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Abstract .  The formulalion of general relativity discovered by Ashtekar and the 
recent results obtained in non-perturbatire quantum gravity using loop-space tech- 
niques a r e  reviewed. The new formulation is based on the choice of a set of Lagranean 
(and Hamiltonian) variables, instead of the spacetime metric. In terrns of these new 
variables, the dynamical equations are remarbbly simplified and a structural identity 
between general relativity and the Yang-Mills theories is revealed. The formalism has 
provmi to be useful in numerou9 problems in gravitational physics. In quantum grav- 
ity, the new formalism has overcome long-standing difficulties and led to unexpected 
results. A non-perturbative approach to quantum theory has been constructed in 
terms of the Wilson loops or the Ashtckar connection. This approach, denoted ds 
loop-space representation, has led to the complete solution of the qoantum diKeeomor- 
phism constraint in term of knot states, to the discovery of an infinite-dimensional 
class of solutiow to the quantum gravitational dynamics, and to certain surprising 
indications on the existence of a discrete structure of spacetime around the Planck 
length. These results are presented here in a compact self-coiitained form. The 
basic Ashtekar f o d i s m  is presented and its applicatiom are outlined. The loop- 
space representation and the non-perturbalive knot states of quantum gravity are 
described in detail, with particular regard to their physical interpretation and to the 
information they may provide on the rnicrost.ructure of spacetime. 

1. Classical theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.1. Why zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvariables? 

The discordance between our basic theory of niechauics-quantum theory-and our 
basic theory of spacet imegeneral  relativity-is a prime open problem in fundamental 
physics. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1986 Abliay Ashtekar introduced a reformulation of general relativity in 
terms of a set of variables that replace the spacetime metric. In the following five 
years, this formalism has been used in a large ntiniber of problems in gravitational 
physics. Ashtekar’s target was the quantum gravity issue. And, indeed, the new- 
variables formalism l i s  opened a novel line of approach to this problein. 

In conjunction with new tecliniqiies for dealing with non-perturbative quantum 
field theories-in particular, the loop representation-the new formalism lias over- 
come long-standing difficulties in traditional approaches to quantum gravity. The 
new results have brought new drive to the field and have raised hopes for the solution 
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of the quantum gravity puzzle. The present report is a review of the new variables 
formalism and of these recent developments in quantum gravity. 

General relativity is characterized by its great beauty. Einstein's idea of inter- 
preting the gravitational force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a modification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the spacetime metric geometry is 
so compelling that it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis legitimate to ash why would we want to describe the gravi- 
tational field in terms of some other kind of variable than tlie spacetime metric. In 
the Ashtekar reformulation, general relativity is more similar to the rest of theoretical 
physics than i n  the old formulation; however, as I will try to make clear i n  this review, 
far from challenging tlie beaut.y of tlie theory, the new formalism slicds new light and 
reveals new aspects of it, General relativity is still capable of providing surprises and 
wonders. 

This review appears five years on from Aslitekar's introduction of the new variables. 
Tlie formalism is now quihe settled, but the applicat,ions are still emerging. This review 
is far from being definitive; rather, i t  represents a snapshot of the present state of the 
art of the research. As far as the basic new formalism is concerned, tliis review 
contains a synthetic, but complete, description of the theory (section I ) .  Applications 
in classical physics are briefly outlined and the main results are mentioned, at  least 
as far a s  I understand them. A few applications, arbitrarily cliosen on the grounds of 
taste and of llieir relevance for the quantization. are described in a lilt,le more detail 

Tlie new approach to non-pertiirbative quantum gravity is described in detail. The 
focus is more on ideas than on technicalities. My aim is to present a coherent overall 
view of the work done so far; tlie reader should refer to the specific papers for the 
technical details. The main problem is how to define a quantum field theory i n  the 
absence of a background metric geometry. Tlie loop representation is an approach 
to the solution of this problem. This representation is first introduced in the context 
of well known theories (section 3). The main resii1t.s in quantum gravity are lhen 
described, including recent (uiipublished) results on tlie physical interpretation of the 
exact solutions to the quantum gravidat,ional equations-the knot states-and on the 
emergence of a discrete structure at t,lie Planrk scale (section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). 

There are two books related to the subject of the present report. Tlie first [I] was 
publislied shortly after the introduction of the new formalism. It contains a didactic 
introduction to tlie new ideas, and very useful background material. The second book 
[Z] is based on a series of lectures that Aslitekar gave i n  Poona, India, in July-August 
1989. There is a certain overlap wi th  the present paper; the present paper is much 
more compact, is written in a language more oriented to a standard physics audience, 
and is based on a different, perspective. I t  also includes certain recent developments. 
Tlie book contailis more det,ails. including all tlie demonstrations, and develops topics 
just touched upon here. As far as the main resitlts are concerned, the present review 
paper is complete and essentially self-contained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALagrangian iheo y 

General relat,ivity can be reformulated i n  terms of two fields: a (real) tetrad field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe t ,  
and a complex connection "ALJ , Here tlie indices ji, U,  ... are spacelime indices and 
run from 0 to 3, and the indices I ,  J ,  li. ... are internal indices, whicli also run from 
0 to 3 and are raised and lowered wi th  the Alinkowski metric qiJ  = [-1,1,1,1]. The 
connection 4A:; is defined to be self-dual, nainely t,o satisfy 

/",...*;,.= 9\ 
, " S C Y ' V "  A,. 
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where 6 M N I J  is tlie completely antisymmetric tensor. The action is 

(1.2) 
S[G~AA] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/d4r er re , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 F ' J  ,., L I I Y T O  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4F:i is the Yang-Mills field strength of ' A y  : 

(1.3) 

(1.4) 

(1.5) 

4pIJ = a,4ALJ - av4A: + 4 ~ : A f  ~ A ~ ~ J  - 4 ~ l M  4A J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PU Y pM ' 

The equations of motion that follow from the action (1.2) are 
p ' p u e  F I J  - 0 

vJ PO - 
( s K ' g L J  + +icKLIJ ) d c V p ~ ~  P ( e  P I  e uJ ) = o 

where 'D, is the covariant derivative defined by 4A, 

Theorem. I f  (e: (.):A?(.)) satisfy the equations of motion of the theory (1.4) and 
(1,5), the metric 

The following theorem then holds. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S , h )  = e:(.) e 3 z )  '71J ( 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

is a solution of the vacuum Einstein equations. Similarly, every solution of the vacuum 
Einstein equaibns can be writter. in terms of the ;o!::tion of :,!le t1:eorj. (1.2) a ir, 
(1.6). 

