. Thus, considering a
s0(3,1;C), rather Ll1an 50(3,1), vector bundle over the spacetime, the connection
splits into two independent components, the self-dual and the antiself-dual compo-
nents. The fact that they are independent is the reason for the fact that the self-dual
part of the curvature is the eurvature of the self-dual connection {1.17).

The Ashtekar formalism is based on the interplay between two facts. The first is
that there is a self-dual connection *4 for every real connection w {equation (1.16)).
Thus, the self-dual connection rather than the real connection can be used as a La-
grangian variable, The second is that it is possible to directly substitute in the action
(1.13) the real curvature with the sell-dual curvature because the difference is the
topological integral TTe,w].

Finally, a note on self-duality may be useful to avoid misunderstandings. The self-
duality considered here is the sclf-duality with respect to the internal indices. This
should not be confused with a different notion of self-duality. There is an independent
notion of self-duality on the spacetime indices: it is possible to define the spacetime
self-dual (and antisei{-dual) part of the curvature tensor Rf,‘ﬁ b

R*”[w] R”[w]:tllf T RI w], _ (1.21)

For a generic complex spin connection, the two notions of self-duality are indepen-
dent. By considering both notions, the curvature splits into four components: Rt[%4],

R™[*4], R*[* 4]}, R~ [*4). Here R*[%4] is the spacetime seli-dual part of the curvature
of the self-dual spin connection, and so ont.

1.4. Canonical theory

The action (1.2) is complex. The standard Hamiltonian formalism has to be extended
in order to deal with complex actions. Since to my knowledge this extension has

t By using these definitions, il is easy to prove that the vacuum Einstein equations are equivalent
to the requirement that the internal-self-dual spacetime-antiself-dual component of the connection
vanishes: R~ [*A] = 0. This equation is equal to the self-dual Yang-Mills equation for the connection
%4, Therefore the four-dimensional Ashtekar connectjon satisfies the self-duat Yang-Mills equations.
General relativity is equivalent to a self-dual Yang-Mills theory defined on a curved background (the
gauge algebra being the self-dual Lorentz algebra), plus the requirement that there is relation between
the curved background and the Yang-Mills potential (the relation is the following: the Yang-Mills
potential is equal to the self-dual spin connection). This curious interpretation of general relativity
is, for instance, at the root of the lightcone-cuts formulation of the theory vecently developed by
Kozameh and Newman [6].
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never been studied, in appendix A [ develop the Ilamiltonian framework for theories
with complex action in general. The conclusion of appendix A is that the equations
of the real Hamiltonian formalism are still valid as complex equations, but certain
caveats have to be considered. The reader not interested in this technical aspect of
the problem may follow the derivation given here, and refer to the appendix only in
case of confusion.

To construct the Hamiltonian theory, one may work in a given coordinate system,
and develop the Hamiltonian formalism in the 8/8z direction. Alternatively, one may
work in a coordinate independent formalism and develop the Hamiltonian formalism
along an arbitrary vector field n. This second alternative is more rigorous, more
elegant, and is used by Ashtekar in [1, 2], but the two formalisms are equivalent. Here
1 use a coordinate formalism.

An important remark on general covariance is the following, It is often stated
that the Hamiltonian formalism breaks general covariance because space and time are
treated in a different fashion. This is not correct. Only explicit general covariance is
broken in the Hamiltonian formalism. Tt may be shown that the phase space can be
identified as the space of the solutions of the Euler-Lagrange equations, and all the
structures over the phase space admit an explicitly general covariant formulation (see
for instance [7]). Once more, however, I am not interested here in fancy formulations
that make general covariance manifest, and I use the standard form of the Hamiltonian
theotry.

Finally, I should add for <larity that the derivation of the canonical theory given
here is different from derivations given elsewhere.

1.4.1. The Legendre transform to the canonical theory. In order to construct the
canonical theory it is convenient to go to a second-order formalism. By inserting the
solution (1.20) of the equation of motion (1.5} back into the action, we obtain an
equivalent form of the action (1.2), where the only independent variable is the tetrad

Sle] = / d'z e pe,, FII[ALe] e, (1.22)
This will he the starting point for the canonical theory.

Let me begin by introducing space indices @ = 1,2,3 and by splitting, d Iz ADM,
the Lagrangian variables ¢ as follows:

Ne = e%e? (1.23)
€

N=—- {1.24
/i )

E} =&§ — N%9. (1.25)

In the second equation, ¢ is the determinant of the 3-metric q,, = g,,[e]. It is useful
to introduce densitized triads

ES = IE; (1.26)

since they will be the natural canonical variables. Following a standard notation, I
put n tildes over the quantities that transform as densities of weight n. One more
structure is needed. I define the antisymmetric 3-indices tensor

t.Im’ ___‘E%ELNK (12?)
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in terms of which the l-index connection
Ale) = i *Al% [e] (1.28)

is defined. It is easy to show (using the self-duality of the curvature) that in terms of
these variables the action (1.22) can be written as:

S[E N, N €Y = f Atz iAl[)E; +iA[e] DB + iN“ELFS + NESESFY  (1.29)

where D, is the covariant derivative and FJ; the curvature defined by Ale]. From this
form, it is clear that the only dynamical variable is E’}‘. The other variables, namely
N,N“,e?, can be taken as Lagrange multipliers and freely fixed. In particular, part
of the imternal gauge symmetry can be used to fix e? ={fori=1,23. In this gauge,
which will be used in what follows, the non-vanishing components of /7% are given by
the usual totally antisymmetric three-dimensional tensor €”/* and the non-vanishing
components of Al[e] are Al[e], so that the action can be written as

SIE, N,N“,e?.]=/d‘*z iA:',[e]éf+iA:’,[e]c,.+iN°ca+Nc (1.30)

where
C; = D, E} (1.31)
C,= EtF, (1.32)
C=E!EFY, (1.33)

Now the momenta can be defined as

R Y ) (1.34)

O,

{following the formalism of appendix A, these are complex guantities). A% is the three-
dimensional projection of“A{‘J , and is usually referred to as the Ashtekar connection.

The (complex) phase space is coordinatized by (pf, Ef). The basic Poisson brackets
are

{Pi(=), B} (1)} = ~6L818%(x,y). (1.35})
(In the appendix, the precise meaning of a ‘Poisson structure’ in a half-complex and
half-real] space is elucidated.}

The form of the action shows that the canonical Hamiltonian vanishes weakly,
as always in a time-reparametrization-invariant theory (because the Hamiltonian is
the generator of time translations, time translations are gauges, the generator of a
gauge transformation is a first-class constraint and therefore vanishes weakly). The
remaining task is to write the constraints. There are two kind of constraints. The
first kind is given by the primary constraints that follow from the definition of the
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momenta, To find them, let us separate the real and the imaginary part of these
momenta, The real part is (using the definitions (1.20) and (1.28))

Real p}, = Real [i¢}, A1¥[e]] = e;'.keﬁwaN[e] = we]. (1.36)

Since the real part of the action is just the standard tetrad action, the real momentum
turns out to be, as can be checked, just the standard momentum of the tetrad for-
malism, which is related to the extringic curvature k_; (and, in turn; to the standard

ADM momenium) by
k., = Real pfae};). (1.37)

* The imaginary part of the momentum is

[ . ) T fr i adkr.m i ikr 1 ooy
1111 pa = 1m llfjkﬂ?; 1€ J = ij W:z 1€]- tlu)b}
Now, from the definition (1.9) of the spin connection, it follows that wif{e] does not
depend on time derivatives of ¢; it is indeed just the three-dimensional spin connec-
tion of the three-dimensional frame field (triad) £f. Thus the imaginary part of the

mormentum is entirely constrained. In other words we get the primary constraint
Im p;, — €}, wl¥(E] = 0. (1.39)

This had to be expected, since the irnaginary part of the action is a topological term,
and thus the I-theory (see appendix A) must be entirely non-dynamical. This con-
cludes the derivation of the canonical theory, the basic formulae of which are summa-
rized in the next section.

1.4.2. The Ashtekar theory in cenonical form. According to the rules of Hamiltonian
mechanics, the momentum is to be considered as an independent canonical variable.
Following the standard notation, I use A% rather than p%, but now A% is to be
considered as an independent canonical variable. The phase space has coordinates
(4%, Ef), and the basic Poisson brackets are

: .  bes

{AL(2), B}(2)} =1 8:6;6%(2,y). (1.40)
In terms of A% the primary constraint (1.39) is

. s pes

Ay = Ay + 2 Wit [E]. (1.41)
This constraint is denoted as the reafiiy condiiton. As will be discussed later, in the
quantization this constraint plays a different role from the other constraints.

The other constraints follow from the presence of the Lagrange multipliers
(N,N%,el). Namely (see equations (1.31)-(1.33)),

Ci[AEl=0  C,J4.E)=0  CIlA, E|=0. (1.42)

(As usual, they can be more rigorously obtained as secondary constraints by treating
(N,N?%, ) as genuine dynamical variables and eliminating the redundant sector of
the phase space by gauge fixing.) They are denoted the gauge constraint, the vector
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constraint and the Hamiltonian constraint. An explicit computation shows [1] that all
the constraints, including the reality condition, are first class,

Note that the constraints (1.42) are polynomial (at worst quadratic) in each of
the canonical variables. The reality condition, as written in equation (1.41), is not
polynomial; however, it can be equivalently [2] rewritten in polynomial form as follows:

Re D,(EFE{HEY ¢i* = 0. (1.43)

(The parentheses on the indices indicate symmetrization in (ab) and antisymmetriza-
tion in [ea].) 3

The phase space with canonical coordinates £ and A%, with Poisson brackets
(1.40) and constraints (1.43) and (1.42) defines the Ashtekar theory in canonical form.

1.4.3. Physical interpretation of the constraints. The constraint C; is the standard
Gauss-law constraint of non-Abelian gange theories. The Poisson algebra of the C; is
the so(3) current algebra

{Cilz), Cj(9)} = €;Cul2)8(z, y). (1.44)

The physical origin of this SO(3) gauge symmetry is not related to the introduction
of the new variables; rather, it follows from the use of tetrads. Physically, this gauge

cumrmatrr raflarta tha frandarm in shascing tha lasally Thaslidane nafensanes svstams
\,J LRALLLMLUE .' dviluuiuo Ll LLOUCUINIEE 11 \-lluun}lll& L= lu\-oﬂll.y L LG LINEC CRIL LSGLICAG LG D‘)'QUCU-L

defined by the triad. Indeed, in the Ilamiltonian formalism derived {rom the tetrad
action Sle] there are the constraints
j k
Ci=¢, ¢ p, (1.45)
which generate the same SO(3) invariance as the C;. The new feature of the Ashtekar
varlables is that the Ashtekar constraints C; have precisely the same form as the

gauge constraints in Yang—Mills theory. This is due to the fact that the variable A%
transforms as a connection, precisely as the Yang-Miils potential

Ay ={A%, C(A)} = DN (1.46)
where

C()) = fdszr(z)c,.(x;. (1.47)

Thus, the phase space of general relativity in the Ashtekar formulation has the very
same structure as the phase space of a non-Abelian gauge theory.

The fact that the real part of A transforms as a connection is no surprise; after all,
it is the spin connection. But the imaginary pari is essentially the extrinsic curvature,
How does it transform? Note that, since X' is real, the non-homogeneous term §,A*
does not affect the imaginary part of A} . Thus, this transforms homogeneously, as it
should.

Next, consider the vector constraint C,. It is shown in [1] that the following linear
combination of vector and gauge constraints

C(N) = fd%fva(x)(cﬂ(x) — AL(2)Cy(z)) (1.48)
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is the generator of three-dimensional diffeomorphism transformations. Namely
bpf(AE)={f(A4 E),C(N)} = Ly f(A, E) (1.49)

where L), is the Lie derivative along IV, namely the variation under the infinitesimal
coordinate transformation @ — = + N(z). The combination (1.48) is denoted as the
diffeomorphism constraint.

Finally, given any four-dimensional solution of the equations of motion, the scalar
constraint

C(N)= fd% N{(z)C{(z) (1.50)
generates the evolution in the Lagrangian parameter time [1]

{F(4,E),C(N)} = Ngzz—nf(A,E). (1.51)

This constraint plays the same role as the Hamiltonian ADM constraint in the ADM
canonical formulation.

It is well known that the evolution generated by the Einstein equations can be in-
terpreted in the ADM formalism as the motion of a particle in an infinite-dimensional
configuration space (superspace) with metiric given by the DeWitt supermetric and
potential given by the three-dimensional Ricci scalar curvature, In the Ashtekar for-
malism this interpretation is not only preserved, but it is also remarkably simplified.
Consider the infinite-dimensional space of the connections A% as the Ashtekar super-
space, equipped with the (super-) metric

45" = [ B2 [y G216 (w.9) dAig(2) 4 (0) (1.52)

where G**3%(z) is the inverse of the (9 x 9) matrix
Giajelz) = €rij Fi(z). (1.53)

The motion generated by the Einstein equations can be interpreted as the motion of
a massless particle (without any potential} in this geometry. Thus, the problem of
solving the Einstein equations is equivalent to the problem of finding the null geodesics
of the metric (1.53).

1.4.4. Difference between the Einslein theory and the Ashiekar theory. The fact that
the dynamical equations are polynomial has an important physical consequence. In the
standard formulation of general relativity, the action contains the Ricei scalar, which
is obtained by contracting the Ricci tensor with the inverse of the metric tensor.
Similarly, the ADM Hamiltonlan formulation requires the Ricei scalar of the three-
dimensional metric to be defined. In order to have an inverse, the metric tensor must
be non-degenerate. Tlhus, we are forced to restrict ourselves to non-degenerate metrics
in order to define the theory.

In the Ashtekar formulation, this same requirement can be imposed. Namely it is
possible to require that I be non-degenerate. If this is required, the Ashtekar theory
is equivalent to general relativity,
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_ However, since all the equations are polynomials, and in particular the inverse of
E? does not enter in the equations, the Ashtckar equations also make sense if £
is degenerate. Thus, we are not forced to require that the metric be non- degener-
ate. Therefore, general relativity admits an extension in which degenerate metrics
are allowed: by dropping the requirement that E’," be non-degenerate from the new
variables theory, a theory is defined that has all the solutions of general relativity plus
additional solutions in which the metric is degenerate.

One may take different attitudes towards this possibility. The extended theory
can be seen as physically irrelevant. But it is also possible to take the theory seriously
and consider the physical hypothesis that the extended theory does describe physical
configurations of the gravitational field.

To provide an analogy, given the equation §j = w?y + 2y~ 'y, we may say that this
equation rapidly blows up and looses sense because y goes to infinity; but we can also
recognize that in terms of the variable z = y~! the equation becomes # = —~w?z and
is therefore very well behaved for every {: it allows us to continue y(¢) ‘over infinity’.

It has been suggested that by using the Ashtekar equations one may continue a
solution of the Einstein equations beyond certain singularities, and mayhe discuss
topology change in the classical theory. This possibility has still to be explored. The
possibility of having a degenerate metric in the theory (more precisely, a degenerate
inverse metric) is a crucial ingredient of the quantization attempts.

1.4.5. Spinerial formalism, parellel fransport of fermions and Wilsen loops. In the
original Ashiekar papers, a spinorial formalism was used. This formalism will also be
used in the rest of this paper. The translation to the spinorial formalism is straight-
forward. Consider the Pauli matrices divided by V2 TiAB, A,B=1,2, and let

Ah gy = A A X (1.54)

Bedg =i r Ay, (1.55)

The spinorial indices can be suppressed in most of the equations, the matrix product
being understood. In this notation the constraints become

C; = Tr[D, £°] (1.56)
C, = TriF,, E*) (1.57)
C = Te[F,, E° E*]. (1.58)

The connection A4 5 takes values in the spin-% representation of the so(3) Lie algebra.
This connection has an interesting physical interpretation. If we want to couple spinor
fields to general relativity, a tetrad formalism must be used. A spinor field lives in an
internal spinor space which can be identified (under the mapping given by the gamma
matrices) with the internal Lorentz space provided by the tetrad formalism. The
decomposition of the Lorentz algebra into its seli-dual and antiself-dual components
corresponds to the invariani splitting of a 4-spinor into its left- and right-handed
components.

It follows that the four-dimensional Ashtekar connection 1s the connection
that defines the parallel transport of a lefi-handed spinor in spacetime. Since the three-
dimensional connection A} is the space restriction of A7, the Ashtekar connection

4 AL
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Al is the geometrical object that specifies the parallel transport for left-handed spinors
¥4 in space.

Let us write explicitly the parallel transport operator U 5. Let o : [0,27] — &
be a curve in the three-dimensional physical space ¥. Let us denote the parameter
along the curve as s and the coordinates of the curve as a®(s). Then, by denoting
&%(s) = (d/ds)a®(s), it follows that

A 27 A
U,(0,27)4 = (13 exp / A) = (P exp j ds d“(s)Ai(a(s))T,-) : (1.59)
o B @ i
Here 7 means path ordering, namely
A 2 )
('P exp/ A) =14 + ds a®(s)A% (a(s)) ;5
o B 0
am 2T )
+ / ds [ ds’ &*(s)a(sVAL(a(s) A AL e(s G + ... (1.60)
0 H

Consider a closed curve a. Let U, ,(s) be the matrix of the parallel transport
around the loop, starting from the point 5. The trace of this parallel transport operator
T{a] = U,* 4(s) (which is independent of the origin of the loop) is the Wilson loop of
the Ashiekar connection. This object will play a very crucial role in the rest of this
papet.

1.5, T variables

The similarity of the Ashtekar formalism with Yang-Mills theories has suggested bring-
ing certain typical gauge theories techniques to general relativity. The concept of the
Wilson loop has been particularly useful in the quantization. Here I define a class of
observables on the (A%, £f ) phase space, denoted as the loop observables (introduced
by Smolin and the author {8]), which will be the main tool in the second part of this
review. The first of these observables is the Wilson foop of the Ashtekar connection

Tla)=Tr P exp (f A) . (L.61)

The second observable also depends on the £2 variables. It is defined as follows:
T*[a](s) = Tr[U,(s) E*(a(s))]. (1.62)

The T and T variables have a set of remarkable properties that are listed here
without proof (see {8]).

(i) They contain all the gauge invariant information contained in A% and Ef.
More precisely, they are invariant under internal gauge transformations, and are good
local coordinates on the phase space reduced by the gauge constraint.

(it) There is a generalization to objects with more indices. For instance

Tal(s,t) = TH{U,(s.1) Ey(a(t) Uy(t;s +27) Eyla(s))].  (1.63)

(U,(t, s+ 27) is the parallel transport from t to the origin and then from the origin
to s).
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(iii) Relevant objects of the theory can be expressed in terms of these loop ob-
servables; the expression of local objects implies a limit. For instance, the (densitized
controvariant) space metric, which is related to Ef by '{}'ab = E,“E""f can be expressed
in terms of the ¢ observables as

& (2) = - Iim(T°*{at}(0, 7)) (1.64)

where af is a loop centred in = with {coordinate-) area e.
The diffeomorphism constraint is given by

Ca(m) = EE% % €abe Tb[a.r,c,cl(o) (165)

where o . . 15 a loop centred in z with area ¢, and lying on a surface normal to the
¢ direction. (By normal to the ¢ direction, ] mean here the area element dr%dzbe,,,.
The expression normal, in this context is not very appropriate, since no metric is
invelved.) The Hamiltonian constraint is

— abe ab
C(z) ilj%fggf (T oy, J(0,€%)- (1.66)

These results follow from the well known expansion

U, (s5)=1+¢ Fy(x)e* + ofe}). (1.67)

xx,ce
(iv) The following properties hold.
{(a) Invariance under inversion:

Tlo] = Tla™Y). (1.68)

(b) The so-called spinor identity, which encodes the fact that the relevant algebra
is su{2):

T[] T[8] = Tlo#8] + Tl 8] (1.69)

Here the loop a#tf is defined as follows. If & and 5 intersect in a point P, it is the
loop obtained starting from P, going through o, then through £, and finally closing
at P. Equation (1.69) holds (and makes sense} only if o and 2 intersect.

(¢) The ‘retracing’ identity:

Tla] =T 1-17 (1.70)

where { is a line with one end on o and a -1~ is the loop obtained by going around
a, then along the line, and then back along the fine to .

{d)
imTes) = {1.71}

=+
The last four equations allow a complete characterization of the T observables [9].
Related properties hold for the 7% observables.
Finally, the properties of the loop observables under the Polsson brackets operation
are described in the next section,
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1.5.1. The loop algebre and its geometry. The most important property of the loop
observables is that they have a closed Poisson algebra:

{T[e],T[B]} =10 (1.72}
{T%{0](s), T[3]} = —$1A%8, a(s)] (T[e#,8] — Ted#,67'1) (1.73)

{T°[e)(s), TP [B) (1)} = —4iA%]B, o(s)] (TP [a#,B(t) — Thiad,877)(t))
+ HA o, B(1)] (T°[B4#,0](s) — T*[B#,a7)(s)) {1.74)

where
A%[f, 2] = f dt go(t) 82(8(0), ) (1.75)

and the notation #, indicates that the breaking and rejoining of the loops happens
at the intersection where the parameter is s (if the loops do not intersect the Poisson
bracket is zero). This algebra is called the loop algebra. It is a gauge invariant version
of the Poisson algebra of the phase space of 2 Yang-Mills theory.

The loop algebra has a remarkable geometrical meaning. To reveal this geometrical
content of the algebra we must get rid of the distributional character of the structure
constants A{. There are several ways of smearing the loop observables. A smearing
that emphasizes the geometrical character of the loop algebra has been introduced by
Smolin [10]. Let us consider a one-parameter family of loops 8,, £ € [0,1] such that
they form a ribbon R;

R%(s,t) = BE(s). (1.76)

A prime will denote the derivative with respect to the parameter t. Now the following
smeared version of the T* observable can be defined:

1 i .
TR = [Cdt f ds B 0R (50 e TBLS). (1.77)

The ribbon is oriented: by reversing the orientation of the ribbon by R™!(s,¢) =
R(—s,1) it follows that T[R™!] = —T{R]. The observables are now the Wilson loops
T[e] and the ‘Wilson ribbons’ T[X]. The Poisson algebra of these objects is surprising.
Given a ribbon R and aloop ¢, the loop may or may not intersect the ribbon. If it does,
let us denote by a# R the loop a#£4,, where { is the coordinate of Lthe intersection point.
If there is more than one intersection, the intersections wiil be labeiled by an index 2,
and a#,;3, will be the loop obtained by considering the intersection ¢/, Moreover, given
two ribbons R and S, I denote by R#S the ribbon formed by all the loops R,#S,
namely by all the loops that intersect.
The loop algebra then takes this very compact forn:

{Tie], T[A]} =0 (1.78)
{TIR), Tle]} = 3 ¢; TlasR] - Tla#:R™'] (1.79)
{TIR.TIS} = ) _e; TIR#S] - T[R#,57). (1.80)

t The Poisson brackets of any classical field theory contain distributions.
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Here ¢, is either +1i or ~1i, according to the orientation of the intersection. If the
loop does net intersect ihe ribbon, or in the degenerate case in which the loop is
tangent to the ribbon, the result of the Poisson bracket vanishes. These operations
are very natural geometrical operations defined in terms of breaking and rejoining of
loops and ribbons at their intersections. The structure of the loop algebra is entirely
geometrical: it can be entirely coded in the geometry of the splitting and recombining
of intersecting loops and ribbons.

In conclusion, the entire structure of Hamiltonian general relativity (phase space,
constraints, Poisson brackets) can be expressed in terms of the loop variables. This
form of the Hamiltonian theory will be used for the quantization.

An analysis of this structure in the classical framework has not yet been performed.
For instance, the Hamiltonian evolution for the loop observables (which would allow
the reconstruction of spacetime) has not been studied. Another interesting open prob-
lem is whether there is a Lagrangian theory corresponding to this Hamiltonian loop

[ PSP o R ey
(L8R ARV YY

Wwiauiioji.

2. Applications of the formalism

2.1. Survey of applications

contexts, and has been generalized in several directions. The reader interested only
in the quantum gravity issue may go directly to the next section. In this section I
present a synthetic overview of other applications.

Exact solutions of the classical theory have been investigated in different forms.
Gravitational instantons have been studied by Samuel [11] and by Capovilla et af {12].
An interesting resuft on the instantons of self-dual general relativity has been obtained,
by using the new variables, by Torre [13]. Torre has shown that in the presence of
a positive cosmological constant the moduli space of the instanton solutions is zero-
dimensional (discrete). In the negative cosmological constant case, the dimension
of tlie moduli space is controlled by the Atiyah—Singer index theorem, which in the
present context means the Euler number and Mirzebruch signature. This analysis has

then been extended in [14].
The solution of the classical constraints has been studied hv (-"tnn\n“n et al [5]

SO Clglsodlarl CRNSLId Sl la el a¢

The formalism described in the previous section has been used in a wide variefy of

with the surprising result that the Hamiltonian and dlﬂ'eomorph:sm constlamt can be
solved exactly in local form. I describe this result below in section 2.2.1.

The new variables are particularly suitable for cosmological models. Indeed, the
new variables open a new point of view on these models. The key ohservation is the
observation made after equation {1.53), above: the Hamiltonian constraint defines
the motion of a frec massless particle in a space of a given geometry. Tt is difficult
to make use of this observation in the full theory, because the space in which the
hypothetical particle is moving is infinite dimensional. Bui in the cosmological models
the configuration space is finite dimensional. Thus, the solution of the equations
of motion of any cosmological model can be reformulated as the study of the null
geodesics of an assigned geometry (Ashtekar and Pullin {15]). See also Kodama [16].
Related to the cosmological models is the strong coupling limit of the theory, studied
by Goldberg [17].

The reduction of general relativity obtained by requiring the existence of two or
one Killing vector fields has been studied in the new variables by Smolin and Husain
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[18] and by Pullin and Husain [19]. The BRST structure of general relativity in the
new variables has been analysed by Ashtekar ef af [20]. The result is that the BRST
charge is simnilar to that of metric general relativity, but it is completely polynomial.

On the mathematical side, since the four-dimensional Ashtekar connection ‘*ALJ is
self-dual, the formalism offers a natural framework for analysing the self-dual Einstein
equations. These equations have been extensively studied along different lines by
Penrose, Newman and Plebansky in recent years, to the point where the general
structure of the general solution is quite well understood. Ashtekar et al [21] studied
the problem in the new variables and found a remarkably simple local formulation of
the basic equations. Robinson has related this formulation to hyperKahler structures
that naturally exist in half-flat spaces [22]. Newman and Mason [23] used the new
formulation for an interesting analysis of a relation between general relativity and
Yang-Mills theories with infinite-dimensional gauge groups.

A well known open problem in general relativity is the definition of an internal
variable which could be reasonably identified {maybe within some approximation)
with the non-general-relativistic physical observed time. The new variables provide an
elegant solution to this problem. There is a functional T[A4] of the Ashtekar connection
which can be identified with the physical Minkowski time up to second order in an
expansion around Minkowski space. This result is due to Ashtekar [2].

The basic formalism has been extended in several directions. Matter can be nat-
urally included in the formalism. Ashtekar et al [24] have constructed the relevant
Lagrangians and have shown that the inclusion of matter does not spoil the crucial re-
sult that the constraints are polynomial. Jacobson found the fermions Lagrangian [25]
and reformulated supergravity in the new variables with analogous results [26]. Thus,
the formalism is ‘robust’, in the sense that the main results, in particular the polyno-
miality of the constraints, survive modifications of the basic theory. The inclusion of
matter in the theory is reviewed in detail in Ashiekar’s Poona leciures [2].

The extension of the formalism to other dimensions has been studied by Bengtsson
[27]). There is a natural new variables formulation of general relativity in {2 + 1)
dimensions, which has been used by Witten [28] for solving the quantum theory. I
describe this formulation below in section 2.2.2. The BRST structure of the (2 + 1)
theory has been studied by Gonzalez and Pullin [29]. In the same paper, it is shown
that in the path integral formulation of the quantum theory there is a suitable gauge
fixing of the BRST action that reproduces the aclion used by Witten for studying the
topology-changing amplitudes. _

The formalism itself has suggested several new models. Among these, [ find partic-
ularly interesting a generally covariant theory in 3+1 dimensions, which is a simplified
version of general relativity developed by Kuchaf and Husain [30] and a particular form
of the weak coupling limit of the theory suggested by Smolin [31]. These are described
below in section 2.2.3.

On the numerical side, it has heen repeatedly suggested that the formalism may
be useful for computer calculations, but I am not aware of any such work. Algebraic
computing for the new variables has been developed by Giannopoulos and Daftardar
[32].

In the context of quantum gravity, besides the loop-representation of the non-
periurbative theory, which is described in the rest of this report, Reniein and Smoiin
[33] constructed a lattice formulation of canonical quantum gravity using the new
variables, and Renteln [34] studied numerically the algebra of the lattice quantum
constraints. Husain constructed the quantum theory in the strong coupling limit
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[35]. Ashtekar et ol [36] studied possible qualitative predictions of a quantum gravity
theory. They considered that the internal gauge may provide the topological sctting
for topological and f-angle-like violations of classical invariances. A detailed analysis
of the topological properties of the phase space of the theory led them to formulate
the hypothesis of quantum gravitational CP violations.

2.2. Selected applicalions

2.2 1. The general soiution io the classical diffeomorphism and Hamifionian
constraint, In terms of the new variables, it is possible to solve the gauge constraint by
going to the loop variables. Allernatively, it is also possible to solve the diffcomorphism
and Hamiltonian constraint. A general solution of all the constraints together is still
missing in the classical theory. The solution of the Hamiltonian and diffeomorphism
constraints is the following,.

Let us choose an arbitrary connection 4% (z) and an arhitrary symmetric traceless

tensor field ¢“(z). Then we may construct the triad Aeld
B4, 6] = (971 P, (2.1)

where the notation ¢! refers to the inversion of the 3 x 3 matrix ¢ We have the
following theorem. The fields (E%{A4, ¢], A%) solve the diffeomorphism and Hamilto-
nian constraint. The proof is very siraightforward: it suffices to insert (2.1} in the
constraint and work out the algebra of the three-dimensional matrices. This surpris-
ingly simple solution of the two constraint equations was overlooked for several years,
and then discovered by Capovilla et al [5].

The fields {E£%[A, 8], A%) solve two of the three constraints in terms of the inde-
pendent variables A, ¢. In order to have the complete solution of all the constraints,
we must solve the gauge constraint. The gauge constraint, written in terms of the
independent variables A, ¢ looks as follows

fach:ch(@kﬁbf - %@j‘ﬁgi) = 0. (2.2}

This equation can be read as a reformulation of the constraint equations of general
relativity.

2.2.2. (2 + 1}-dimensional theory. The vacuum Einstein equations R, = 0 in three
spacetime dimensions are trivial. In three dimensions, in fact, the Riemann curvature
is entirely determined by the Ricel tensor, therefore the Einstein equations imply that
spacetime is flat. The only solution, up to gauge, is the three-dimensional Minkowski
metric,

However, if we assume that the topology of the two-dimensional space I is non-
trivial, then there is more than one solution to the theory, because flat spaces may
be globally non-isometric. Therefore, the theory defined on a topologically non-trivial
L has a non-trivial dynamics with a finite number of degrees of freedom. These
degrees of freedom are global, in the sense that locally all the solutions are gauge
equivalent. The theory is very interesting because it is a solvable diffeomorphism-
invariant theory, and therefore it represents a good exercise-room for studying the
quantization of diffeomorphism-invariant theories,

The theory admits a formulation in terms of Ashiekar variables, The Lagrangian
fields are three covariant vector fields e:‘ and an SO(2,1) connection 4; Here the
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Greek spacetime indices run from zero to three, and the Latin internal indices also
run from zero to three. The action is

Sle, A] = / By & Fi, b 2.3)

The canonical formalism is defined on the phase space with canonical coordinates
E¢, A% (here a = 1,2), by the constraints
C; = D, E? (2.4)

Dt = Fiye®, (2.5)

The first one is the standard Gauss law, which implements the internal SO(2,1)
invariance, and the second one requires that the space connection A is flat. The
physical configuration space is therefore given by the moduli space of A%, namely by
the gauge-inequivalent flat connections.

The constraints close, and their algebra is the algebra of the (2 + 1)-dimensional
Poincaré group. There is an equivalent formulation of the theory as a Chern-Simons
theory of the Poincaré group, in which the triad e:‘ and the Lorentz connection Afu
are considered as components of a Poincaré connection Ai, I =10,5. 'With a suitable

choice of the Poincaré trace, the action written above can be rewritien as a Chern—
Simons action for this Poincaré connection.

Finally, it is possible to define the loop observables. I write here the smeared
version of them, which will be used in section 3 for the guantization of the theory.

The T loop observable can be defined precisely as its three-dimensional counterpart

TP xp(rK.A\ (2.

L=

)

while the analogue of the smeared T ohservable, namely of the ‘ribbon’ observable,
is

T[R] = j dsR*(s)e; T*[R](s) = / dsRP(s)ey, Tr [Up(s) E*(R(s))] (2.7)

where, here, R%(s) is a loop. What is going on is the following. In order to smear
T% we need to contract its free index. To preserve diffeomorphism covariance the
index can only be contracted with the totally antisymmetric tensor. The other indices
of the totally antisymmetric tensor must be contracted with the area element of the
surface over which we smear. Therefore 7% must be smeared over a surface with one
dimension less that the space. In three dimensions this surface was the ribbon. In
two dimensions the ribbon is replaced by a (2 — 1 = 1}-dimensional object, namely a
loop. Thus in two dimensions the smeared T observables also depend on a loop, as
the T observables. In spite of that, I keep the notation R for these loops, to remind
that they are the two-dimensional analogues of the three-dimensional ribbons.

2.2.3. Other models. Consider a Lie group G, a Yang-Mills connection A, with values

an invariant trace on G. Then the action (1.2) can be generalized to

Sle, 4] = f a2 Tr [e,e, OF,,] 7. (2.8)
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Kuchaf and Husain [30] studied the theory defined by the group SO{3). The
theory has three physical degrees of freedom per space point (rather than two, as in
general relativity), but its equations of motion can be solved exactly. The cancnical
formulation of the theory turns out to be precisely given by the canonical formulation
of the Ashtekar theory without the Hamiltonian constraint. Thus, the theory has all
the features of general relativity, but without the ‘difficult’ part of it. It represents
a non-trivial generally covariant model, which can be used as a laboratory for any
attempt to quantize gravity.