This is the Aslitekar theory in t.lie Lagrangian formalism. 

Some comments follow. 
(i) The advantages of this formulation, and t.!ie simplification that this formulation 

brings, will become clear. In particular, it is the Hamiltonian theory that descends 
from the action (1.2) that will make results especially simple. 

over the role of the metric, the 
similarity between general relativity and Yang-Mills theories is underlined. Again, i t  
is in the canonical theory that this will become more evident. 

(iii) A peculiar feature of this formulation is tlie use of complex numbers. Complex 
numbers enter in this formulation in two dist.iiict way. First, the variables are complex; 
second, the action is complcx. The puzzling aspect is the second. A complex action is 
(to my knowledge) a novel feature in mechanics. As far as the Lagrangian formalism 
is concerned, i t  will be shown in the next section that the imaginary part of the 
action (1.2) has no effect on the equations of motion. Thus the imaginary part of tlie 
action is harmless. However, this imaginary term affects tlie canonical framework. In 
constructing the canonical formalism it will be necessary to deal with the fact that 
action is complex. This problem will be discussed in detail in section 1.4 and in 
appendix A. 

(iv) Ashtekar introduced the new formalism [3] in the canonical framework and 
using spinors. The bridge between the spinorial formalism and the one used here is 
straightforward; it will be given in section 1.4. The Lagrangian formulation was con- 
structed by Samuel, and by Jacobson and Smoliii [4]. Several slightly different action 
formulations, all leading to t,he same canonical theory, have then appeared. Among 
these, there is quite an interesting action written purely i n  terms of a connectiou 
(without tetrads fields) introduced by Capovilla e t  al [5]. 

(v) In this paper, space is assumed to be compact. Therefore boundary t.erms are 
systematically disregarded. For an analysis of the field Call-off conditions required for 
a consistent definition of the theory in the open-space case. see 121. 

(ii) By emphasizing the role of the connection 
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1.3. Relafion with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe Einstein formulation and the geometrical menning of the new 
uan’ables 

In this section, tlie relation between the new variables formalism and the standard 
formulation of general relativity is constructed. I start from the metric formulation, 
and construct the transformation to tlie new variables through two intermediate steps, 
both of which are well known. Tlie first is tlie Palatiiii, or firstorder, form of tlie 
theory; the second is the use of tetrads. The relation to the standard formalism 
proves the theorcni of tlie previous section and elucidates tlie geometrical meaning of 
the Ashtekar variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4A:J and e : .  

1.3.1. Palatini and lefmds formalism. As Palatini realized, general relativity admits 
a first-order formulation: i t  is possible to take the Einstein-Hilbert action 

S[gl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd42 ~ ~ p ” y R p v ~ ~ l  (1.7) 

and consider tlie metric and the affine connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArZv as independent variables: 

Sb, rl = d 4 r  &is””R,,,[rl. (1.8) 

By varying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl’ it follorvs tlrat r = rb], namely an equation that fixcs r as die metric 
affine connection defiiied by g (the Cliristoffel symbol). By varying g we get tlie 
vacuum Einstein equations. 

Tlie tetrad formalism consists in substituting tlie metric witti four linearly inde- 
pendent covariant vector fields e ; ,  related to the metric by eqiiation (1.6). They define 
the so(3,I) connection w?[e], usually denot,ed as the spin connection, by 

s 

q p e $  + w:Jele;] = 0 ( 1.9) 

(this is the second Cartan struct,iire equation). The Einsteiii-Hilbert action can be 
rewritten in terms of tbe t.etrads: 

S[e] =-/d4c e eye“’ R,,[g[e]] (1.10) 

where e is the determiuant and e; the inverse of the matrix e:. The Riemann curvature 
is related to the curvature of tlie spin connection by 

~L:,Is[e]l= 4 e V J  R,’:[+II (1.11) 

so tliat 

 el = Jd42 e eye; ~ ; ; [ w [ e ] l .  (1.12) 

The firsborder formalism, d l a  Palatini, and the use ofthe tetrads can be combined: 
tetrads e and spin connection w can be considered as independent variables. The action 

(1.13) S[e,w]  = / d 4 r  e eye: R/;[w] 
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is again equivalent to the Einstein-IIilbert action. The equations of motion for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= w[e] ;  namely w is fixed to be the spin connection defined by e (viaequation (1,9)). 
The equations for e are the vacuum Einstein equations. 

Geometrically, we are dealing with a vector Lorent,z bundle over the spacetime 
manifold. The I ,  J indices denote the vector components in the Lorentz fibre. w is 
a connection on the bundle, and e is a soldering form, namely a one-t,o-one mapping 
between the fibre and the tangent space, at  every point of the spacetime manifold. 
These formnlations are well known; in the next section I define the t,ransformation to 
the Ashtekar formulation. 

i .3.2. The  imnsfonnation io ihe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew variables. The integral 

(1.14) 

can be added to the action (1.13) without affecting the equations of motion. This 
follows from the fact that the integral T [ e ]  = T [ e , w [ e ] ]  is a topological term, i.e. is 
invariant under local variations of e .  