Smolin [31] studied the theory defined by the group U(1) x U(I) x U(1). He
has shown that this theory is equivalent to the limit in which the Newton constant is
sent to zero keeping the canonical variables fixed. The resulting theory is equivalent to
linearized general relativity if the standard reality conditions are imposed. However, if
Euclidean reality conditions are imposed (all the fields real) then the theory represents
the sell-dual Einstein theory plus the linearization of the antiself-dual part. Smolin
suggested that this form of the linearized theory can be used as a starting point for a
perturbation expansion.

To my knowledge, other theories in this class, obtained by using other groups
(7, have not been studied. These theories are diffeomorphism invariant, and are non-
trivial in the sense that they have an infinite nuniber of degrees of freedom. Thus they
are ‘infinite-dimensional topclogical field thecries” in the sense that they are defined
on a manifold with no metric structure, like the topological field theories recently
discussed in the literature [37); however, unlike the topological field theories, they are
genuine field theories with infinite degrees of freedom. Note that the existence of these
theories contradicts the widespread assumption that any field theory with no fixed or
dynamical metric has a finite number of degrees of freedom. I think that it would
be very interesting to study this class of theories, both as classical and as quantum
theories.

2.2.4. Hamilton-Jacobi theory. TFinally, T would like to point out a potentially in-
teresting direction of investigation. In the Hamilton—Jacobi framework, the classical
dynamics of general relalivity is essentially contained in the Hamilton-Jacobi equation

.. 6SIA] 8S[4
it Forl) 6,4’[(::]] 6,4‘[ ])

0. o (2.9)

This equation follows from the Hamiltonian constraint by considering E#(z) as the
momentum and by replacing it with the derivative of the Hamilton~Jacobi function
Si4].

Now, an exaci solution of this equation, depending on an infinite set of constants,
was found by Jacobson and Smolin in [38]. This solution is

S[A,0] = Tr Pexp (}i .—‘1) (2.10)

where the loop @ is differentiable and without intersections. {The loop o can be
considered as the set of the Hamilton-Jacobi constants.) This result follows from a
straightforward computation of the functional derivative:

.5416( )m’exp (fg ) f"”‘ ) 8%(a(s), z) Tr [U,(s)7"] (2.11)
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and from the antisymmetry of F,.

The relevance of this surprising result to the investigation of the Einstein equations,
or, more precisely, to the Ashtekar version of the Einstein equations (which allows also
degenerate metrics) has not yet been explored.

3. Quantum field theory on manifolds: the loop representation

In this section, I describe the general approach and the main techniques that will be
used in the next section for quantum gravity. In section 3.1, I introduce the quantum
gravity problem, discuss the motivations for seeking a non-perturbative quantization,
and illustrate the general quantization scheme used, which is a modification of Dirac’s
technique of quantization of first-class constraints.

The loop representation is introduced in section 3.2. It is introduced in the familiar
context of Maxwell theory and non-Abelian Yang-Mills theory, in order to separate the
description of the loop technique itself ftom the difficulties of gravity. The advantage
of the loop quantization is that it handles diffeomorphism invariance in a natural way.
To illustrate this point, I describe the use of the loop quantization in the quantization
of general relativity in (2 1) dimensions. Certain conceptual questions related to the
construction of 2 quantum theory on a manifold are discussed in the last part of this
section.

3.1. Quantum general relativity: ideas and hopes

3.1.1. The neced for a non-periurbative theory. General relativity and the SU(3) x
SU(2) x U(1) standard model constitute a theoretical framework which, in principle,
predicts the behaviour of any physical system in any physical circumstance, ezcept in
one case. This ‘hole’ is constituted by the phenomena in which the quantum properties
of the gravitational interaction cannot be disregarded.

This theoretical framework will perhaps (probably?) be challenged by future ex-
periments, and, due for instance to the number of free parameters, it may be consid-
ered aesthetically unsatisfactory and more or less likely to be incomplete, However,
to have a fundamental theory which is not contradicted by any known physical fact
is a2 novel situation in the history of modern physics. In such a situation, it is natural
to concentrate on the open ‘hole’, and focus on the single crack of the present theory.

The crack is more substantial than the mere impossibility of caleulating Planck-
scale phenomena. Indeed, quantum field theories of the standard model on the one
hand, and general relativity on the other, provide two strikingly different pictures
of nature. So different that one wonders how physics students may accept such a
schizophrenic description of nature as a reasonahle one. Clearly, there is a contra-
diction here at the basic level in the present description of the world. Of course, to
face contradictions at the fundamental level has always been a vital tool that has
led to major advances in theoretical physics. {The contradiction between Galilean
invariance and the Maxwell equations motivated special relativity; the one between
Newtonian gravity and special relativity motivated general relativity; the one between
the Galilean earth physics and the Keplerian celestial physics motivated the Newto-
nian synthesis, and so on.) Thus, the problem of the quantum description of gravity
is at the heart of today’s physics.
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Let me analyse the problem more closely. There is an important observation to
be made: one should distinguish quantum mechanics, which is a general mechanical
theory, from the standard formalism of quantum field theory, which is a particular ap-
plication of quantum mechanics to certain systems with an infinite number of degrees
of freedom. General relativity is incompatible with the standard formalism of quantum
field theory, but this does not necessarily imply that general relativity is incompatible
with quantum mechanics.

Standard quantum field theory relies on the existence of a fixed causal structure
on the spacetirne manifold, as well as on the Poincaré invariance of such a structure
(without a fixed causal structure one cannot define the local quantum field operators
as operators commmuting at specelike separations}. General relativity does not allow
any non-dynamical causal structure and is not Poincaré invariant. The reason for
the failure of all the attempts to construct quantum gravity within the standard

framework of quantum field theory appears clear, at least a posteriors: in order to
gqueeze o'r-npral rﬂ]nh\nfv info the standard fnrmn]mm wa are forced to nrflﬁrln"v

mcorporate into the theory a background Minkowski metnc 1., and assume (against
general relativity itself) that the physical causal structure is defined by My, Tather
than by g,,. {Quantum field operators are then defined as operators ihat commute
when they are spacelike separated, where ‘spacelike’ is defined by o)

Thus, the problem of quantum gravity is the following: is it possible to construct
a quantum theory for an infinite-dimensional system without assuming the existence
of a background causal structure? Such a quantum field theory should be radically
different from usual Poincaré-invariant quantum field theoriest.

In gravity there is a subtle interplay between this addition of a fictitious back-
ground metric, and Lhe use ol a perturbation expansion. Since the causal structure
is defined by the dynamical variable 9, itself, a perturbation expansion around the
Minkowski solution implies that we are using the Minkowski fictitious metric as a hack-
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we commit them to respect the unperturbed (and therefore fictitious} commutation
relations, Thus, while in usual quantum field theories the perturbation expansion is
a method for solving the theory, in gravity it is a method for defining the theory.

A formulation which does not use the unphysical Minkowski metric in order to
define the theory is therefore needed. Any such formulation will be denoted ‘non-
perturbative’. Thus, the problem is to develop a quantum field theory without back-
ground geometry, namely a field theory on a differentiable manifold rather than on a
metric space. In section 2.2, 1 describe a formulation of quantum field theory which
avoids any reference to the background geometry, and which is in a position to han-

t A few examples: the concept of particle is intimately related to Poincaré invariance; there are no
well defined quantum particles in a quantum field theory on a manifold. Similarly, there is no concept
of vacuumn in a theory with no Hamiltonian. 4nd so on.

{ The nced for a non-perturbative theory is reflected in another peculiarity of the gravitational field.
Quantum gravitational effects appear only at the Planck scale. Thercfore any perturbation expansion
should reach this scale in order to be physically meaningful. Perturbation expansions in quantum field
theory {or string theory) ave in general divergent. Since the Planck constant is the only dimensional
quantity, the perturbation expansion most likely diverges at the Plank scale. But then it never
reaches the region where the physics is. If the theory is defined via a perturbation expansion, the
perturbation expansion has to be convergent, otherwise the theory is meaningless: a renormalizable
perturbation expansion (ar even finite orcer by order} is not a solution of the problem. In a sense, the
difficulty of string theory of providing substantial plysical information on what happens at 107%% em
or at 102t GeV is a manifestation of this problem.



Review article 1635

dle this diffeomorphismn invariance. This formulation derives from the early work in
canonical quantum gravity of Wheeler and DeWitt [39] and, more recently, on the
work of Kuchaf [40] and especially of Isham [41]. It was introduced by Smolin and by
the author [8], following results obtained by Jacobson and Smolin {38] and has been
developed by Ashtekar, Smolin and the author [2, 42-44). In the context of Yang-Mills
theories an essentially analogous formulation had been (independently} introduced by
Gambini and Trias [45]. This formulation is based on the possibility of coding the in-
formation about the quantum field on a space £ over which we have a certain control
of the action of the diffeomorphism group. This space is the space of the loops over
the manifold.

The fact that a gauge theory can be expressed in terms of loops has been known
for a long time. There is a persistent line of thought, that advocates that loops are the
natural objects in terms of which a gauge theory should be described [46,47]. Among
others, it includes Polyakov, Mandelstam, Wilson, and it dates back to Faraday. At
the same time, loops have the remarkable feature that their diffeomorphism-invariant
properties are simple: they are captured by the way the loops are knotted and linked.

The Ashtekar formulation of general relativity provides an unexpected bridge be-
tween these two characters of the loops (that they describe gaunge theories and they
capture diffeomorphism-invariant properties): by representing gravity in terms of a
Yang-Mills-like connection, the Ashtekar formalism furnishes an object, namely the
Wilson loop of this connection, which captures the gravitational field and that, at the
same time, has a manageable behaviour under diffeomorphisms.

3.1.2. Dirac quantization and its problems. Many aspects of quantum gravity follow
from the fact that the canonical Hamiltonian of general relativity vanishes weakly.
This fact is not accidental: rather, it is deeply rooted in the physics of the gravitational
field., The Hamiltonian is the generator of time evolution. The physical meaning of
the general covariance of general relativity is that space distances and time intervals
have no meaning a priors, but can only be defined by the dynamics of the gravitational
field itself. Therefore evolution in a pre-assigned universal time is unphysical in general
relativity. Accordingly, there is no Hamiltonian in the theory.

In spite of the vanishing of the Hamiltonian, the canonical formalism does provide a
viable framework. The canonical formalism to be used is not the standard Hamiltonian
one, but the generalization provided by Dirac’s constrained-systems theory, or, in
modern terms, by presymplectic dynamics. The constraints in gravity are not just
a nuisance, like the Gauss law constraints of canonical Maxwell theory; rather, they
encode the physical content of the theory.

Accordingly, the main instrument for the quantization is Dirac’s theory of quan-
tization of Arst-class constraint systems (not to be confused with the Dirac theory of
second-class constraint systems—the theory of the Dirac brackets). The Dirac theory
is well known: quantize the system as if there were no constraint, pick up the subspace
Hpy, of the Hilbert space M defined by C,¥ = 0, where C; are the quantum operators
corresponding to the constraints, and choose a set of observables O, that commute
with the constraints. Then Hp, and the Ou operators define the quantum theory.

There are two problems in this approach. The first one is the difficulty of recogniz-
ing how the quantum theory describes the physical time evolution; this issue will be
discussed in section 3.3.2. The second problem is that Dirac’s theory is incomplete in
the following sense. In general, the scalar product in H does not induce a viable scalar
product in Hp,, because (when, as usually happens, the C; have continuum spectrum)
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Hpy, is in general formed by improper vectors of H, and the scalar product of H is not
defined on these vectorsf. In order to apply Dirac’s quantization scheme to general
relativity, we have to supplement it with a method for choosing the physical scalar
product.

The difficulty with the scalar product has raised a certain confusion in the litera-
ture, including claims that the theory cannot be defined in a standard Hitbert space
framework, that the theory is under-defined because we do not know how to pick the
physical product, or that a theory without time cannot have a scalar product. A
straightforward way out from this difficully is discussed in the next section.

3.1.3. The reality conditions defermine the inner producl. The linear structure of a
vector space is well defined by itself and is independent of any eventual scalar product
that one may define on that space. On the same linear space different scalar products
can be defined. By using this observation, a theory can be quantized in two steps. The
first is to pick a linear space H, and linear operators On corresponding to classical
observables O, (with the correct commutation relations, for instance the canonical
commmutation relations). The second step is the choice of the scalar product. This is
a shift in perspective with respect to the usual procedure, in which one starts from a
Hilbert space and then chooses self-adjoint operators O,.

The question is: how to choose the scalar product? Of course, in order to get the
correct final answer, the requirement on the choice of the scalar product is that the
linear operators O, must be self-adjoint with respect to the scalar product chosen.
(The definition of the adjoint operation depends on the scalar product.) Thus, the
strategy is first to work out the linear structure entirely, and then choose the scalar
product that makes the observables seli-adjoint. If the programme is completed, the
final result is clearly independent of the procedure followed.

The advantage of this procedure is that we may solve the quantum Dirac constraint
at the linear level, and only later are we concerned with the inner product. But then it
is clear which is the condition that determines the choice of the inner product in Hp,,:
the condition is that the operators corresponding to the physical observables O, must
be Hermitian in the chosen scalar product. This is a highly non-trivial requirement
on the choice of the scalar product. Tn general, if the operators O; are ‘enough’, this
requirement fixes the scalar product uniquely. Thus, there is a precise criterion for
the selection of the scalar product on Hp,: the Hermiticity of the gauge invariant O;.

Now, in the new variablies formulation there Is an additicnal issue to be addressed.
We work with complex classical observables, namely with complex linear combinations
of classical observables: O = f(x,p) + 19(z,p), where f and g are real observables.
Obviously f and g must be Hermitian, not O. At the linear level, we can simply
quantize O in term of a linear operator O, but then at the moment of choosing the
scalar product the adjoint of © must have suitable properties, such that f and g be
Hermitian.

Specifically, the Ashickar connection is a complex linear combination of two real
observables: A = p+iwfe]. In order to have real observables represented by ITermitian
cperators the inner product should be such that

-

Al = A - 2w 8. (3.1)

t This is a well known problem in the quantization of any theory with & gauge invariance. In
standard Yang-Mills theories there are known ways around it (for instance the introduction of ghosts).
Morcover, there is a guiding principle that is used for fixing the scalar product: Poincaré invariance,
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Equation (3.1) is the quantum version of the reality conditions equation (1.41). The
inner product should be such that equation (3.1) holds. Thus, the inner product is
determined by the reality conditions [1,8§].

Let me be more precise. The variable 4 is not gauge invariant, A does not commute
with the constraints, and it is not defined on #p),. What we have to do is to compute
the reality conditions for the gauge-invariant observables O, that follow from the
reality conditions for A and Ef . Let these reality conditions be

61‘ = fz‘(Oj)' (3.2)

Then the inner product on Hp,, is determined by the corresponding quantum reality
conditions:

OI = fi(oj)' (33)
Namely, the scalar product is determined by the condition

{0,9i8) = ($|£,(0;)8). (3.4)

Examples of this procedure for fixing the inner product are the quantization of Maxwell
field with self-dual variables in appendix 3, and the quantization of linearized gravity
in the next section.

3.2, Loops

3.2.1. Marwell: quanium Faraday lines. The idea of using loops as the objects for
describing a gauge theory has been concretized in several forms. Here a canonical
theory is defined. I follow the work of Ashtekar and the author in [42].

Maxwell theory is a free-field theory and the standard quantization is straightfor-
ward. For instance, one may fix the radiation gauge 8, A° = 0 and decompose the
fields in Fourier modes. Each mode is an harmonic oscillator for which creation (or
positive frequency) and annihilation (or negative frequency) operators can be defined.

The positive-frequency field, which I denote by *A_ is given in terms of the real
Maxwell connection A, and its momentum (the electric field) £ by

A (k) = \/ii (Ag(k) — kI~ E,(8)) (3.5)

The negative-frequency field, which I denole here by ~ £, is

"EL(k) = 75 (Aa(k) + K E,(8). (36)
These two fields satisfy the standard canonical commutation relations and can be
represented in the quantum theory in terms of creations and annihilation operators
on a Fock space. By doing so, one discovers that the Ifamiltonian is diagonal on the
Fock basis of the n-photon states. The basic prediction of the theory is the existence
of the photons.
The loop representation of Maxwell theory is a different representation of the
theory, which turns out to be equivalent to the Fock representation.
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Consider the T4, field in coordinate space. Consider its Wilson loop. More
precisely, consider the (Abelian) holonomy of —i times T4 (z), and denote it as T[y]:

Tly] = exp (~—i£+f1) (3.7)

where the line integral along the loop is defined as (this is the standard line integral
of 1-forms)

%*’A = %ds Yo (8) TA,(v(s)). {(3.8)

T[] is the first relevant variable to be used for the quantization. It is of course the
Abelian version of the gravitational T observable defined in section 1.5}, The second
relevant variable is ~E*(k).