Let us subtract the integral T [ e , w ] ,  multiplied by one half the imaginary unit, to 
S[e ,w ] :  

T [ e , w ]  = Jd‘r e e l e d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ” c I 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM N  R z N [ w ]  

S’[e,w] = S [ e , w ]  - i i T [ e , w ]  = / d 4 z  e eye; ( R $ i [ w ]  - ~ i c  1. I 3  n r N R ~ v [ ~ ] ) .  (1.15) 

The imaginary term has no effect on the equations of motion, therefore S’[e,w] is 
another good action for general relativity. Now. given the spin connection w ,  consider 
the complex quantity 

4Afi:J[w] = - .Lic’J M N  wh” P (1.16) 

which is denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the self-dual spin connection. The curvature of t,liis self-dual spin 
connection 4.4 \pill be denoted The key observation is that t.liis curvat,ure is 
related to the curvature of w simply by 

FLi [4A[w] ]  = RL:[w] - ~ i t r J 6 1 , v R ~ N [ w ] .  (1.17) 

This means that the curvature of the self-dual spin connection is the self-dual part 
of tlie curvature. Now, this self-dual part of the curvature is precisely the term in  
parenthesifi in ( l , l5) .  So tlie action can be rewitten as 

Finally, consider a change of Lagrangian varia,bles from ( e , ~ )  to ( e , 4 A ) .  The action 
becomes 

S[e ,4A ]  = / d 4 r  ePTevJ  4F:i[4AA] Pro (1.19) 

which is precisely the action (12) .  The new Lagrangian variable ‘A is a complex 
variable, but i t  is not an arbitrary coinplex nninl,er, because it has to be related 
to a real w by equation (1.16). I t  is straightforward to see that this requirement is 
equivalent to the self-duality condition equation (1.1). 

General relativity has been re-expressed in terms of a self-dual connection 4A and 
a tetrad field e, with action (1.2): in this way, the Lagrangian Ashtekar formalism is 
recovered, and its equivalence wit,h general relativity is demonstrated. 
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1.3.9. Geometry. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe above derivation displays the geometrical meaning of the (four- 
dimensional) Ashtekar connection: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4A is the self-dual part of the spin connection. In 
fact, the second equation of motion (1.5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfixes 4A to be the self-dual part of the spin- 
connection defined by e, namely i t  is equivalent to 

'.$'[e] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw:J[e] - +'JnrN wp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMN [e] .  (1.20) 

where u;"[e] is defined in equation (1.9), By inserting 4A:J[e] in the other equation 
of motion (1.4), i t  follows that the Ricci tensor vanishes. 

From the geometrical point of view, the formalism exploik the fact that the com- 
plexified Lorentz algebra so(3,l:C) (or so(4,C)) is the direct sum of two complex 
so(3, C) algebras (its self-dual and antiself-dual part). In other words, the generators 
X I J  of the Lorentz group have the property that the two sets iVrJ = X'J+icc,vX"N 
and .Z I J  = X'J - ic'J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM" YMN commute one with the other. Thus, considering a 
so(3, 1; C), rather than so(3, l ) ,  vector bundle over the spacetime, the connection 
splits into two independent components, the self-dim1 and the antiself-dual compo- 
nents. The fact that they are independent is the reason for the fact that the self-dual 
part of the curvature is the curvature of the self-dual connection (1.17). 

The Ashtekar formalism is based on the interplay between two facts. The first is 
that there is a self-dual connecbion 'A for every real connection w (equation (1.16)). 
Thus, the self-dual connection rather than the real connection can be used a s  a La- 
grangian variable. The second is that it is possible to directly substitute i n  the action 
(1.13) the real curvature with the selLdual curvature because the difference is the 
topological integral T[e, U].  

Finally, a note on self-duality inay be useful to avoid misunderstandings. The self- 
duality considered here is the self-duality will1 respect to the internal indices. This 
should not be confiised with a different notion of self-duality. There is all independent 
notion of self-duality on tlie spacetime indices: it is possible to define the spacetime 
self-dual (and antiself-dual) part of bile curvature tensor RL: by 

R*IJ[w] P V  = RK[w] jI $c,,," 'R~~[w]. (1.21) 

For a generic complex spin connect.ion, the two notions of self-duality are indepen- 
dent. By considering both notions, tlie curvature splits into four compoiients: Rt [4A], 
R-['A], Rt[ 'A] ,  R-I'A]. Here Rt['A] is the spacetime self-dual part of the curvature 
of the self-dual spin connection. and so ont. 

1.4. Cattonical theory 

The action (1.2) is complex. Tlie st,andard Hanliltonian formalism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas to be ext,ended 
in order to deal with complex actions. Since to my knowledge this extensioll llas 

t By using there definitions, if is easy t o  firwe that the vacuum Einstein eqnations are equivalent 
to the requirement hat the int.ernaI-s~lf-doal spacetimc-nntiself-dual component of the connection 
vanishes: R-['A] = 0. This equation is eqnd to theself-dud Yang-Mills equation for the connection 
'A, Therefore the four-dimensional Ashtekar connection satisfies t,hc self-dual Yang-Mills equations. 
General relativity is equivalenb to a self-dual Yang44ills theory defined on R curved background (the 
gauge algebra being the self-dual Lorcnlz algchrn), plus the requiiement that t l ~ e r e  is dat ion  between 
the curved background and the Yang-Mills potential ( the relahn is the following: the Yang-Mills 
potential is equal lo Lhe self-dual spin conneclion). This cltrious interpretation of genera! relativity 
is, for instance, at the root of the liglitcona-curs formdation of t l ie theory vccmtlg developed by 
I<ozamoh and Newman [6]. 
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never been studied, in appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 develop tlie Ilamiltonian Framework for theories 
with complex action in general. The conclusion of appendix A is t,liat the equations 
of the real Hamiltonian formalism are still valid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas complex equations, brit certain 
caveats have to be considered. The reader not interested in this technical aspect of 
the problem may follow the derivation given here, and refer to the appendix only in 
case of confusion. 