The Poisson algebra of T and ~E closes:

{Tly),"E(K)} = iF®[y, k] (3.9)

and is denoted Abelian loop algebra. Here, F°[y, k], called the form factor, is defined
as

Fe[y,k) = fds-',“(s)eik'ﬂ*}. (3.10)

The form factor f%[y, k] will be a very important object in what follows. Its main
property is that its Fourier transform is the real function (distribution) with support
on the loop itself A%+, z] defined above in equation (1.75). Note that the holonomy
T can also be written as

T(7) = exp (—i f &2 Ay, ::]Aa(x)) . (3.11)

The key idea of the loop representation is the following. Rather than looking for a
representation of the canonical creation-annihilation algebra, namely a representation
of the Poisson algebra of ¥ 4 and ~E, we look for a representation of the Poisson algebra
of T and ~E. In other words, we search for two operators T[] and E¢(k) (I drop the
superseript ~ from the electric field operator) which satisfy the commutation relations

[T[1], E5(k)) = hF®[y, k). (3.12)

The idea that non-canonical algebras are better suited for non-perturbative quan-
tization has been advocated hy Isham [41]. As we shall see, this change of basic algebra
is harmless in simple theories, but has far reaching consequences in gravity.

The loop representation is based on the fact that there is a representation of
the loop algebra {3.9) in terms of functions on a loop space. A single loop is here a
piecewise smooth closed curve @®(s) in a fixed three-dimensional manifold. A multiple
loop is a collection of a finite number of single loops. Multiple loops will also be denoted
with Greek letters: & = o, U ... Ua,. Let £ be the space of all these multiple loops.

t The i in the definition is just a matier of convention.
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The wavefunctions that represent the unconstrained quantum states of the theory will
be complex functions on £. They assign a complex amplitude to every multiple loop
o

wavefunction —— ¥(a). (3.13)

On the space of these wavefunctions there is a representation of the observables Tv]
and “E°%(k), defined as follows:

Tly] ¥(a) = ¥(a Uy) (3.14)
E*(k) ¥(a) = hF°[y, k] ¥(a). (3.15)

These operators satisfy equation (3.12). They answer the gquantization problem
in the same sense in which the creation and annihilation operators on a Fock space,
or the z and —ihd/Oz operators do. Thus, we have a linear space of states, and a
basic set of operators on this space, with the correct commutation relations for the
definition of the quantum theory.

Notice that the wavefunction (o) is not a wavefunction on a configuration space.
Rather, it has to be thought of as an abstract vector in a linear space. To provide an
analogy, consider a hydrogen atom quantum state |¥}, and its components on the basis
|, !, m} which diagonalizes energy, total angular momentum and one component of
the angular momentum. Such components are ¥(»n,{, m) = {n,{,m|¥). The quantities
¥(n,{, m) provide a representation of the physics of the hydrogen atom. Here n,m,{is
not a classical configuration variable, and the ¥{n, I, m) picture is not very intuitive.
However, the set of the ¥(n,!,m) plus a definition of the action over them of the
relevant operators provide a complete description of the physics of the atom. Later |
will discuss the physical interpretation of the term ¢ that appears as argument of the
wavefunction.

The classical T observables are not independent. They are invariant under (mono-
tonic) reparametrizations of the loops and, as their gravitational analogues, they sat-
isfy the following relations:

lim Tfat) = 1 (3.16)
e—0

Tlaolol™] = T[a] (3.17)

(see section 1.5 for the notation) Because of the Abelian character of the group, the
spinor identity (1.69) is replaced by a simpler relation: anytime a loop « has a self-
intersection which breaks it into two loops 4 and 7, we have

T{e] = T[AITT). (3.18)

If the basic observables chosen for the quantization are not independent, the resulting
quantum theory may be reducible {‘larger’ than necessary). To fix this, we have
to implement these relations in the quantum theory. We impose these relations as
operator equations. This is equivalent to restricting ourselves to the states that satisfy

V(Ua)=T(UBUY) (3.19)
V(aUyelol ) =¥(aUy) (3.20)
eh.]:% P(yi) =1 (3.21)
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and which have the same value on loops related by a reparametrization. The first
two of these equations imply thal ¥ is completely determined by its restriction on the
single loops.

In order to solve the theory, we have to consider gauge invariance and to find
the eigenvectors of the Hamiltonian. Gauge invariance is straightforward: since both
T and E are gauge invariant, we are in fact already working in the physical gauge
invariant phase space. Thus, we do not have to take into account gange invariance
any more. I will come back to this point later.

The Hamiltonian can be written in terms of the basic operators of the loop repre-
sentation. The classical Hamiltonian, written in terms of *A and ~F is

H= /d% ~E°(—k) *B, (k) (3.22)
where *B is the magnetic field of *A. We need the operator that corresponds to the

classical observable *B. Note that for a small loop %, , , which is centred in z, has
area ¢ and is oriented in the plane normal to the a direction

TWeael = 1+ 1B, (x) + O(?) (3.23)
so that
lim <(Ty,0.e] = 1) = B, (2). (3.24)

Accordingly, the quantum operator B corresponding to the classical obscrvable +3
{again [ drop the superscript * in the operator) is defined by

B,(x)¥(e) = =i lim (Tl o o] ~ D¥(@)

sy \If(a U.fc.a,x) - W(O’)
= —i lim
e—Q €

ool
:"_-.—IEE‘I’(G’). (325)

In the last line, the notation é/8v% has been introduced in order to emphasize that the
operator is a derivative operator. Note, owever, that it is not a functional derivative,
In terms of this operator the Hamilionian is

H =./d3kE“(—k)Ba(k) (3.26)
and the time-independent Schrodinger equation is
d
/d% Fe(=k) 3?,5"1"“’(“) = E ¥, (a). (3.27)

It is a straightforward calculation to check that this equation is satisfied by the states
Yola) =1
Virole) = aFla, 4] (3.28)
Ui epay(@) = €, F°a, k] o, FPla, pl.

ruty
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It is easy to recognize that these states are the n-photon states. Indeed, the corre-
sponding energy eigenvalues are 0, |k, k| + |p|,.... Here, ¢, o are the polarizations
vectors.

These Fock states can be written in coordinate space as follows. Consider a one-
photon state with one-particle wavefunction fcr,l) {z). Then from equation (3.28) and
the definition of the form factor it follows that

¥ (a) = j{ £, (3.29)

Thus, the loop functional representing & one-particle stale is the line integral along the
loop of the one-particle wavefunciion f. Note that the line integral depends only on the
transverse component of f_(z). This is how the loop representation naturally enforees
gauge invariance. A two-photon state with two-particle wavefunction fg?(r,y) is
given by the loop functional

‘I’fte)(d’)=j1£j{lfm (3.30)

where one line integral is on z and one on y.

Some comments follow.

(i) Gauge invariance. The transversality of the Maxwell field follows from the
following key property of the form factors:

by Fola, k) = 0 (3.31)

which in turn follows immediately from the definition. Because of this property, there
are only two independent photons for every momentum, as required by gauge invari-
ance. The main advantage of the entire formalism is that it allows us to work on the
space of transverse A fields without breaking manifest Lorentz covariance.

(11) What we have done is simply to give a different representation of the Fock
space. This is a different representation in the same sense that the momentum repre-
sentation and the coordinate representation of a particle are two equivalent represen-
tations. We may look at the choice of this representation as at the choice of a basis
la}, in the Hilbert space of the theory:

¥(a) = (o] ¥). (3.32)

(iii) Since we have the explicit form of all the Fock states, we know the inner
product, I refer to [42] for a detailed discussion of this point, but I give here the basic
expression for the scalar produet in loop space. First, it may be shown [43] that every
loop functional ¥ in the physical state space determines a (polynomial) functional ¢
over the space of the {transverse) functions of &, F%(k), via

¥(a) = ¢[F*[k,al]. (3.33)
Using this, the scalar product is defined by

@) = [arien (- [ FEOR®) AR 61F. G
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This expression reproduces the standard inner product for Maxwell theory. For more
details see [42] and [2].

(iv) Equation {3.28) provides the matrix elements of the operator {a|p,en. v 2,0
that defines the change of basis from the Fock representation to the loop represen-
tation. Besides the Fock, or particle, representation, there is another well known
representation of a free field. This is the functional Bargmann representation [48],
in which the quantum states are represented by holomorphic functionals W[A] of the
{positive-frequency) Maxwell connection, and the Fock-basis states are represented by
power functionals. How are the Bargmann and the loop representation related? The
answer can be worked out completely. Indeed. one can show that the relation is given
by the following functional integral transform:

Bla) = / dp[AJexp (i J{, A) ¥[A]. (3.35)

The measure in the integral is the well defined free-field measure (Gaussian), and one
can demonstrate [42] that the integral exists and converges for all the physical staies.
It is not difficult to check that the Bargmann n-photon states are mapped in the
states (3.28); this is just an exercise in Gaussian functional integration. The integral
transform (3.35) is a unitary one-to-one mapping froim the Bargmann representation to
the loop representation. It is an infinite-dimensional analogue of the Fourier transform
that maps the coordinate representation into the momentum representation.

The loop representation can be inireduced by first constructing the Bargmann
representation and then defining the loop transform {3.353). For a discussion of this
approach, see the book {2].

{(v) The main motivation for the loop representation, presented at the beginuing of
this section, was the need for a quantum theory defined without any reference to the
background metric. In this section, this goal does not seem to have been achieved, be-
cause the separation between positive frequency and negative frequency field relies on
the existence of the background metric. However, the entire formalism can be repro-
duced starting from the self-dual connection, rather than from the positive-frequency
connection. (The split between self-dual and antiseli-dual connection is metric inde-
pendent.) The idea of replacing positive-negative frequency with self-duality in the
quantization was introduced and discussed by Ashtekar [49]). The loop quantization
of the Maxwell field in terms of the self-dual potential is described in appendix 3.

{vi) Let me discuss the physical interpretation of the loop states [or). As it is clear
from its definition (equation (3.15)), the positive-frequency electric-field operator is
diagonal in the loop representation. Since this is the annihilation operator, it follows
that the loop states |a) are eigenstates of this operator, namely they are coherent
states. The corresponding classical configuration is given by their eigenvalue. The
eigenvalue is the form factor, which in coordinate space is real, and is given by the
distribution A®%[a, x] (equation (1.75)) with support on the loop itself.

Thus, the state o) is the coberent state corresponding to the classical field con-
figuration in which the magnetic field is zero, and there is a (distributional) electric
field concentrated along the loop o and proportional to the tangent of the loop.

(vii} Note that a gauge has not been fixed, but the formalism is gauge invariant.
Because of gauge invariance, the electric field has to be divergenceless. The simplest
excitation of a divergenceless vector ficld cannot be a point excitation but has to
‘continue’ and (in ahsence of charges) has to he loop-like. Thus, loops are the simplest
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excitations of a divergenceless vector field, namely the loops are the simplest gauge
inveriant excitations of the eleciric field. In this sense, the loop representation is a
natural representation of a gauge theory. Moreover, gauge theories originated from
Faraday’s idea of description of electric and magnetic force in terms of loops that fill
the space: the leops of the loop represeniation are precisely the gquanium version of
Faraday’s ‘force lines’, which historically gave birth lo gauge theories.

(viii) In conclusion, the loop representation provides a consistent and complete
quantum theory for the Maxwell theory, which is equivalent to the Fock representation.

3.2.8. Yang-Mills. In order to generalize the Joop representation to non-Abelian
theories, the problem is that the electric field is no longer gauge invariant. The
solution is provided by the T observables (or the T[R] smeared ribbon observables)
defined in section 1.5.

Consider a Yang-Mills theory, where A, (z) is the Yang-Mills potential, which
takes values in the adjoint representation of a Lie algebra G, and E?{z) is the electric
field. We pick for concreteness the group SU(2), which is the one relevant for gravity.
We consider the observables T'[a] and T'[R] defined in section 1.5, and their Poisson
algebra, which is the non-Abelian loop algebra introduced in section 1.5 (equation
(1.40)).

We quantize the theory by considering again the space of loop functionals ¥(e«),
and the following two quantum operators:

Ty ¥{e) = ¥laUy) {3.36)
TIRB(a) = A ¢ (U(o#,R) — ¥(o#,R7")) (3.37)

the notation is described in section 1.5.1. Once again, the commutator algebra of
these operators reproduces —~ifi times the corresponding classical Poisson algebraj.
The unsmeared form of the operator T%[y](s) is -

PoRP(e) = 5 3 Ao a(s)) (Blosk) = Bodka™)) . (3.38)

Note that the operator T%[y](s) acts on a loop @ only if @ and v intersect at the point
4(s). The action consists in inserting the loop ¥ in e, starting from the intersection.
The point (s) on the loop v is denoted the hand of the operator T°[y](s}, and the
action of the operator 1s denoted as the grasping of the hand over the loop «.

It is easy to define also loop operators corresponding to the loop operators with
more than one index defined in section 1.5. The action of these operators is given by
the sum of the grasping of each of their hands [8].

As in the Maxwell case, the loop functionals must satisfy the conditions {3.16) and
{3.17) for irreducibility, but now the group is non-Abelian and the simple condition
{3.18) is replaced by the condition

V(o UB) = Vo) + Clagts™) (3.39)

t At this point, the reason for choosing the set of piecewise smooth closed loops should be clear.
On everywhere-differentiable (or smooth) loops the non-Abelian algebra would not close. There is a
smaller set of loops which may be chosen (and maybe must be chosen in order to have an irreducible
representation}. These are all the loops obtained from smooth loops by rerouting at the intersections.
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which implements the spinor identity (equation (1.69)) satisfied by the classical SU(2)
holonomies T'. As in the Abelian case, it is not difficult to show that a loop functional
that satisfies all these properties is entirely determined by its restriction on the single
loops.

The relation between the loop representation and a functional Schrodinger repre-
sentation is given by a non-Abelian analogue of the Abelian loop transform (3.35):

¥(a) = / du[A] TP exp ( i A) U[A]. (3.40)

Unlike its Abelian version, this loop transform is far from being well defined because
we do not have at our disposal a well defined gauge invariant measure p[A]1. In spite
of these problems, the loop transform is a very useful device. It can be used as an
heuristic trick. Indeed, the form of most of the loop operators has not been pulled out
of the air, but it has been suggesied by formal manipulations on the loop transform
(see [50]). Moreover, shortly after the definition of this loop transform, Witten {with
different motivations) has been able to construct a definition of the integral good
enough to actually compute the integral in certain cases. I will come back to this
later.

Non-Abelian Yang-Mills theories in this non-perturbative canonical loop formal-
ism have not been extensively studied (see, however, {45] and [51]). The main difficulty
that one may expect is related to the renormalization of the Hamiltonian operator.
The B2 term in the Hamiltonian may be defined by using a limiting procedure analo-
gous to the one used in the Abelian case. In this way there is a built-in regularization
of the operator. One expects standard ultraviolet divergences in the limit. However,
there is a surprising result in perturbative quantum field theory which may be re-
lated to the formalism I am describing. In spite of the fact that the T observables
are complicated non-polynomial operators, integrated in only one dimension, their ex-
pectation value is multiplicatively renormalizable for all orders in periurbafion theory
[52]. This result raised a certain interest several years ago, but, to my knowledge, this
direction of research has not been pursued.

3.8.3. Lattice Yang-Mills. The loop quantum theory defined by the previous equations
has a natural version on the lattice. The lattice version of the loop representation of
Yang-Mills theories has been studied in detail. The lattice theory has a finite number
of degrees of freedom, and its definition is completely under control. Indeed, the loop
transform (3.40) is well defined on the lattice, where the gauge invariant measure is
known. The transform defines a well defined change of basis in the Hilbert space.
A complete construction of the theory along these lines is given by Smolin and the
author in [33].

The new basis thai defines the loop representation is the (overcomplete) basis
formed by all the (spacelike) Wilson-loop states, which were introduced by Wilson and
Suskind in the first investigations of Hamiltonian lattice gauge theories [47). There-
fore, the loop representation is the continuum limit ef the Wilson-loops Hamiltonian
formalism.

t This same functional integral transform will relate the loop representation of quanium general
relativity with the connection representation; in this case the integral Is even less defined than in the
Yang-Mills case, because we need to assume the measure to be also diffeomorphism invariant,
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It has been suggested that this loop lattice formulation may provide a numerical
calculation method as an alternative to standard Monte Carlo methods. This sugges-
tion has been tested by Briigmann in {54], where a {2 + 1)-dimensional SU(2) theory
has been numerically analysed using the loop representation, with results in very good
agreement with the ones obtained in other ways.

3.2.4. Gravily in 2+ 1 dimensions. The application of the loop quantization technique
to general relativity in 2 + 1 dimensions is a simple illustration of the natural way in
which the loop representation deals with diffcomorphism invariance. The quantum
theory was fitst constructed by Witten (28], using an Ashtekar-like classical formula-
tion similar to the one described in section 2.2.2, and geometrical techniques. Wit-
ten’s results were obtained again, using the loop representation, by Ashiekar, Husain,
Samuel, Smolin and the author in {55]. T do not not discuss here the entire formulation
of the theory, but only the key conceptual point which will be used again in the full
theory.

The quantum representation of the loop observables (2.2.2) ts given by the opera-
tors

T ¥{a) = ¥(yUa) (3.41)

a1 (3.42)
™)) (3.42)

TR (a) = "’Z‘ (U(R#,0) — B(R#,

where now the multiple loops live in a two-dimensional space with non-trivial topology,
and the ‘ribbons’ R, I recall, are (in two dimensions) just standard loopst.

The only remaining constraint is D! = 0 (see (2.4)) or Fi, = 0. In terms of the
T observables, this constraint is equivalent to the requirement that the holonomy of
any two loops that can be smoothly deformed one into the other is the same, namely

Tla} - Ti¢-a] =0 (3.43)

for any diffeomorphism ¢ in the connected component of the identity. The quantum
constraint is therefore

(T[a] - Tl a]) ¥(a) = 0. (3.44)
The solution is given by any state for which

T{o) = V(¢ - a). (3.45)
Does this mean that the state is constant everywhere on loop space? The answer is
no, because two loops that wrap around the manifold in different ways, namely which
are in two distinct homotopy classes of the manifold cannot be smoothly deformed
one into the other. Thus, the physical states have the form

Y(a) = ¥(h(a)) (3.46)

where h is the homotopy class of the {multiple) loop a.

t In [55], the representation is introduced directly in terms of its restriction on the single loops sector.
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The conclusion is that the physical quantum states of the theory can he represented
as functions ¥(#) on the set of the homotopy classes f of the two-dimensional manifold.
This is indeed the same conclusion reached by the previous investigation of this theory.

Equivalently, we may introduce a state |£) that has value one for the loops in the
homotopy class h, and otherwise vanishes; and we may represent a physical state of
the theory as a linear combination of homotopy classes

1) =" ¢, [h). (3.47)

h

3.2.5. Other works on the loop representation. The loop representation was first
constructed by Gambini and Trias [45]). The form of the loop representation developed
by Gambini and Trias has certain inferesting differences from the form deseribed here.
These authors consider the group structure that is given on the space of all the loops
in a manifold (with a common base point) by the composition operation {at the base
point). This group is denoted as the group of loops. The inverse is the loop with
reversed orientation. They assume the existence of a norm on this loop space, and
they consider a loop derivative defined in terms of this norm. The loop derivative is
essentially the generator of the group of loops, and can be essentially identified with
the B_(z) operator defined above. This interesting construction could be very useful
in gravity.

Other theories have been studied in the loop representation. Husain and Smolin
have considered the quantization of general relativity with two Killing fields [18].
Chern-Simon theories have heen studied by Miao Li [56]. Preliminary investigation
of the loop representation for continuum Yang-Mills theories has been considered
by Loll [57] and the author [51]. Loll [57] has discovered a way to get rid of the
redundancy in the loop observables due to the spinor identity (3.39). She defines
certain linear combinations of the T observables, denoted L observables, which solve
the spinor identity. She studies the quantization of the L observables algebra, and
finds an interesting generalization of the loop representation,

Rayner [58] has studied the possibility of a rigorous mathematical construction of
the loop representation. He has introduced a natural scalar product in loop space and
studied certain natural self-adjoint operators,

Manojlovic [59] has noted that the loop observables are invariant under change
of sign of both E and A {and therefore are not good global observables in phase
space) and has developed an alternative version of the loop observables which cure
the problem. He has applied this version of the loop representation to 2+ 1 gravity, by
making use of Isham group theoretical quantization, and considered the application
to the full theory.

Nayak [60] has studied the problem of time in 2 + | gravity using the loop rep-
resentation, and has considered the possibility writing the action directly in terms of
loop observables. This is a very interesting apen problem.

The loop representation has been rederived from a ‘highest weight’ Verma-module
type representation of the loop-algebra by Aldaya and Navarro-Salas [61]. Using these
techniques, these authors also define a modified representation of the loop algebra,
and, in the context of quantum gravity, study the problem of the solution of the
quantum constraints.

Works on the lcop representation specifically devoted to quantum gravity are re-
ferred to in the next section.



Review article 1647

3.3, Quantum theory without background metric

Before facing the technical difficulties of quantum general relativity, 1 discuss here
some conceptual issues which raised a certain confusion in the literature. The subject
of this section is controversial. I do not intend to describe the different solutions
proposed; rather, I present an overall point of view, which may constitute a possible
(but not the only possible) conceptual ground for the technical construction of the
next section. The point of view presented here is not shared by all the people working
on non-perturbative quantum gravity.

3.8.1. Observables. The physical interpretation of a classical dynamical theory with
a gauge invariance requires that only observables which are gauge-invariant (have
weakly vanishing Poisson brackets with all the constraints) have physical meaning.
In the quantum theory, this requirement becomes stringent, for an operator is well
defined on the space of the physical states if and only if it commutes (weakly) with
the quantum constraints.

It has been suggested that this rule should be relaxed for general relativity, on
the grounds thai measurements require a physical reference frame, and the gauge of
general relativity just reflects the freedom in choosing this reference frame. While it is
certainly possible to have in the formalism objects that are not gauge invariant, still
all the quantities that can be predicied by the theory—and therefore the quantities
to which physical quantum operators can be associated—must be gauge invariant
guantities. These quantities are the physical observables, in the sense of Dirac.

This comment is relevant for the interpretation of the quantum theory. One should
be careful, indeed, to give physical meaning only to gauge-invariant properties of the
wavefunction. For instance, to say that (in the metric representation) {¥[g]|* (where g
is a “3-geometry’, namely an equivalent class of 3-metrics under three-dimensional dif-
feomorphisms) represents the prebability that the geomelry be g, is certainly incorrect,
because this statement is not invariant under the transformations generated by the
scalar constraint, namely it is not invariant under four-dimensional diffeomorphisms.
For a detained analysis of the problem of the observability in quantum gravity, see
[62].

3.3.2. Time. A subproblem of the problem of defining the observables is the issue of
time. To deal with the problem of time in gravity forces us to slightly extend standard
quantum mechanics [63].

According to the discussion in the previous section, physical time evolution in grav-
itational physics should be expressed in a gauge-invariant fashion. Tt may be shown
that ¢ is indeed possible lo write gauge-invariant observables that express evolution
[62]. This evolution, however, need not be a standard ITamiltonian evolution. In
other words, the kind of ‘evolution” described by a constrained system with vanishing
Hamiltonian may be a genuine extension of the evolution generated by a IMamiltonian,
and, in general, cannot be reduced to it. Physically this reflects the absence of the
‘absolute clock’ postulates in Newtonian (or special relativistic) dynamics [64].

As far as the classical theory is concerned, we have enough pliysical intuition
about solutions of Einstein equations to be content with the theory, even if it has
a vanishing Hamiltonian. In the quantum theory, on the contrary, we are used to
having at our disposal a Schrodinger equation (namely a Hamiltonian). But the
Schrodinger equation and the Hamiltonian operator are equivalent to the assnmption
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of the existence of the exiernal absolute clock, which is in contradiction with the
physics of the gravitational field.

It has been suggested that. because of this problem, general relativity and the
Hilbert space formulation of quantum mechanics are intrinsically contradiciory. This,
I believe, is not necessarily the case. The constraint formulation of classical canonical
theory is a genuine extension of Hamiltonian canonical mechanics [65), because there
are systems that admit a formulation in terms of constraints, but not in terms of a
Hamiltonian [66). More precisely, there is an extension of symplectic mechanics—
presymplectic mechanics—which has the advantage of treating time {clocks) on the
same ground as other variables [63]. In a completely analogous fashion, the quantum
theory of a constrained system is a genuine extension of the quantum theory of a
Hamiltonian system. The corresponding quantum mechanics is a standard quantum
mechanics, where, however, the axiom on the existence of the Hamiltonian is dropped
and, in its place, the Hamiltonian constraints define evolution in implicit form.

The standard interpreiation of quanium mechanics can be applied in the generai
case (finite norm states, self-adjoint operators which commute with the constraints,
probability, projection of the wave function...), even in the absence of the Hamiltonian
operator. For a detailed discussion, see [G3,66).

In conclusion, the physics of general relativity forces us to extend quantum me-
chanies by dropping the postulate of the existence of the Hamiltonian. The rest of
standard quantum mechanics is still completely viable [63]. Evolution should be ex-
pressed by suitable gauge-invariant operators which represent evolittion in spite of the
absence of an absolute external clock.

3.4. Conclusions

The results described in this section can be summarized as follows.

{3} Every theory written in terms of a connection admits a represeniation in terms
of functionals on a space of loops. The representation is defined by the loop operators
(3.36) and (3.37).

(i1) These loops represent the gange invariant quantum excitations of the electric
field of the theory (the Faraday lines).

{1it) In the cases in which we have a complete control of the theory, like the non-
Abelian lattice theor3 ancl the Abelian continuum theory, it is possible to rigorously
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(iv) For non-Abelian connections, the action of the basic cbservables is related to
rerouting of the loops at the intersections.

(v} In 2+ 1 gravity, diffeomorphism invariance reduces the functionals of loops to
functionals of homotopy classes, in agreement with other independent treatments of
the theory.

(vi) The difficulty in constructing a meaningful quantum theory of gravity is tie
difficulty of constructing a quantum field theory on a manifold without a fixed metric
structure. The loop representation does not require a background causal structure to
be defined. and deals naturally with diffeomorphism invariarice, ~

Armed with all this, we face quantum general relativity,

4. Non-perturbative quantumn gencral relativity

In this section, I describe the present stage of the construction of a non-perturbative
quantum gravity theory. Following the discussion at the beginning of section 3, the
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hypothesis here is the following. That the difficulties of perturbative quantum general
relativity do not follow from any intrinsic incompatibility between general relativity
and quantum mechanics; rather, they reflect the inadequacy of the standard Poincars-
invariant perturbative formulation of quantum-field-theory for a generally covariant
theory as general relativity.

The project of a non-perturbative canonical quantizalion of general relativity dates
back to the work of Wheeler and DeWitt [39] in the sixties. In their approach, the
quantum dynamics of general relativity is encoded in the (Dirac) quantum version
of the ADM constraints. These are the quantum constraint that implement three-
dimensional diffeomorphism invariance and the quantum Hamiltonian constraint, also
denoted as the Wheeler-DeWitt equation. These constraints are expressed as func-
tional equations for the quantum states in a Schrédinger-like representation of the
quantum theory. In spite of intense efforts in this direction, the complexity of these
equations has long prevented substantial developments.

Ashtekar’s formulation of general relativity in terms of the phase space of a Yang-
Mills theory allows us to apply to quantum gravity the non-perturbative loop quan-
tization technique developed in the previous section. As anticipated, the loop rep-
resentation is in a position of handling diffeomorphism invariance. Indeed, the first
result of the loop formulation is to provide the complete solution of the quantum
diffeomorphism constraint. This is described in section 4.1.1.

The surprising result of the loop representation, however, is that the Hamiltonian
constraint (namely the loop-analogue of the Wheeler-DeWitt equation) can also now
be solved. More precisely an infinite-dimensional class of solutions of the entire set of
constraints are known. These solutions are represented in terms of knots classes; they
are described in section 4.1.2.

In order to understand the physteal content of these knot states, it is necessary
to relate them with the classical field (the spacetime geometry) and with the concept
of gravitons. Work is in progress in this direction; its present state is described in
section 4.2, The main result is a relation established between the graviton Fock-
space of the linearized quantum theory and the knot states. At least in principle,
it is possible to express the quantum vacuum state corresponding to flat Minkowski
spacetime (and any m-graviton state) in terms of a linear combination of the knot
states. In this way a physical interpretation of the exact knot states is established.

In the process of establishing this relation, certain surprising indications of a dis-
crete structure of space around the Planck scale appear. These will be described in
section 4.2.5. Finally, in section 4.3.2, I summarize the results obtained in the loop-
representation of general relativity, discuss the open problems and the overall picture
of quantum gravity which is emerging.

{.1. Loop guantum gravity

We choose as basic variables, to which we want to associate the quantum operators,
the T observables (1.61} and {1.77). We associate to these observables the operators
T defined in equations (3.36) and (3.37), which are defined on the space of loop
functionals ¥(a). The task is to solve the quantum constraints equations.

The internal gauge constraint is solved by using the gavge-invariant loop variables,
and we do not have to worry about it.

4.1.1. Diffeomorphism consirainis: the knot states. The diffeomorphism constraint is
written in terms of loop variables in (1.65). The quantum diffeomorphism constraint
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C(IN) is obtained by substituting the classical T variable with the quantum T oper-
ators. A straightforward calculation (see for instance [67]), shows that the operator
that one obtains is the generator of diffeomorphisms:

C(N)¥{a) = ad?ww, - a) (4.1)

where @, is the one-parameter family of diﬁ'eomorphisms generated by the vector field
N . This is the loop representation version of the standard result frhm to Higgs) that
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the ADM vector constraint is the generator of diffeomorphism invariance.
In exponentiated form, the first constraint equation is therefore equivalent to the
requirement of diffeomorphism invariance on the loop functional

U(a) = ¥(é - a). (4.2)

This equation can be exactly solved in closed form. This is because the orbits of
the difficomorphism group in the space of the loops are well known: they are the
knot classes. A knot, in fact, can be defined as an equivalence class of loops under
diffeomorphisms: two loops can be mapped one into the other by a diffeomorphism
{in the connected component of the identity) if and only if they are knotied in the
same way. Thus, the general solution of the ficst quantum constraint is

Pia) = (A {a)) {4.3)

where K is the knot class of the loop «of. Equivalently, as we did in 2+ 1 dimensions,
we may introduce states ¥,.{a) or, ¢ la Dirac, simply |K}, picked on the knot class
K

_, - f1 if & is in the knot class K Lo
Yela) = (o) = i . (4.4)
0 otherwise

and represent the general diffeormorphism-invariant state in quantum gravity as

1) =" g 1K), (4.5)

I

A technical point needs to be emphasized here. In order to represent the loop alge-
bra, loops with intersections and corners {points where the loop is non-differentiable)
are also required (otherwise the algebra does not close); therefore, the knot classes
I must be defined as the equivalence classes under diffeomorphisms of loops which
may have also intersections and corners. These are denoted generalized knot classes,
to distinguish them from the standard knot classes studied in knot theory (see [68])
which are the knot classes formed by the loops with no intersections and corners. I de-
note the loops with no intersections and no corners as regular loops, and the standard
knot classes of knot theory as regular knof classes. What was shown above is that a
diffeomorphism-invariant quantum state of the gravitational field can be represented
as a linear combination of generalized knot-class stafes.

t If we consider the states as functions of multifoaps, then we should consider link classes rather than
knot classes. A link class is an equivalence class of mult:p]e loops under difeomorphisms, However, as
stressed above (after equation (3.39)), the value of the wavefunction on muliiple loops (and therefore

on links) is determined by its value on the single loops (and therefore on knots).
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This is the first basic result of the loop representation for quantum general rela-
tivity.

Some comments follow.

(1) This result is based on two physical ideas. The first is that loops are the
natural objects for a Yang-Mills theory. The second is diffeomorphism invariance.
As was already observed, the Ashtekar formalism provides the bridge, by expressing
general relativity as a gauge theory, The physical excitations of the gravitational field
can be represented by loops and, because of diffeomorphism invariance, these loops are
only distinguished by the way they are entangled. Namely, the physical states of the
guantum gravitational field may be described in terms of knots. From this perspective
the result is quite natural.

(if) In the metric representation, too, the vector constraint requires the state func-
tional ¥{g] to be diffeomorphism invariant (here g is the three-dimensional metric).
As sometimes stated, ¥[g] must be function of the ‘3-geometry’ alone, namely it must
have the same value for any two g related by an (active) diffeomorphism. While the
physical meaning of this requirement is transparent, the explicit solution of the con-
straint is unknown because very little is known about the ‘3-geometries’, namely about
the orbits of the diffeomorphism group on the space of the metrics.

(ii1) An example: consider the connection representation of quantum gravity [1,2],
in which states are functionals ¥[A] of the connection. As discussed in section 3.2.2,
the loop representation is related to the connection representation by the formal inte-
gral transform (3.40).

If we include the cosmological constant A in the theory, there is one known solution
to all the constraint equations in the connection representation. This is the exponent
of the Chern-Simons integral of A{

£ N AN | ~ D] N
) 4] = exp (—--/{\-CS[A]) = exp (--;- j Tr (A,9,4, + -;:A,,A,,Ac)cm) . {46)

This state is gauge invariant and diffeomorphism invariant by inspection, and it is easy
to check that it satisfies the Hamiltonian constraint (this was pointed out by Kodama
[69]).

The state ‘IJ(CS)[A] should be represented in the loop representation by

(CS)(e) = / du[4) Tr P exp ( /a A) exp (-%csm]) : (4.7)

In spite of the difficulty of defining this functional integral, the integral has been
calculated. The calculation is a celebrated calculation performed by Witten in {28].
The result is

W) o) = J,(K(a)) (4.8)

where J, (K} is the Jones polynomial [68] in the variable X. The Jones polynomial is a
well known and well studied function on the space of the knot classes. Thus, there is a
state that can be written in the two representations, and which is an exact solution of
the Hamiltonian constraint in the presence of a cosmological constant. Note, however,
that the Witten calculation does not specify entirely the loop state ¥!%5) because in
the calculation o is assumed to be regular.
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(iv} A surprising feature of the general solution of the diffeomorphism constraint is
that it is given in terms of a discrete basis. A discrete basis is unusual in field theory,
but there is nothing particularly strange about it. The Fock space of any quantum
field theory is a separable Hilbert space-and therefore it is easy to construct a discrete
basis in it.

4.1.2. Quantum dynamics: the Hamiltonian constraint. There is a surprising number
of versions of the loop-representation Hamiltonian constraint that appeared in the
literature,

(1) In the original paper on the loop representation [8], the quantum Hamiltonian
constraint was constructed in terms of the limiting procedure defined in section 1.5.