To construct the Hamiltonian theory, one may work in a given coordinate system, 
and develop the Hamiltonian formalism in the a / a x o  direction. Alternatively, one may 
work in a coordinate independent formalism and develop the Hamiltonian formalism 
along an arbitrary vector field n. This second alternative is more rigorous, more 
elegant, and is used by Asht,ekar in [1,2], but the two formalisms are eqliivalent. Here 
I use a coordinate formalism. 

An important remark on general covariance is the following. I t  is often stated 
that the Hamiltonian formalism breaks general covariance because space and time are 
treated in a different fashion. This is not correct. Only explicit general covariance is 
broken in the Hamiltonian formalism. I t  may be shown that the phase space can be 
identified as the space of t.he solutions of the Euler-Lagrange equations, and all the 
structures over the phase space admit an explicitly general covariant formulation (see 
for instance [7]). Once more, however, I am not interested here in fancy formulations 
that make general covariance manifest, and I use the standard form of t,he IIamiltonian 
theory. 

Finally, I should add for clarity that the derivation of the canonical theory given 
here is different from derivations given elsewhere. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.4.1. The Legeadre iransforni l o  t h c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan.onica1 fkeory. In order to construct the 
canonical theory it is convenient to go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,o a second-order formalism. By inserting tlie 
solution (1.20) of the equation of motion (1.5) back into the action, we obtain an 
equivalent form of the action (1.2), where the only independent variable is the tetrad 

S [ e ]  = / d 4 0  e,,xe,J 4 F X J 4  , ~ [ A [  e ]] cUYTu. (1.22) 

This will be the starting point for the canonical theory. 

the Lagrangian variahles e as follows: 
Let me begin by introducing space indices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 1.2.3 and by splitting. 6 la ADM, 

N a  = e y e o x  (1.23) 

e N = -  
4 

(1.24) 

E; = e: - Nae: .  (1.25) 

In the second equation, 9 is the determinant of the 3-metric qob = gaa[e]. I t  is useful 
to introduce densitized triads 

Q = &E; (1.2G) 

since they will be the natural canonical variables. Following a standard notation, I 
put R tildes over the qnantities that transform as densities of weight zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. One more 
structure is needed. I define the antisymmetric 3-indices tensor 
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in terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof which the 1-index connection 

A$] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc: ,4~~" [e1 (1.28) 

is defined. I t  is easy to show (using the self-duality of the curvature) that in terms of 
these variables the action (1.22) can be written as: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, is the covariant derivative and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFL6 the curvature defined by Ale]. From this 
form, it is clear that the only dynamical variable is e. The other variables, namely 
N , N " , e ; ,  can be takcn as Lagrange multipliers and freely fixed. In particular, part 
of the internal gauge symmehy can be used to fix e: = 0 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2,3.  In this gauge, 
which will he used i n  what, follows, the non-vanishing components of ( I J K  arc given hy 
the usual t.ot a1 l y antisymmetric three-dimensional tensor C'J' and the non- van ish i ng 
components of Ab[e] are Ad[e] ,  so that t.he action can he written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

S [ k , N , N " , e y ] =  / d 4 r  i.ld[e]e4+iAd[e]Ci+iN"C,+ N C  (1.30) 

where 

Ci = D6E: (1.31) 

Now the momenta can be defined as 

(1.32) 

(1.33) 

(1.34) 

(following the formalism of appendix A. these are complex quantit,ies). 21; is the three- 
dimensional projection of 4 A L J ,  and is usually referred to as t,lie Asliteknr connection, 
The (comples) phase space is coordinat,iaed by (pi,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI??). The hasic Poisson brackets 
are 

j i.35j 

(In the appendix, the precise meaning of a 'Poisson structure' in a half-complex and 
half-real space is elucidated.) 

The form of the action shows that. t,he canoiiical IIamiltonian vanishcs weakly, 
as always io a time-reparametrization-invariaiit tlieory (because the Hamiltonian is 
the generator of t,ime translations, t.imr t,ranslat,ioiis are gauges, t . 1 ~  generator of a 
gauge transforniat,ion is a first-class const,raint and therefore vanislies weakly). The 
remaining task is to write the const,raint,s. There are two kind of constraints. The 
first kind is given by the primary const.raints that follow from the definition of the 

_*, .. _I .i * 2 ,  . 
{phjr j ,  &;[U)) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-d;n;n-(x,y). 
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momenta. To find them, let us separate the rcal and the imaginary part of these 
momenta. The real part is (using tlie definitions (1.20) and (1.28)) 

Real pd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Real [icj,Ajd;[e]] = c j , ~ - ~ , w ~ ~ [ e ]  = wp[e]. (1.36) 

Since the real part o f  the action is just the standard tetrad action, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf he real momentum 
turns out to be, as can be checked, just the standard momentum of the tetrad for- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ADM momentum) by 
ma!ism3 WhiCl! is related zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the extrinsic curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,, (and, in  t,urn; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt.0 t,he standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k,, = Real zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp[,e;,. (1.37) 

. The imaginary part of the momentum is 

(1.3Sj 

Now, from the definition (1.9) of the spin connection, it follows that &;&[e] does not 
depend on time derivatives of e; it is indeed jus t the  three-dimensional spin connec- 
tion of  the three-dimensional frame field (triad) E:. Thus the imaginary part of the 
momentum is entirely constrained. In other words we get the primary c o n s h i n t  

i i l r r  1 im p i  = im [id J K  AFiri i = e .  3b W; Le]. 

(1.39) 

This had to be expected, since the ima,ginary part of tlie action is a topological term, 
and thus the I-theory (see appendix A )  must be entirely non-dyna,mical. This con- 
cludes the derivation of the canonical theory, the basic formulae of which are summa- 
rized i n  the next section. 