{i1) In the same paper. it was suggested that there should be a simple operator
in loop space with a direct geometrical meaning, denoted the shift-operator, which
represents the Hamiltonian constraint. An incomplete definition of this operator was
suggested and some preliminary calculations that indicated that the operator agreed
with the one defined by the limiting procedure were given.

(iit) Later, Blencowe [67] suggested an alternative definition in terms of loop deriva-
tives, which las the advantage of a larger domain of definition in loop space.

(iv) Gambini and Trias [45] in turn suggested a definition in terms of the generator
of the ‘loop group’ defined in their formalism.

(v) Briigmann and Pullin [70] suggesied that the limiting procedure that defines
the constraint in the original paper is exactly equivalent to the Gambini and Trias
operator, and this, in turn, to the shift operator.

The reasons for this diversity{ is partially related to the fact that there are many
ways of defining a quantum operator with a prescribed classical limit. A complete
demonstration of the equivalence of these different approaches, is still lacking, In this
review, I do not describe the details of the calculations, { refer for these to the quoted
papers. I just present the main result on ihe solution of the Hamiltonian constraint
and a sketch of the proof. The result is the following.

Theorem. If a loop state ¥(a) has support only on the regular loops (namely if
o) = 0 for every loop a which has corners or intersections), then W(a) satisfies the
quantum Hamiltonian constraint,

This is the second main result of the loop representation.

The classical constraint is Tr[F,, EE?]. F,,, being a curvature, is antisymmetric
in the indices ab. In the quantum theory, the E® corresponds to the ‘hand’ in the
T4 operators. These hands act on the argument a of the Joop functional ¥(a) by
breaking and rejoining (see cquation {3.38) and the following commm\ts). Any time
they act, they produce a multlphcatwe coefficient proportional to ¢% in front of the
result, The two hands corresponding to £% and E? produce two multiplicative factors
&°® and at. Since the ab indices must be antisymmetrized, there is a term al%a? j
the result of the action of the Mamiltonian constraint. The foop @ must have, in at
least one point, two different tangents & and &', in order al*a?l not to vanish. This
may happen, for instance, if the laop intersects itself. But if the loop is regular there
is no point of this kind, and therefore the Hamiltonian constraint, acting on that loop,

t Te complicate the matter, Blencowe pointed out a technical mistake in the paper [8], which was
corrected by slightly changing the definition of the quantum constraint [71] (the final result is not
affecled by the mistake or by the change).
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gives zerof.

Having a set of solutions of the Hamiltonian constraint and the general solution
of the diffeomorphism constraint, we may look for solulions of the entire set of con-
straints, This is easy, because the set of the regular loops transforms into itself under
diffeomorphisms. Thus we have the following final result.

Any quantum state of the form

f oy < P PR
W) = L ci [h)} (4.8)

regular K

is a solution of all the quanium constraint equations, namely it is a physical state of
the quantum gravitational field. These states are denoted physical knot states.

Some comments follow.

(i) The theorem does not make any statement about the general solution of the
equation. Little is known about that. The set of solutions described form an infinite-
dimensional space. This space is a sector of the physical space of quantum gravity, it
is denoted as regular knot sector. It is likely that there are other solutions of the full
set of constraints. Indeed, solutions of the Ilamiltonian constraints corresponding to
loops with intersections have been found in the connection representation by Husain
[72] and Briigmann and Pullin [73]. Briigmann ard Pullin have developed a computer
code which can construct solutions for intersections of any order.

(ii) The physical knot states are solutions of the quantum dynamics of the gravi-
tational field. To clarify this point consider the analogy with the quantum mechanics
of a free relativistic particle. The quantum Hamiltonian constraint is the analogue to
the Klein—Gordon equation. In fact, the Klein-Gordon equation too can be obtained
as a Dirac quantum constraint that quantizes the classical constraint p.p" —m? which
P [URF o S M PR I (U « IR g I ML o te.afanlVind 2w |F7 LY 2 TN IR S
UBIHBCS wlle UYNAIILICs 01 & 1100 paruidie, 11e pnysical KIoL suales | regulat'] FWILLCH 5U1ve
the Hamiltonian constraint) are the analogue of the quantum states

Wy (z,1) = exp (ik_!.m —VIEE + m'—’t) (4.10)

which solve the Klein~Gordon equation. These states contain also the entire evolution
{{-dependence) of the state.

(iii) This analogy can be extended: the unconstrained quantum state space of a free
particle is spanned by the states |k*). The solutions of the Klein-Gordon equation are
spanned by the subset of these states which are on the mass shell: |&% . ). Thisis
completely analogous to the |K) and |K ,,) structure. In the momentum represen-
tation {{k#|¥) = (£*)), the Klein-Gordon equation is a statement on the support of
#(k*) (mass shell). In the loop representation ({K|¥) = ¥(X)), the Hamiltonian con-
straint is a statement on the support of ¥(/\'} (regular knots). (The analogy is partial,
stnce we do not know the general solution of the Hamiltonian constraint.) Thus, the
loop representation ‘diagonalizes’ the Hamiltonian constraint equation (partially), in
the same sense in which the momentum representation diagonalizes the Klein-Gordon
operator.

(iv) The fact that the Hamiltonian constraint turns out to be diagonal in the loop
representation, namely that we may find solutions simply by restricting the support
of the wave function, is quite surprising at this point. Historically, the development

t Note the analogy with the computation in section 2.2.1.
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followed a different path. The fact that the states |a), where o is a regular loop,
satisfies the Hamiltonian constraint was discovered by Jacobson and Smolin in the
connection representation [38)] before the definition of the loop representation. This
result was the starting point of the loop representation: the idea was to take the
Wilson loop states |a) as basis states. In this basis, the Hamiltonian operator was
expected to be diagonal, and the functions with support on the regular loops were
expected to satisfy the constraint. The loop representation is the realization of this
programme.

The ‘miraculous’ aspect of the constraint solutions in the loop representation is
the fact that the same basis is the basis that *diagonalizes’ the Hamiltonian constraint
and the basis that allows us to immediately solve the diffeomorphism constraint. (By
‘miraculous’, as usual in theoretical physics, | denote something we like but do not
understand.)

(v) It is difficult to judge to what extent the discovery of these solutions brings
us closer to the construction of a consistent non-perturbative quantum gravity, Ma-
jor problems are open. Among these, the construction of the physically observable
quantities and the definition of the inner product. In any case, in order to understand
these solutions, the first step to take is to unravel the physics they contain. This is
the argument of tite following section.

4.2. Inlerpreiation: the linearizaiion problem

To get some understanding of the physics contained in the knot states, we need to
relate them with usual concepts in terms of which gravity is described. Since we are
dealing with pure gravity, we expect the theory to describe, in some approximation,
a state in which there are gravitons wandering around some background geometry.
How can this physics be described in the loop picture? Equivalently, how can we get a
metric manifold end metric relations from the purely topological world of the knots?

To describe gravitons on a background geometry, 1 introduce the background met-
ric g¢®), The physical metric g will be given by the background metric ¢'® plus small
dynamical fluctuations. I choose g'® io be flat, and fix a coordinate system in which it
is the Euclidean metric. The Einstein equations can be linearized around this flat met-~
ric. The corresponding quantum theory describes two (traceless transverse) gravitons,
namely a spin-2 particle. There should be some limit (low-energy, or long-distance
limit) in which the full theory reproduces this free-graviton theory.

We are interested to find the description of these free gravitons within the knot
framework. Note that this point of view is reversed with respect to the standard one:
the problem is not how the gravitons describe the full theory, but the way the full
theory may describe states that look like gravitons, at least at large distances.

To achieve this result, a mapping has to be found between the space of the gravitons
states and the space of the quantum knot states. If |p, s} is, say, a one-graviton state
{with momentum p and polarization ), we want to calculate the cocfficients of the
expansion

Py =3 27K), (4.11)
P

In particular, the quantum state corresponding to the (free-field vacuum on the) back-
ground geometry g'® will also be a linear combination of knots:

0y =5 Q|R). (4.12)

Ig
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The task is to calculate the coefficients c(I?) that represent this flat geometry.

The first step is to choose a convenient way to represent the free graviton theory.
If My, (L for linear) is the Hilbert space of this theory, the second step is to find the
mapping M, that relates H| with the knot states space K.

Assuming that there is no degeneracy, this mapping is uniquely determined as
follows. If the same classical observable O is represented by the operator O, on Hy,

and by the operator O on K, then M must send OL in O. Namely
Op = MOM™L. (4.13)

To simplify the determination of A4, it is convenient to start by a formulation of
the free theory as similar as possible to the full theory. Thus, a loop representation of
linearized general relativity is needed.

4.2.1. Quanium linear grevily. The loop representation of quantum linear general
relativity has been constructed by Ashtekar, Smolin and the author [43]. Here, I
give only a brief account of the construction. The clagsical linear theory is given by
expanding the canonical variables around the flat-space solution

-
1%
—

4
.15)

=
e

AL =04 G d} (

(G is the Newton constant). Internal indices can be transformed to space indices, and
vice versa, using the background metric. From now on, lower case letters indicate the
objects in the linear theory. The theory is given by the linearized constraints

¢ = 8% + ik (4.16)
¢ = fi (4.17)
¢ = f;kfik (4.18)

where fi, is the Abelian curvature of ai. The internal gauge constraints ¢; have
vanishing Poisson brackets with each other, and the connection a transforms as an
Abelian connection under their action. Indeed, in the linear limit the group SO(3)
reduces to U(1) x U(1) x U(1).

The Hamiltonian that generates the standard Minkeowski time evolution is

= [ d3k [(nf_b‘l“ -_ EM_,[.\G \ e

- J (27[,)3 I-\"'\ “la k'l"\ L a} Vi e
- (et—k)fm - %b(—km) b(k)“*‘] (4.19)

where b is the magnetic field: b, = 1/2¢% ;.. This Hamiltonian is analogous to three
copies of the Hamiltonian of the seli-dual formulation of the Maxwell theory.

There are two problems, not present in Maxwell theory, that have to be addressed
in order to construct the loop representation of linearized gravity. The first problem is
how to deal with the internal index ¢ = 1,2, 3. Since the kinematics of linear gravity is
like three copies of Maxwe!l theory, it is natural to consider the triple tensor product
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of the Maxwell state space with itself. This means that it is natural to choose the
functions of Iriplefs of multiple loops as quantum statest.

The second problem s that the Ashtekar connection is self-dual. In order to re-
main as close as possible to the formalism of the full theory, we want to use the
holonomy of the self-dual connection. Now the loop quantization of Maxwell theory
in terms of the self-dual (rather than positive frequency) connection is described in
appendix 3. The formalism is similar to the positive-frequency case, but the differ-
ence in the Hamiltonian and in the reality conditions resuilts in the presence of certain
(Gaussian exponentials of the form factors in the states. These exponentials are diver-
gent. To cure these divergences a standard regularization procedure does not seem to
be sufficient [43]. The way out is provided by the use of the holonomies ‘averaged’
over small tubes around the loops, which is described in appendix 2. As we shall see,
this technical point has far-reaching consequences,

Because of the use of the self-dual connection, the new variables formalism is

,,,,,,,,,,,,,,,,

dual connection). As a consequence, gravitons of the two opposite helicities turn
out to be described in this formalistm in a remarkably asymmetric fashion. Again,
see appeundix 3 where the same is true in ihe quantization of the Maxwell field
terms of the self-dual connection. This curious difference in the description of the left-
and right-handed gravitons appears also in other formalisms aimed toward quantum
gravity, in particular in Penrose twistor approach [74], and in the Kozameh-Newman
light-cone cuts formalism [6].

Generalizing the quantization of Maxwell field given in appendix 3, we define the
three Abelian holonomies

t'ly] = exp (.i ai) : (4.20)

Note that this holonomy, in spite of being gauge invariant under internal gauge trans-
formations, has an 7 index, and note the absence of the path ordering and irace, As
in the Maxwell case, the loops can be smeared int terms of a universal function. The
smeared holonomy is

ti[7] = exp ( /dawFf[%z]ai(x)) : (4.21)

N

The bastic variables for the quantization will be these holonoemies and the symmelrized
linearized triads A% = 1(e® +¢'*). The antisymmetric part of the triad is gauge. The
loop algebra is

{t[7), W% (R)} = iV F2y, k] (4.22)

The loop representation of this loop algebra is defined on the space of states of the
form {0, a,,@3) where each a; is 2 multiple loop. I use the notation

@ = {ay, oy as) (4.23)
and the notation
aU; § = {a; UB agay). (4.24)

t The quantum theory of three particles is given in terms of states ¥{xy,r2,73).
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The representation is obtained by taking the tensor product of the Maxwell represen-
tation with itself:

£l %) = $lay; 7) (4.25)
R (k) (o) = b FL[a') k] 4(e). (4.26)

This algebra, as can be directly checked, reproduces the classical loop algebra.
Now we have to solve the constraints. The detailed calculation can be found in

[43). The result is that a state satisfies all the constraints if and only if it is a function
of

aab(k) Fea [Q'bv k] (4.27)

where o,,(k) is symmetric, transverse and traceless. This is the standard result on
the physical degrees of freedom of the graviton. Therefore, as we did for Maxwell, we
can introduce the two independent physical components of the form factor (see the
appendix 3 for the definition of the transverse basis m?®(£), m?(&), &2 /1k|)

Fila, k] = m,(k)m, (k) F¢[e’ k] (4.28)
Fo la, k) = my, (k)i (k) Felab, k). (4.29)

Finally the eigenstates of the Hamiltonian are completely analogous to the Maxwell
case. The vacuum is

3y
o) = exp (—ﬁ/ %{%Fj’{a,—k]ﬁ‘;"[a,k]) : (4.30)

The right-handed n-graviton states are giver by homaogetieous polynomials of degree
nin Ft times the vacuum. The lefi-handed n-graviton states are given by Hermite
polynomials in F~ times the vacuum. The final resuit is entirely equivalent to the
usual Fock space representation.

4.2.2. The mapping M. In this section, I describe the relation between the graviton
states y{a) and the knot states. This and the following sections describe recent work
by Ashtekar, Smolin and the author [44], which is still in progress. Therefore the
present and following sections should be considered as a progress report of developing
ideas.

I begin by working in the space of the unconstrained states ¥{a), and I deal later
with the restriction to diffeomorphism-invariant knot states.

The key to identify the mapping between the linear theory and the full theory
is equation (4.13) above. In order to use this equation it is necessary to write the
linearized loop observables {7 and A% in terms of the full loop observables T and 7.
This cannot be done exactly, because we may write only SO(3) invariant quantities
in terms of T and 7%, and the linearized loop observables are not SCG{3) invariant.
However, this can be done to first order in the Newton constant, and this is enough
here, because the identification between the full theory and the linear theory should
only hold to first order in & (the linear theory is meaningless beyond first order in G).

Tn ﬂrcf ('\T‘(‘ﬂ'l“ il1 f': we I'Iﬂ\fp
AP Liou VIUGL il A7 WK LuGYC

] = 1+G/d3fo[7,:n]Ai(m) =1 +G/da;z: fola) Al (4.31)
(r4=)
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where 7 + x is the loop obtained by displacing rigidly 4 by an amounts = (this makes
sense because there is the background geometry). In the full theory we have, again to
first order in G,

T%[yl(s) = 2+ G 8¢ ij". (4.32)

¥

Therefore, up to order &, the relation between the two is

el =6 [ f@) Tl +<l0) - 1 (4.39)

This equation is sufficient for our aim.
Now, we are looking for a map M : U —— 4 such that

Ely] M= M (5;‘, /d% folz) %[y + 2](0) — 1) + 0(G?). (4.34)

This is the basic equation for the determination of AMM. The map M that satisfies
equation (4.34) is given below in equation (4.39). In the following, it is constructed
step-by-step from equation (4.34).

I start from the following ansatz: that there exists a (multiple) loop A in the

multiple loop space, such that

(@, 8,0) = ¥(A) (4.35)

whenever 1 = M¥. (Here §§ is the no-loop multiple loop.)

In equation (4.34), the operator {i[y] in the LHS creates a 4* loop in the argument
of 1, while the operator T%[7] on the RHS attaches a loop 7 to the argument of the
loop functional ¥. By acting three times with the equation (4.34) on a state ¥, then
evaluating in A and using the ansatz we may build the entire M.

The loop A may be specified by requiring that also 2%® transforms appropriately.
Here, I do not try to derive the properties of A; rather, 1 postulate these properties
and study their consequences.

Let A be the union of three multiple loops: A = A; U A, U A, which have the
following property

Al(s) =67 {4.36)

and assume that the single loops that form one component A, (which are parallel
because of the last equation) are equally spaced. Finally, assume that A does not
contain sell intersections, These properties determine A almost completely. The
multiple loop A is denoted the weave. The weave is formed by a three-dimensional
cubic lattice of non-intersecting tines. A key quantity not yet specified is the ‘lattice
spacing’ a, namely the distance between the single parallel loops. The following seclion
will be devoted to a discussion of this quantity.
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Let me work out the mapping M determined by A, If ¢ = M, then
P(a,8,8) = (' ow) (8,8.9) = (¢! [o]MT) (4,6,9)
[+ ([ st 88104 2101 - 1) 0] 0,09

(/d% fo(2) 817 + 2](0) - 1) U(A)

il

/dsz F(z) 8L FAA, (o + 2)(0)]

x [¥(A#(e +z)) - T(A#(a + 2)™")]
fdsz f (=) /ds 83(A(s), (e + 2)(0))
X WA #F (o +2)UBUA).