1.4.2. The Ashtekar theory in canonical form. According to the rules of Hamiltonian 
mechanics, the momentum is to be considered as an independent canonical variable. 
Following the standard notation, I use A6 rather tlian p t ,  but now Ad is to be 
considered as an independent canonical variable. The phase space has coordinates 
( A t ,  &'), and the basic Poisson brackek are 

{Ad(z),Ej(z)} = i 6$1;63(2,1/). ( 1.40) 

In terms of Ab the primary constraint (1.39) is 
-. 

A; = A: + 2 i c j k w i b [ k ] ,  (1.41) 

inis constraint is denoted as tile reaitiy coi~.di i ion. As wiii be discussed iaier, in the 
quantization this constraint plays a different role from the other constraints. 

The other constraint,s follow from the presetice of lhe Lagmnge multipliers 
( N , N ' , e P ) .  Namely (see equations (1.31)-(1.33)), 

m, . 

Ci[A,E]  = 0 C,[A.E] = 0 C[A,E] = 0. (1.42) 

(As usual, they can be more rigorously obtained as secondary constraints by treating 
( N ,  N a ,  e:) as genuine dynamical variables and eliminating the redundant sector of 
the phase space by gauge fixing.) They are denot,ed the gauge conshint , ,  the vector 
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constraint and tlie IIamiltoniaii consbraiiit. An explicit computation shows [I] that all 
the constraints, including tlie reality condit,ion, are first class. 

Note that the constraints (,1.42) are polynomial (at worst quadratic) in each of 
Lhe canonical variables. The reality condition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas written in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1.41), is not 
polynomial; however, it can be equivalently [2] rewritten in polynomial form as follows: 

(1.43) 

CTiie parentheses on the indices indicat,e symmeirization in jabj and antisymmetriza- 
tion in  [ca].) 

The phase space with canonical coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8: and Ab,  wi th  Poisson brackets 
(1.40) and constraints (1.43) and (1.42) defines the Aslitekar theory in canonical form. 

1.4.3. Physical inlerpretotion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof lire constraints. Tlie constraint C, is the standard 
Gauss-law constraint of non-Abelian gaiige theories. The Poisson algebra of the C, is 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso(3) current algebra 

Re D ~ ( @ E ~ ~ ~ ~ E ~ )  p = 0. 

{C;(l), Cj(Y)} = C;Ck(.T)63(.T,y). (1.44) 

The physical origin of this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASO(3) gauge symmetry is iiot related to the introduction 
of the new variables; rat.lier, it follows from the use of tetrads. Physically, tltis gauge .,-- * o ~ o r + r  +hr, rlnn,tnm :- *I .--= inn ti.., I,.~%II., V . . ~ I : , L . ~ ~  .nr-7h..-a C.lltn-. 

defined by llie triad. Indeed, i n  the Ilaniiltoniaii formalism dcrived from the tetrad 
action S[e] there are the constraints 

Y J L 1 . l l L L l ~ L J  I L L L C I U I  .,,,< . I Z L U " I I I  111  "L""",LL& lllr L"C"1Lr '  "YCIIUF-LII L F L L L F I I L F  " J 0 " F L . L  

(1.45) 

which generate the same SO(3) invariance as the C,. The new feature of the Ashtekar 
variables is that  the Ashtekar constraiot,s Cj have precisely the same form as the 
gauge constraints in Yang-Mills theory. This is doe to tlic fact that t.he variable Ai  
transforms as a connection, precisely as the Yang-hIills potential 

C: = G k  e: p. k 

6,A: = {Ad,C(X) )  = D,X' (1.46) 

where 

C(X) = d3zX'(z)Ci(z). (1.47) 

Thus, the phase space of general relat,ivity i n  the Asht.ekar foriiiiilation lias the very 
same structure as the phase space of a non-Abelian gauge theory. 

The fact that the real part of :I; transforms a$ a connection is nosiirprisc; aft.er all, 
i t  is the spin connection. n u t  the imaginary part is esseiit.ially tlic extrinsic curvature. 
Flow docs i t  transform? Note that., since Xi is real, the iiou-hoiiiogeneo~~s t.erni 8,X' 
does not aflect the imaginary part of ..I; . Thus, this transforms liomogeneoitsly, as it 
should. 

Next,. consider the vector constraint, Co. I t  issltonn i n  [ l ] tliat the folloiviiig linear 
combination of vector and gauge const,raints 

J 

C ( N )  = d3lN"(.T)(C"(.T) - A:(+)c,( l ) )  (1.48) J 
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is the generat,or of three-dimensional diffeomorphism transformations. Namely 

6 ~ f ( A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {f(.l> E ) , C ( N ) ]  = L,f(A, E )  (1.49) 

where C, is the Lie derivative along N ,  namely the variation under the infinitesimal 
coordinate transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - z+ N ( r ) .  The combination (1.48) is denoted as the 
diffeomorphism constraint. 

Finally, given any four-dimensional solution of the equations of motion, the scalar 
constraint 

C ( N )  = d3r N(r)C(r) (1.50) 1 
generates the evolution in the Lagrangian parameter time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l] 

This constraint plays the same role as the IIamiltonian ADM constraint in the ADM 
canonical formnlation. 

I t  is well known that the evolution generated by the Einstein equations can be in- 
terpreted in the ADM formalism as the motion of a particle in an in~iiite-dimensional 
configuration space (superspace) with metric given by the DeWitt supermetric and 
potential given by the three-dimensional Ricci scalar curvature. In the Ashtekar for- 
malism this interpretation is not only preserved, but. it is also reinarkably simplified. 
Consider the infinite-dimensional space of the connections A i  as the Ashtekar super- 
space, equipped with the [super-) metric 

ds2 = /d3s/d3y C"jb(~)S3(2.y)  dAi,(r)dAjb(y) (1.52) 

where Giajb(r) is the inverse of the (9 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9) matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G i G j b ( l )  = €ni j  g&). (1.53) 

The motion generated by the Einstein equations can be interpreted as the motion of 
a massless pnrlicle (without any potential) iii this geometry. Thiis, the problem of 
solving the Einstein equations is equivalent t,o the problem of finding bile null  geodesics 
of the metric (1.53). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.4.4. Difference betweell, the Eiristeiri Iheory a n d  Ike Ashtekar theory. The fact that 
the dynamical equations are polynomial has an iinportant physical consequence. In the 
standard formulation of general relativity, the action contains the Ricci scalar, which 
is obtained by contracting the Ricci tensor wi th  the inwerse of the metric tensor. 
Similarly, the ADM Hamiltonian formulation requires the Ricci scalar of the three- 
dimensional metric to be defined. In order to have an inverse, the metric tensor must 
be non-degenerate. Thus, we are forced to restrict ourselves to non-degenerate metrics 
in order to define the theory. 