I

I have used the deﬁnit_ion_oftl, the fact that ¢p = MY, the basic equation {4.34), the
ansatz, the definition of T¢ and the property of the tangent of the weave. In the last
line I have introduced the notation

V(a#®B) = U(a#B) — V(o). (4.37)

The final quantity is finite and well defined.

The result can be described as follows. The zero loop in the linear theory ‘corre-
sponds’ to the weave in the full theory; the loop o, corresponds to the weave plus the
loop o attached (in the two possible ways) to the A, component of the weave. More
precisely, 1o a linear combinations of such loops, in each one of which « 1s attached to
the waave 1n 2 clichtly diforant nacibinn
the weave in 2 slightly different position,

A second run of the same calculation gives

Wa 8 = [ e) [ds Aol o+ D)) [ L) [ @ 8%a,000.8+ w)(O)
X WA, #E5 (a+ @) UA#E (B + y) UAR + O(afe) {4.38)

where the last term comes from the grasping over « and is as small as a/¢ (recall that
a is the lattice spacing of the weave). And similarly for a third run with the third
component of the linear loop. These equations define M. Note that for consistency
the term in a/¢ must be small in the approximation that we are using. This follows
from the fact that the ! operators commute, and this term breaks the commutativity.
Therefore, we must clioose a version of the linear theory in which the smearing ¢ is
much larger than the weave lattice spacing a.

The picture that emerges is the following. The loops «, that describe gravitons in
the linear theory are related to complex loops in the full theory, which are obtained
by inserting the o, on the weave, in the specified manner. In terms of abstract states
the result can be written as

My = / af @) [ ds 8(8s(e) (2, + 2)(0) / Eyf )

x [ (a0, 0+ 9)0) ] P2ftz) [ du (B, (a5 + 10N
1A #E (o, +2) UA#5 (o, + y) UA#E (0 + ) + Olafe).  (4.39)



1660 Review article

Using this equation, we can express the linearized ) states in terms of the full theory
|ov) states.

Essentially a state |a) corresponds to a linear combination of full theory states
obtained by inserting the three ¢* loops on the weave. These insertions look like an
embroidery over the weave.

Given a quantum state (o) in the full theory, the equations above that define
M produce 2 unique corresponding quantum state ¥{a) in the linear theory, which
represents the same physics described in the linearized variables. Note that this con-
struction is simply the loop space version of the equation

Y(h) = U(n+h) (4.40)

which relates the metric-representation quantum state ¥(g) with the linear-gravity
Schrédinger-representation quantum state $(h). The weave A plays the role of the
background 3-geometry #.

4.2.3. Gravitons frem knots: the embroidery. At this point, the last step can be taken,
by considering diffeomorphism invariance. Assume that a state ¥(e) depends only on
the knot class of &. A key observation is then the following one,

The states #(a) depend on the actual position in space of the loops «;. Namely
¥{or) changes under any displacement of ov;; the states ¥(a), on the contrary, depend
only on the way o is knotted. Is this a source of inconsistency for the relation developed
above between the two descriptions of the quantum field?

Il ¢; is displaced to, say, &} in ¥{a), then, under the M mapping, & is entangled
around the weave A in a different way than a;. Therefore a ’shilted’ linear loop
does correspond to an inequivalent knot. unless the shifting is smaller than the weave
lattice spacing. Thus, by postulating that ¥{a) is a knot state, only information on
the linearized states at scales smaller that the lattice spacing a is lost.

The space posilion of lhe loops that represeni gravilons—in the linear theory—-
1s coded in the entangling of these loops with the weave-—in the full theory. The
weave translates between metric properties and topological relations. It allows metric
relations to emerge from the purely topological world of the knots. These metric
relations, however, exist only at scales larger than a.

The picture that emerges recalls an embroidery. Embroidery is the art of con-
structing pictures {which have metric properties) by using only the knotting of a
thread (topolegy). In the embroidery, we have a one-dimensional object, the thread,
which first builds up an higher-dimensional space, the weave, by self-entangling; then,
the thread may draw shapes by getting entangled with the weave.

Up to the a scale, it is possible to reproduce any state of linear gravity in terms
of states that depend only on knots. In particular, recall that the linear vacuum on
Minkowski spacetime is the loop functional {4.30). We have all the ingredients to

caleulate the coefficient ¢k’ in the knot basis of this state:

3
exp (— / (;lwi;sFe*[C!‘—k]Ff‘i'[a,k]) = (ai;cg)ﬁ\'). (4.41)

Similarly, we can define the linear combinations of knots that correspond to n-
graviton states. Smolin [10] has shown that the requirement that the state ¥(a) is
function of a knot classes translates under M {to first order in G) to the statement
that there are no longitudinal gravitons.
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4.2.4. Other background geomeiries. A conjecture. Up to now, I have considered only
a flat background geometry. The relation between the weave A and the flat metric
gab)(a:) = §,,, or more precisely, the flat triad E(®?(x) = 82, is given by equation
(4.36). Given an arbttrary background geometry, defined by the metric gab)(a:) or
by the triad E(®)¢(z), it is natural to assume that the corresponding state in the full
theory is constructed around the knot defined by the ‘distorted weave’ defined by

A=A UAUA;
Af(s) = BEO(ALs)). (4.42)

It is easy to show that if two triads E(D¢(z) and E"(®¢(z) are related by 2 diffec-
morphism, then they define the same knot via equation (4.42).

Tt gonrs vrasnonno Lhln $n conmiactaima +he At ring whiah nra mad ralaisd
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diffeomorphism define, via equation (4.42), two different knots, provided that the
lattice spacing a is taken sufficiently small.

This observation suggests that it may be possible to establish a correspondence
between knot classes of a manifold and equivalence classes of metrics (3-geometries) of
the manifold. Consider for simplicity a three-dimensional manifold with houndaries
and consider all the possible metrics on the manifold that go to the flat metric on
the boundary sufficiently fast. Assume that a unique way o associate a triad field
to every metric has been chosen. Consider a metric g. Fix a lattice of points, with
lattice spacing a, on the boundary, and, criginating from these points, integrate the
triad fields, as in equation (4.42), up to the point in which the integral line reaches the
boundary again {assuming that the metric is sufficiently regular so that every integral
line emerges from the interior). The integral lines define a2 knot (more precisely, a
braid), which I denote K ,[g]. 1t is clear that diffeomorphic-equivalent metrics define
the same knot. The conjecture is that, provided that a is taken small enough, if two
metrics ¢ and g’ are not diffeomorphic-equivalent, then K,[g] and K [¢'] are different
knots.

If this construction can be made precise, and the conjecture is correct, then it is
possﬂ)le to characterize a 3-geometry, up to any given scale, by assigning the corre-

b
Uy d

4.2.5. Emergence of the Planck scale structure. What is the value of the lattice spacing
a? Recent calculations seem to indicate that the theory fixes the value of 6. These
are preliminary results, and the content of this section is still speculative.

Consider the three-dimensional metric g,,. The metric is not well defined as an

operator in the loop representation, for it is a product of jocal operators c}ab(m) -~
E(2)E®(z). However, it is possible to define an integrated version g(F) of the
metric, by smearing £%(z) and E®(x) over a region of finite radius, with a smearing
funetion F,,(x) which varies only a certain large scale. Let 6{F) be the value of the
flat Euclidean metric smeared with F.

It is possible to construct an operator ¢{F') in the loop representation such that
its classical limit is the smeared metric ¢{ ), Then we have the following result [441

The loop state |A) is an eigenstate of the operator ¢(F') with eigenvalue &( F)

G(F) [A) = 6(F) |A) (4.43)
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tf and only if the lattice spacing is exactly the Planck length:
a=4/ . = e (4.44)

Some comments follow,

(i) The demonstration of this result involves a careful construction of the smeared
metric operator, and a delicate calculation with the loop operators. The result is still at
some preliminary stage, but the reason for the result is perhaps intuitive: every thread
of the weave carries a certain ‘flux’ of metric. The weave gives a certain approximation
of a flat metric. One may think that it is possible to obtain a better approximation
by having a thinner lattice, but it is not so, for if we double the number of threads,
we get a doubled number of elementary excitation of the ‘flux’ of the 3-metric, and
therefore we do not get the Euclidean metric, but the double of the Euclidean metric.

(i) The result is coordinate invariant, and in a sense, scale invariant: if we double

fha mirmhar af ths loong H\nh the r'nnr.rhnni‘p dictanes hetween each elnﬂ'lo Hf\ronr‘ |e
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half of the Planck length, But the resulting (inverse, densitized) metric is four times
the Euclidean metric. As a consequence, the invarient distance between the threads is
still the Planck length. The result, therefore, can be stated by saying that at whatever
distance we put the threads of the weave one from the other, they always turn out to
be at a physical Planck distance. More precisely, they determine a (Planck-length)
unit of distance.

(iil) The emergence of the Planck length may seem surprising. The Plank constant
comes from the quaniization (there is the usnal Planck constant in the definition of the
quantum operators); but how does the Newton constant enter the game, given that
there is no Newton constant in the vacnum Einstein equations? Consider the classical
theory of a free (non-relativistic) particle. The equation of motion (% = 0) does not
contain the mass. There is no way to measure the mass by observing the classical
motion of a free particle. However. the mass does enter in the quanium theory: the
Schrodinger equation contains the mass, and the spread of the wave packet (or the
Compton wavelength of the particle) depends on the mass. By measurements on the
guantum particle, we may measure 1ts mass. The specification of the mass is required
in order to write the Lagrangian and the Hamiltonian theory (the mass appears as a
multiplicative overall factor in the action). Physically, the Heisenberg indetermination
relations know the mass, because they are defined between position and momentum,
and the kinematical (measurable) indetermination between position and veloeity is
the Plank constant divided by the nass.

En pure gravity, the Newton constant follows the same pattern as the mass for the
particle. The classical equations of motions do not depend on G, but 1/G comes in
front of the Lagrangian and enters the definition of the momenta. The Heisenberg
indetermination relations between the 3-metric and the extrinsic curvature depend on
the Planck constant muitiplied by G. 1t may not be the more efficient way, but in
principle it is possible to measure G in pure-quantum-gravitational experiments.

{iv) The physically interesting state is not the loop state [A), but the knot state
|K 4), where K, is the knot to which the weave A belongs. If the ideas developed so far
are correct, we expect that the outcome of any diffeomorphism invariant measurement
of the geometry on |,} should be flat space, provided that the geometry is tested
only on scales much larger than the Planck length.

{v) A discrete structure at the Planck level is intriguing. The existence of a
discrete structure has been suggested many times, but here the structure emerges
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from the theory, without artificial inputs. At this stage it is not clear how we should
take this result. In particular, it is not clear what is precisely the physical meaning
of the state |A). It is clearly related to flat space, but how? Note that the quantum
field theoretical vacuum of the linear theory is ‘peaked’ on the knot state | ,}.

(vi) The weave A was introduced in order to discuss the relation with the linear
theory, but the result deseribed in this section is unrelated to the linear theory, As far
as the the linear theory is concerned, recall that the mapping from knot space to the
graviton states is consistent only provided that in the linear theory we use a smearing
¢ much larger than a. Since @ is the Planck length, it follows that the praviton
picture makes sense only at scales much larger than the Plank length. The origin
of the divergences in perturbation theory are integrals at small distances, namely
the assumption that the graviton picture makes sense at every scale. In the non-
perturbative theory, the result on the discrete structure at the Planck scale may be a
concrete indication of how perturbation theory goes wrong.

{vii) It is not clear to what extent a similar discrete structure occurs in the loop
quantization of the Maxwell field. The single elementary excitations of the Maxwell
field are loop-like and quantized. Thus, it seems that the magnetic Alux through a fixed
surface should be quantized (in units of Bohr magnetons). This is not unreasonable: it
makes sense, for instance, to inlerpret the quantization of the magnetic flux measured
by a SQUID magnetometer as a quantum property of the electromagnetic field itself. To
my knowledge, a rigorous analysis of the spectrum of the magnetic-flux field-operator
in the free Maxwell theory, using standard formalism, has never been performed.
(The difficulties come from the boundaries of the 2-surface. If the 2-surface has no
boundary, the fiux ¢s quantized, but the quantization can be attributed to topological
effects.) On the other side, in the loop representation there are technical differences
between Maxwell theory and gravity (see {43]) that indicate that the flux quantization
is peculiar of gravity.

4.3, Concluding remarks

4.8.1. Open problems. The construction outlined is preliminary. Some of the open
problems are the following.

(1) The definition of the physical observables. The linearization may help to find
physical observables. The linearization around flat space by itself does not break
diffeomorphism invariance. (It is the use of the background metric to fix the causal
structure that breaks the invariance.) Provided that the wavefunction is (in the same
sense) concentrated around flat spacetime, the linearized gauge-invariant ohservables
(transverse traceless components of the graviton) do represent diffeomorphism invari-
ant properties of the full solution. In the embroidery construction, the transverse-
traceless linear observables can be carried to the full theory quantum space. Here
they should read out invariant (topological) properties of the knots, namely the way
the embroidery loops are entangled on the weave,

An alternative way for getting observables is to couple matter to general relativity.
By coupling a finite amount of matter, concentrated in a small region of space, we
obtain a theory with iwo regions: an external vacuum region, where the constraints
can be solved using the techniques described in this section, and an internal region
where matter provides physical gauge invariant ohservables and a well defined ‘clock’
evolution. A model of this kind is constructed in [75].



1664 Review article

These are possible directions for constructing the physical observables but the
problem is entirely open.

{ii) The inner product must be defined on the space of the physical states. As
digcussed in section 3, the inner product is determined by the Hermiticity condition
on the real physical observables. The linear theory may provide indications. In fact,
the linear scalar product must be the scalar product inherited from the full-theory
scalar product through M. Since the linear scalar product is known, the full scalar
product may be be deduced from it, at least up to the approximation in which the
relation between the iwo theories makes sense.

(ili) It is not clear to what extent the regular knot sector alone can represent
interesting physics. Other solutions involving intersections should be investigated.
{t should not be difficult to recover in the loop representation the solutions with
intersections discovered in the connection representation by Briigmann and Pullin
[73]. T'wo important open questions regarding intersecting=solutions are the following.
fa\ Are other solutions constructed only in terms of particular linear combinations of
mtersectmg loops with the same support, or should they involve loaps with different
support? (b) Are linear combinations of loops with intersections of an infinife number
of components required?

{iv) Briigmann and Pullin [73] noted that in the connection representation the
known solutions of the Hamilionian constraint satisfy the Hamiltonian constraint for
every value of the cosmological constant. Tiis result is disturbing, and its significance
is not understood.

{v) A related problem is the relation between the different proposed forms of the
Hamiltonian constraint. To fix a unique and simple definition for the Hamiltonian
constraint is also necessary in order to study the problem of the quantum closure
of the constraints. Note that the very existence of common solutions to all the con-
straints shows that there are no anomalies proportional to the identity in the quantum
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these commutators.

(vi) Perturbation theory. Having a construction of gravitons within the full the-
ory, in a context in which the continuum breaks down to a discrete structure at the
Planck energy, suggests that at this point one could be able to reconsider 'perturba-
tive’ graviton-graviton scattering. The full theory should modify the (approximate)
linearized theory by providing a physical cut-off at the Planck length.

(vii) The regular way the weave A has been constructed is perhaps a first approx-
imation. We may expect the weave to look more like a tangle than like an ordered
weave. Note, however, that the relevant object is not the weave, but its knot class
K 5, which is an equivalence class of many very ‘disordered’ loops.

4.3.2. An overall picture. In this section, the present stage of the construction of
a non-perturbative quantization of general relativity has been outlined. The main
results are the following.

(i} Quantum general relativity admits a representation in which the quantum states
are represented by functionals on a loop space ¥(«a), and the loop variables are repre-
sented by operators T, T* that act by creating loops and breaking and rejoining loops
at intersections.

(n‘l The dlffpnmnrn]nqn'\ ln\mnnnr states are mvm\ hv linear combinatians of knat

states |K}. These constltute the general solutzon to Lhe quantum diffeomorphism
constraint.
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(i) An infinite-dimensional space of physical states, which describe solutions to
the quantum dynamics, is given by (linear combinations of) the regular-knot states
‘Kx-e ular)'

iv) Preliminary results indicate that one of these knot states, the ‘weave-knot’
| K 4), is related to flat space. It has the property of being an eigenstate of smeared
diffeomorphism invariant operators, provided that the smearing is taken on a large
scale. Its eigenvalues correspond to a flat Euclidean metric. By measuring the metric
over large regions in the state [A,), the outcome of the measurement corresponds to
the flat metric. Different weaves (entangled in a different way) should correspond (at
large scales) to different geometries.

(v) By measuring the metric in the state |K',} at smaller scales, some roughness
appears, and the continuum structure breaks down completely at the Planck length,

where the metric has a discontinuous distributional structure.
fvﬁ The qguantum field theoretical vacuum of the linearized fhpnr}r around flat
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space is represented within the full theory by a Gaussian-like linear combination of
knot classes, peaked around the weave |K,}). Gravitons are represented in terms of
small deformations of |K,) obtained by attaching loops {embroidery loops) to the
_threads of the weave. The spatial position is determined in the full theory by the
entangling of the embroidery loops with the weave. Position is determined only up to
the Planck length.