In the Ashtekar formnlation, t . lh same requiremeiit can be imposed. Namely i t  is 
possible to require that .& be non-degencrat,e. I f  t.liis is required, the Aslitekar theory 
is equivalent t,o general relativity. 
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However, since all tlie equations are polynomials. and in part.icular tlie inverse of 

E; does not e n k r  in t,he equations, t,he Ashtekar equations also make sense if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ 
is degenerate. Thus, we are not forced to require that the metric be non- degener- 
ate. Therefore, general relativity admits an extension in which degenerate metrics 
are allowed: by dropping the requirement that @; be non-degenerate from the new 
variables theory, a theory is defined that has all the solutions ofgeneral relativity plus 
additional solutions in which tlie metric is degenerate. 

One may take different attit,udes towards t.his possibility. The extended theory 
can be seen as physically irrelevant,. But it is also possible to take the theory seriously 
and eonsidcr the physical hypothesis that tlie extended theory does describe physical 
configurations of the gravitational field. 

To provide an analogy, given t,lie equation y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2y  + 2y-'y, we may say that this 
equation rapidly blows up and looses sense because y goes to infinity; but we can also 
recognize that in terms of the variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = y-' the equation becomes $ = -uZx and 
is therefore very well behaved for every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt :  i t  allows us t,o continue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t )  'over infinity'. 

It has been suggested that by using the Ashtekar equations one may cont,inue a 
solution of the Einstein equations beyond certain singularities, and maybe discuss 
topology cliange in the classical theory. This possibility has still to be explored. The 
possibility of liaviiig a degenerate metric in the theory (more precisely, a degenerate 
inverse metric) is a crucial  ingredient of the quantizatioli attempts. 

1 . 4 . 5 .  Spiiiorial formalisni, pamllel transport of fermions and IVil.$on loops. In the 
original Asht,ekar papers, a spinorial formalism was used. This formalism will also be 
used in the rest of this paper. The translation to tlie spinorial formalisin is straight 
forward. Consider the Pauli matrices divided by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: T ~ ~ ~ ,  A , B  = 1,2, and let 

( 1.54) 

(1.55) 

The spinorid indica can be suppressed in most, of t.lic equations. t.he mat,rix product 
being understood. In this notation tlie constraints become 

( 1.58) 

(1,5i)  

(1.58) 

Tlie connection A t B  takes valua i n  the spin-: representatioti of the so(3) Lie algebra. 
This connection has an interesting physical iiiierpretation. If we want, to couple spinor 
fields to general relat,ivity. a tet,rad formalism niiist Ire used. A spinor field lives i n  an 
internal spinor space wliicli can be ideiit,ified (rinder the mapping given by the ganima 
matrices) wit,li the internal Lorentz space provided by the tetrad fornialisn~, Tlie 
decomp~sit~ioii of the Loreiitz algebra into it,s self-tlual and antiself-dual components 
corresponds to tlie iiivariaiit split,ting of a 4-spinor into it.s left- and right-handed 
components. 

It r o l l o ~ ~ ~  that the four-dimensional Asliteknr connection 4.4i,J is t,he connection 
tliat defines the parallel transport of a left-lianded spinor i i i  spacetime. Since the three- 
dimensional connection A:, is the space restriction of ' A ; ,  the Ashtekar connection 
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Ai  is the geometrical object that specifies the parallel transport for left-handed spinors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ A  in space. 

Let us write explicitly the parallel transport operator UAB.  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: [0,2?r] - E 
be a curve in the three-dimensional physical space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Let us denote the parameter 
along the curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas s and the coordinates of the curve as ~ " ( s ) .  Then, by denoting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P ( s )  = (d/ds)a"(s), i t  follows that 

Here P means path ordering, namely 

Consider a closed curve a. Let UWAA(s)  be the matrix of the parallel transport 
around the loop, stmting from the point s .  The trace of this parallel transport operator 
T[a] = V e A A ( s )  (which is independent of the origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the loop) is !he Wilson loop of 
the Ashtekar conneciion. This object will play a very crucial role in the rest of this 
paper. 

1.5. T variables 

The similarity of the Ashtekar formalism with Ya,ng-Mills theories has suggested bring- 
ing certain typical gauge theories bechniques to general rehtivity. The concept of the 
Wilson loop has been particularly useful in the quantization. IIere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI define a class of 
observahles on the ( A i ,  ) phase space, denoted a3 the loop ohservables (introduced 
by Smolin and the author [SI), which will be blie main tool in  the second part of this 
review. The first of these observables is the Wilson loop of the Asht,ekar connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 , T[a] = Tr P exp (131) 

The second observable also depends on the @ variables. It is defined as follows: 

T"[a](s) = Tr[Uo(s)?(a(s))j. (1 .G2) 

The T and T" variables have a set of remarkable properties that are listed here 
without proof (see [SI). 

(i) They contain all the gauge invariant information contained i i i  Ah and E?. 
More precisely, they are invariant. under internal gauge transformations, and are good 
local coordinates on the phase space reduced by t.he gauge constraint. 

(ii) There is a generalizat.ion to object,s with more indices. For inshnce 

TUb[a](s,t) = Tr[Uo(s,t) i?*(cr(i)) Ue( t ,s+  2r) Eb(n(s))]. (1.63) 

[Ua( t ,  s + 2n) is the parallel transport from t to the origin and the11 from the origin 
to 6 ) .  
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(ii) Relevant objects of the theory can be expressed in terms of these loop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAob- 

servables; the expression of local objects implies a limit. For instance, the (densitized 
eontrovariant) space metric, which is related to can be expressed 
in terms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt observables as 

by y b  = 

(1 64) 
-ab zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(2) = -4  Iim(T"[a:l(O,r()) 
<-+a 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: is a loop centred in I with (coordinate-) area E ,  

T h e  diffeomorphism constraint is given by 

(1.65) 

where is a loop centred in I with area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, and lying on a surface normal to tlie 
c direction. (By normal to the e direction, I mean here the area element d P d i b c a b c ,  
The expression normal, in this context is not very appropriate, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA110 metric is 
involved.) The Hamiltonian constraint is 

These results follow from tlie well known expaiisioii 

u ~ z c c ( s )  . .  = 1 + c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF a 6 ( 2 ) c ~ b c t o ( c ) .  

(iv) The following properties hold. 
(a) Invariance under inversion: 

T!Ol = %-'I. 

(1.66) 

(1.67) 

( 1.68) 

(b) The so-called spinor identity, whicli encodes the fact that tlie relevant algebra 
is su(2): 

~[(YlT[PI = T[a#Pl + T[a#a-']. (1.69) 

Here the loop a#@ is defined as follows. If a and p intersect in a point P, it is the 
loop obtained starting from P, going tlirougli (Y, then tlirouglr @, and finally closirig 
at  P. Equation (1.G9) holds (and makes sense) only if (Y and P intersect. 

(c) The 'retracing' identity: 

T[a] = T[a . I .  (-I] (1.70) 

where 1 is a line with one end on a and D .  1 ,  1-l is the loop obtained by going around 
a ,  then along tlie line, and tlieii back along t,he line t.o a. 

( d )  

lini T[a3 = 2. (1.71) 
e30 

The last four equations allow a complete characterization of the T observables [9]. 
iieiaied properties lioid for ihe T" o'uservabies. 

Finally, the properties of the loop observables under the Poissoii brackets operation 
are described in the next section. 
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1.5.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloop algebra and its geometry. The most important property of the loop 
observables is that they have a closed Poisson algebra: 

{T[al,TlPll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (1.72) 

{T'[al(s),T[PI] = -$Aa[P,ds) l (T[~#,PI  - T[@#,P-'l) (1 . i3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{~a[~l(s)~Tb[Pl(t)l = -$Aa[P,a(s)l (Tbb#.Pl(t) - 7'b[~#,P-'l(t)) 

+ $Ab[a, P(t) l  (T"[P##t4(s) - T"[P#p-'I(s)) (1.i4) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Aa[P,4 = j d l  B"@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb 3 ( P ( t ) , ~ )  (1.75) 

and the notation #, indicates that the breaking and rejoining of the loops happens 
at  the intersection where the parameter is s (if the loops do not int,ersect tlie Poisson 
bracket is zero). This algebra is called the loop algebra. It is a gauge invariant version 
of the Poisson algebra of the pliase space of a Yang-Mills theory. 

The loop algebra has a remarkable geometrical meaning. To reveal this geometrical 
content of the algebra we must get rid of the distributional character of the structure 
constants A f .  There are several ways of smearing tlie loop observables. A smearing 
that emphasizes the geomct.rical cliaract,er of the loop algebra has been introduced by 
Smolin [lo]. Let us consider a one-paramet,er family of loops Pt,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt E [0,1] such that 
they form a ribbon R; 

Ra(s, t )  = Pp(s) .  (1.76) 

A prime will denote the derivative wit,li respect. t,o the parameter t .  Now the following 
smeared version of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT'' observable can be defined: 

T[R] = / ' d t  j 2 u d s  R"(s,t)R*((s,t) cobc T'[P,](s). (1.77) 

The ribbon is oriented: by reversing the orientation of the ribbon by R-'(s, t )  = 
R(-s, t )  it follows that T[R- ' ]  = -T[R]. The observables a,re now the Wilson loops 
T[a] and the 'Wilson ribbons'T[R]. The Poisson algebra of these objecbs issurprising. 
Given a ribbon R a n d  aloop oi. the loop may or may not indersect t,lie ribbon. If i t  does, 
let us denote by a#R the loop a#& where t is the coordinate of tlie intersection point. 
If there is more than one intersection, the int.ersections will be Labelled by an index i, 
and will be the loop obtained by considering tlie intcrsection i .  Moreover, given 
two ribbons R and S,  I denot,e by R#S the ribbon formed by all t.lie loops R,#S, 
namely by all the loops that inbcrsect. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 0 

The loop algebra then takes this vcry compact form: 

{T[aI, T[PI 1 = 0 

{T[R],T[a]} = cci T[o#;R] -T[o#~R-' ]  

(1.78) 

(1.79) 
i 

{T [R] ,T [S] )  = xci T[R#;S] - T[R#,S-'] 
i 

(1.80) 

t The Poisson bradiets of any classical field theory contain distiibutiow 
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Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAci is either +ii or -+i, according to the orientation of the int.ersection. If the 
loop does not intersect the ribbon, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor in the degenerate case i n  whicli the loop is 
tangent to tlie ribbon. the result of tlir Poisson bracket vanishes. These operations 
are very natural geometrical operations defined in terms of breaking and rejoining of 
loops and ribbons at  their intersections. Tlie structure of the loop algebra i8 entirely 
geometrical: it can be entirely coded in t,he geometry of the splittingand recomhining 
of intersecting loops and ribbons. 

In conclusion, the entire structure of IIamiltonian general relativity (phase space, 
constraints, Poisson brackets) can be expressed in terms of tlie loop variablcs, This 
form of the IIamiltonian theory will be used for the quantization. 