This picture is certainly incomplete. Until a complete theory is defined, or until
concrete calculations can be performed, the main question—which is whether or not
a quantum theory of general relativity exists—does not yet have an answer. However,
the indications are promising, and the hope is that we are not too far from calculating
finite amplitudes above the Planck energy.

The reason for the failure of perturbative quantum gravity now seems clear, and the
non-perturbative methods presented here reveal an unsuspected richness of structures
which could not have been caught in perturbation theory. In spite of the intricacy of
the technicalifies, the results that are emerging are surprisingly simple and intuitive.

In conclusion, I would like to emphasize an important characteristic of the ap-
proach I have described. The results presented here follow from applying standard

quantum mechanics to standard general relativity. No additional physical principle,
or additional hypothesis, has been added to these two theories, which are both firmly

supported by observahons. In a sense, the construciion descnbed in this report is
an attempt to grasp the microstructure of spacetime by building on relatively solid
grounds: the physical assumptions are only general relativity and quantum mechanies,
which summarize so much of the present understanding of the physical world.

I thank Abhay Ashtekar, Carlos Kozameh, Lee Smolin, and especially Ted Jacobson
and Ted Newman for their careful reading of the draft of this review and for their ex-
tremely valuable comments and criticisms. T also thank Balaji Bhashyam for pointing
out a mistake in an equation in the first draft of the report.

Appendix 1. Complex Hamiltonian mechanics

In this appendix, I study the extension of Hamiltonian mechanics to the case of com-
plex actions. This extension provides a geometrical framework in which the phase
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space of the Ashtekar theory can be interpreted. In particular, I clarify the mean-
ing of the Poisson structure {1.40), which is defined on a space that is half-real and
half-complex.

Let me assume, in general, that we have a configuration space C with N (real)
variables g;, which I represent by the single vector g, and the following complex action
is given

Slq) = S®[q] + iS'g) (ALD)

where S® and S! are two real functionals of ¢(1). The assumption is that the motion
is given by the g(¢) such that

65[q] = 0. (A1.2)

Is there a canonical description of this set of equations?

Since § is complex, (A1.2) has two components, the real one and the imaginary one.
There are 2N equations of motions for the & variables ¢. It is useful to think that we
are dealing with two dynamical theories for the same system, namely for the same set
of variables. The first dynamical theory is defined by Re 65[q] = 65R[g] = 0, namely
by the real part of the action. I denote this theory as the R-dynamical theory. The
second dynamical theory is defined by Im 65[g] = 65%[g] = 0, and will be denoted as
the I-dynamical theory. The physical motions of the system must satisfy the equations
of motion of both theories.

Since we have two standard dynamical theories, we may use the standard machin-
ery of analytical mechanics, by running it twice, in parallel. By doing that, we may
forget the imaginary unit, and work entirely in terms of real quantities.

Let me construct the Hamiltonian formulation of both theories. I define two mo-
menta

g _ OL® oL’

=% p = 5 (A1.3)
(L® and L! are the two Lagrangians) and consider two phase spaces: the phase space
SR with coordinates (p®, ) and the phase space S! with coordinates (p!, ¢). The two
spaces are two copies of the cotangent space of C. We denote ST and S' the R phase
space and the I phase space. On each of these spaces the Hamillonian theory is defined
by the standard Legendre transformation. There is a symplectic form w® in % and
a symplectic form o' in S':

Wt = dpP A dg o =dpl Adg (Al.4)

a Hamiltonian A® and a Hamiltonian ', and, possibly, each one of the two theories
may have first-class constraints. (They better have to, if the total theory has to be
non-trivial, since otherwise the 2N independent equations of mottons for the N fields
tend to be overdetermined.) On the constraint surfaces, the Hamiltonians define the
Hamiltonian vector fields YR and X!. These are defined by the standard Hamilton
equations, which in this language are

iynwt = —dH® iyw! = —~dH' (AL1.5)
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where 7 denotes the contraction of the 2-form with the vector field. The Hamiltonian
vector fields are partially under-determined if there are gauges: we can always add to
them a vector tangent to the gauge orbits. The integral lines of the vector field X®
are the motions of the R system, and so for the T system.

Now we have to recall that the physical motions must be a motion for both dy-
namical theories. What does this mean in the Hamiltonian picture that has been
constructed? They are the ¢ coordinates in the two spaces that have to be identified.
Consider a motion in % . Let g{t) be the projection of the motion on the ¢ subspace
of S®& . This projection fixes the motion entirely: it is a solution of the Lagrange
equations of the R theory. The question is: is there a motion in the 1 theory such that
its projection on its g subspace is also g(t)?

From a geometrical point of view, we have to consider the linear space with co-
ordinates {p%, pl,q). This is a 3N-dimensional space, where N is the dimension of
the configuration space. This is an appropriate space for the Hamiltonian dynam-
ics of complex actions. This space will be denoted &. There is a natural projection
from & to S* (namely (p%,pl,q) — (p®,0,¢) ), and a similar one to §!. A motion
(pR(1), p'(1), a(t)) in &, projects to 8™ and &' in such a way that both motions in
turn project to the same motion in the configuration space. A motion in & such that
botl: its projections satisfy the respective dynamical equations will be a solution of
the Lagramge equations. ,

All the structure in S® and in &' extends immediately to S, because we may pull
back w® and !, H® and H!, by using the projections. More simply, everything is
naturally defined everywhere in §.

We then have the following straightforward theorem.

Theorem. A physical motion (a solution of the Lagrange equations) is given by a curve
in 8, such that its tangent X satisfies both the equations

iywh = —dHE iyw! = —dH! {A1.6)

and stays on the constraint surface.

It is clear that if both these equations are satisfied on &, then the projection of X
in S® and 8! will satisfy the respective Hamilton equations, and, by construction of
S, their projection on the configuration space is the same.

Note that w® and w! are not symplectic, due to the fact that § is odd-dimensional.
S is geometrically defined as follows. The two actions SR[g] and S![g] define two
different mappings from the cotangent space T#C of the configuration space C, to
the tangent space TC. Thus, we may consider two cotangent structures over C, each
one equipped with its own mapping on the tangent space.

At this point I may reinsert the complex numbers, and make use of the compactness
of notation that they allow. I use complex numbers in two different ways. The first is
to write complex equations simply as a compact form for a couple of real equations.
The second is to use complex coordinates for the spaces introduced in the previous
section. The interplay of the two uses of complex numbers simplifies the notation.
The two equations {A1.6) of the previous section can be written as a single complex
equation, by defining a complex 2-form

w=wt+ i (ALT)
and complex Hamiltonian

H=H®+ig" (A1.8)
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Then (A1.6) becomes just
iyw=—df (A1.9)
I then introduce complex variables. 1 define
z=p 4 ipl. (A1.10)
In terms of these variables, the complex 2-form w is
w=dz Adg. (A1.11)

By recalling that there was originally an i connecting the two theories, I may note
that
gL
r= B4 (A1.12)
The Hamiltonian theory is now defined by the formulae (A1.12), (Al.11), (A1.9).
These equations are precisely the same equations that define the Hamiltonian theory
of a real action. Thus, we reached the following result.

The standard equations of Hamillonian mechanics can be used also for complex
actions, without visible changes.

However, one should not be confused by this apparent simplicity. In particular, w
is not symplectic, (nor are its real and imaginary parts symplectic), the phase space
S has three times the dimensions of the configuration space, and so on. The {ollowing
terminology may be useful. 1 denote the dynamical systems with a complex action as
compler dynamical systems, the phase space S as compler phase space. 1 denote w as
compler symplectic form and z as complex momentum. This terminology, indeed, has
more or less been used in the Ashtekar formalism and is very natural; but one should
be careful not to be confused by it: the complex phase space is not a complex space
and is not the direct sum of the R and [ phase spaces, the complex symplectic form
is not symplectic (it is presymplectic), and a complex momentum corresponds to a
single real canonical coordinate.

Finally, note that in general the complex Hamiltonian system {S,w, H,C) cannot
be interpreted as a standard real Hamiltontan system: we are dealing here with a
genuine extension of standard Hamiltonian mechanics.

A particular case of a complex Hamiltonian system is given when the imaginary
part of the action has no effect on the Lagrange equations. It is worth considering this
case in detail because the Ashiekar theory belongs to it. In this case, the dynamical
system is physically equivalent to its real sector (the evolution in the configuration
space is the same). But the Hamiltonian description thai one gets from the complex
action is different from the Hamiltontan description that one gets from the real action
{Ashtekar’s Hamiltonian theory is different than ADM theory). Tostudy this particular
case, I consider, as a specific example, a one-dimensional harmonic oscillator

5" = fdt W' —7") (A1.13)

and add to this action an imaginary part with no effect on the Lagrange equations:

S'q] = fdi 14q. (Al.14)
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The R dynamical system is the well known one: the R phase space has coordinates
(P®, ), with

gk = %(pz +¢%) (A1.15)
The I dynamical system has momentum

S .
En

—~~
.
o
et
h
[=2]

e

and vanishing canonical Hamiltonian. The I phase space is the {p', q) space, with the
primary first class constraint

C=p-¢g=0 (AL.17)

which defines a one-dimensional constraint surface in S'. The restriction of the I
symplectic form to the constraint surface vanishes, namely the single direction along
the constraint surface is a gauge direction.

The complex phase space & of the theory is the space (p%,p',¢). The theory is
defined by the complex symplectic form w = dp®dg -+ i dptdg by the real Hamiltonian
HY (its complex part vanishes) and by the constraint (A1.17). The imaginary part of
w vanishes in restricting to the constraint surface, so that only the real component of
the Hamilton equation survives. The solution of (A1.9) that stays in the constraint
surface is unique

r® 8 58

X=p dg Bp p@p

(A1.18)

If we project the integral lines of this vector field on the configuration space we have
the motions of the oscillator.

I now repeat the analysis in terms of complex coordinates. The momentum is
complex and is given by

z:aS—[Q]-—p +iph. (Ai.lSJ)

O¢

The phase space S is the space (z,q), with three real dimensions, and the complex
symplectic form on the phase space is w = dz A dg. The Hamiltonian is

H = 2% —izq. {A1.20)
The constraint is z = z — 2ig. The rest goes as above. 1i is important {o note that i
this formulation Z appears in the thieory only through the ‘reality condition constraint’.
The Hamiltonian is a holomorphic function of z.

In general, when the imaginary part of the action has no effect on the equations
of motion, the I system is given by N constraints which define an N-dimensional
constraint surface which is a unique gauge orbit. In the complex phase space these
N constraints define a 2¥-dimensional surface which is isomorphic to the R phase
space. These constraints are denoted as realify conditions and their constraint surface
is denoted the real phase space. Note that this ‘real phase space’ is not the R phase
space, but it is isomorphic to it.
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The analogy between the one-dimensional harmonic oscillator treated above and
the Ashtekar theory is complete. The identifications are

g~ E}(z) (Al.21)
p* — pi(2) (A1.22)
Pl wi(z) {A1.23)
z e ph(2) + vk (z) = 4 (2) (Al.24)
F=2—=2¢g— A=A~ 2w. {A1.25)

Appendix 2. Maxwell 2: a smearced version

In this appendix, a different version of the loop quantization of Maxwell theory is
discussed. This version has certain advantages with respect to the version introduced
in section 3, and is 2 model for the quantization of linearized gravity.

Let me start by fixing a universal smearing function f,(z) which I choose as follows.
It is smooth, it has compact support in a region of radius ¢ around = = 0, and its
integral is one. In terms of this function, the ‘smeared form factor’ is defined as

Fllo,z) = /dsy fly —z)A% (o, y). (A2.1)

This is a real vector field with support on an ¢-small tube around the loop «, and
which points along the tangent of «. The loop quantization can be performed, by
using the smeared form factor rather than the unsmeared one. The smeared holonomy

...... Li.

Py “ a
VBCLY AT 1D

T.(a) = exp (—ifciz.r Ff“[a,m]Aa(m)) (A2.2)

(cf (3.11)). The loop algebra to be quantized is the T, E algebra. The quantization is
achieved by picking the same space of loop functionals as in the unsmeared case {now
I denote them ¥ (o)) and by defining the two operators

T ¥ (a) =¥ (aU7) (A23)
ES(k) W () = b F[v.k] ¥ (a). (A2.4)

Something curious is going on here: the smeared classical loop algebra in which the
holonomy is smeared is quantized by an unsmeared T operator and by a smeared £,
operator. The smearing shifts from T to £ in going to the quantum theory. Tt is easy
to check that the commutators reproduce the correct Poisson brackets. One should
not be confused by the notation, which becomes a bit tricky because of the shift in
the position of e: T is the operator that corresponds to T, and E., is the operator that
corresponds to F,

We may repeat the previous definition of the Hamiltonian, and we discover now
the eigenstates of the Hamiltonian have the same form as the states in (3.28) above,
with the form factor replaced by the smeared form factor.
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Also the mapping to the Bargmann representation can be generalized to the present
case. We have

¥ (o) = f du[A] exp (—i f d%Fg[a,z]Aa(z)) 4] (AZ.5)

Note that the same linear space of loop functions carries both the unsmeared
representation and the smeared one. More precisely, it carries a one-parameter (¢)
family of representations. The same loop function represents different physical states
in two representations corresponding to a different .

A direct advantage of the smeared formalism is a simple definition of the scalar
product. In fact, consider the loop states |a,) that define the representation:

T, (a) = (o [¥). (A2.6)
On these states, the action of the basic operators is

Thlled = e un).) (A2.7)
Eo(k) o = B Py, K] o). (A2.8)

We want to define the scalar product by using the reality conditions. The reality
conditions follow from the fact that A and E are real. In terms of the unsmeared
positive and negative frequency fields they are *A(z) = *E(z). They can be written
in terms of the smeared loop variables as

B*(2) = lim 1(Tfr, 0] ~ 1) = f &y folz - y) E*(y). (A2.9)

They are implemented in the quantum theory as operator equations (with the complex
conjugation replaced by adjoint operation) if the adjoint operation is defined by the
scalar product

(o |B,) = exp (—ﬁ. / dstg[a,x]FM{ﬁ,z]) . (A2.10)

Since the smeared form factor is bounded and has compact support, the integral is
well defined and finite, and this equation provides a consistent definition of the scalar
product directly in loop space.

Appendix 3. Maxwell 3: self duality; how to prefer left photons over right
photons

In this appendix, the loop quantization of the Maxwell field obtained by starting
from the self-dual, rather than the positive-frequency, connection is described. This
form of the theory mimics the treatment of gravity. As stressed by Ashtekar, while
the distinction between positive frequency and negative frequency is meaningless in
a generally covariant framework, the distinction between self-dual and antiself-duai
sector remains meaningful. This is one of the key reasons lor which the quantization
methods developed in section 3 may work also in the absence of Poincaré invariance.
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In order to mimic Ashtekar theory 1 choose as elementary variables the real electric
field E® and the self-dual Maxwell connection 43¢, which is defined, up to a gauge
that will be soon irrelevant, by

€49, 4% = B¢ *¢ = B° . iE® (A3.1)

where £ and B are the real electric and magnetic fields. The self-dual component of
the field is formed by the positive frequency components of the positive helicity sector
pius the negaiive frequency components of the negaiive helicity sector. [ define the
self-dual helonomy

T54y] = exp (fdsz Faly,z} Af;*(m)) : (A3.2)
In order to keep track of the two helicities, it is convenient to split the form factor

into its positive an negative helicity components. In terms of the standard transverse
unit basis vectors m(&)®, m{k)* and k%, defined by

L2 — L
mik) k% =10 mi{k},m(k}* =0 m(&),m(k)* =1 WA {A3.3)
it is possible to define
Frly, k] = m (k) F2 [y, k] (A3.4)
Frly k) = my(R)FS [y, K], (A3.5)

The T5¢, E* algebra can be quantized in terms of the standard space of loop states,
now denoted ¥_,, and the usual loop operators

E¥ (k) ¥ (o) = h Ffla, k] ¥ 4(a). (A3.7)
Note that we have precisely tle same space and the same operators as in the positive-
frequency case. How does the theory know that now the same operators represent
different observables? The answer is that the reality conditions and the ITamiltonian

are different.
The reality conditions are now

Bi(z)! = B%(z) - 'Zifdsy flz — 1) E%(w). (A3.8)

In order to have these reality condition implemented in the quantum theory, we are
forced to define the scalar product as

1

{a,]B,) = exp (5 ]d%(Fj[&,r}Ff[ﬂ, r) = F”[a,z]F7 18, .L})) .(A3.9)

The classical Hamiltonian, written in terms of the basic variables, is

H= / Bz (B - %E,B™ 1, (A3.10)
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The Schrédinger equation is

(f A%z B Betd _ 2iF;j,B““) U 4(0) = EW 4(a). {A3.11)
A straightforward calculation shows that the vacuum is

\I'(sg)(a) = exp (_ fdsm Fllo, =] F;"[a,n:]) . (A3.12)

The n-photon states are given by the following loop functionals, The positive-helicity
n-photon states are homogeneous polynomials (of degree n) in F'* multiplied by the
vacuum. The negative-helicity photons are Hermite polynomials in F~ times the
vacuum. Thus to work with a self-dual connection and a real electric field, produces
a mixed representation, which is a Bargmann representation in the positive-helicity
sector and a Schrodinger representation in the negative-helicity sector, This hybrid
situation is not 2 consequence of the loop representation, but just of the fact that the
variables we use are not symmetric under parity.
More details on this mixed representation can be found in {43].
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