An analysisof tliisstriicture in the classical framework h a s  not yet been performed. 
For instance, the Hamiltonian evolution for the loop observables (which would allow 
the reconstruction of spacetime) lias not been st,udied. Another interesting open prob- 
lem is whether there is a Lagrangian theory corresponding to  this Hamiltonian loop ."..-...-..,-. :-.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,U, I l l " l a b l u I I .  

2. Applications of the formalism 

2.1. Survey of applical ions 

The formalism described in t!!e previous section bas been used in a wide variety of 
contexts. and has been generalized in several directions. The reader interested only 
in the quantum gravity issue inay go directly to the next section. I n  this sectioii I 
present a syntlrelic overview of other applications. 

Exact solutions of the classical rlieory liwe been investigated i n  different forms, 
Gravitational instantons have been studied b y  Samrrel [ll] and by Capovilla e l  a! [12]. 
An int.ercsting result 011 tlie iiist.an tons of self-dual general relativity has been obtaiiied. 
by using tlie new variables, by Torre [13]. Torre has shown that in the presence of 
a positive cosmological constaiit the moduli space of the instanton solutions is zero- 
dimensional (discrete). I n  the iiegat.iw cosinological constant cme, the dimension 
of the moduli space is cont,rolled by tlie Atiyah-Singer index theorem, u~liicli i n  the 
present context means the Euler iiumbcr aiid Ilirzebrucli signature. This analysis has 
tlien beeii extended in [14]. 

with tlie surprising result that tlie IIamiltonian and diffeomorpliism constraint can be 
solved exactly in local form. I describe this result. below i n  section 2.2.1. 

Tlie new variables are particiilarly suitable for cosmological models. Indced, the 
new variables open a new point, of view on these models. 'The keg. oliservat,iou is the 
observation made after eqnation ( i .53),  above: tlie Hamiltonian constraint defines 
the motion of a free massless particle i i i  a space of a given geometry. It is difficult 
to make use of this observation in t,lie full t,hrory, because tlie space i n  wliicli tlie 
hypothetical particle is moving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis infinite dimensional. But i n  [.lie cosmological models 
the configuration space is finite dimensional. Thus, tlie solut~iori of the equations 
of motion of any cosmological model can be reforiniilated as the study of the iiull 
geodesics of an assigned geometry (As1it.ekar and Pullin [ls]). See also Kodama [16]. 
Related to tlie cosmological models is tlie st,roiig coupling limit of tlie theory, studied 
by Goidberg ji'i]. 

The reduction of general rclat,ivity o1)taiiicd by requiring t.lie esistence of two or 
one Killing vector fields lias been studied i n  the new variables by Smolin and Hiisain 

T!!. so!.!ion of !IlC c[..sica! cons?raia?s beel! sto.lied "y f-!nnnvill. e! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, --"-''''~. 
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[I81 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand by Pullin and Husain [IS]. The ERST structure of general relativity i n  the 
new variables has been analysed by Aslit,ekar et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd [20]. The result is that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABRST 

charge is similar to that of metric general relativity, but i t  is completely polynomial. 
On the mathematical side, since the four-dimensional Ashtekar connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4ALJ is 

self-dual, the formalism offers a natural framework for analysing the self-dual Einstein 
equations. These equations have been extensively studied along different lines by 
Penrose, Newman and Plebansky in recent years, to the point where the general 
structure of the general solution is quite well understood. Ashtekar el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal [21] studied 
the problem in the new variables and found a remarkably simple local formulation of 
the basic equations. Robinson has related this formulation to hyperliiililer structures 
that naturally exist i n  half-flat spaces [22]. Newman and Mason [23] used the new 
formulation for an interesting analysis of a relation between general relativity and 
Yang-Mills theories with infinit.e-dimensional gauge groups. 

0" of an [!>ter!13A! 
variable which could be reasonably identified (maybe within some approximation) 
with the non-general-relativistic physical observed time. The new variables provide an 
elegant solution to this problem. There is a funct,ional T[A] of the Ashtekar connection 
which can be identified with the physical hlinkowski time u p  to second order in an 
expansion around Minkowski space. This result is due to Ashtekar [2]. 

The basic formalism has been extended in several directions. hlat,ter can be nat- 
urally included in the formalism. Aslitekar el a[ [24] have constructed the relevant 
Lagrangians and have shown t,liat the inclusion of matt.er does not spoil the crucial re- 
sult that the constraints are polynomial. Ja,cobson found the fermions Lagrangian [25] 
and reformulated supergravity i n  the new variables ni th analogous results [2G]. Thus, 
the formalism is 'robust', i n  the sense that the main result,s, in particular the polyno- 
miality of the constrainbs, survive modificat,ions of the basic theory. The inclusion of 
matter in the iheory is reviewed in deiail in Ashiekar's Poona ieci.ures [i]. 

The extension of the formalism to other dimensions has been studied by Bengtsson 
[2T]. There is a natural new variables formillation of general relat,ivity in (2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) 
dimensions, which has been used by Witt.en [28] for solving the quantum theory. I 
describe this formulation below in section 2.2.2. The ERST structure of the (2 + 1) 
theory has been studied by Gonzalez and Pullin [29]. In the same paper, it is shown 
that ia !!le pa?!! integra! fo~m!!!zt.ign of !!!e quant.Em !!!eory !.!!pie is a. sgi!nb!e g~.uge 
fixing of the ERST action that, reproduces t.he action used by Witten for studying the 
topology-changing amplitudes. 

The formalism itself has suggested several new models. Among t.hese, I find partic- 
ularly interesting a generally covariant theory i n  3+1 dimensions, which is a simplified 
version of general relativity developed by Kuchai. and llusain [30] and a particular form 
of the weak coupling limit of the theory suggested by Smolin [31]. These are described 
below in section 2.2.3. 

On the numerical side, i t  11% been repeatedly suggested that the formalism may 
be useful for computer calculations, but I am not axare of any such work. Algebraic 
computing for the new variables has been developed by Giannopoulos and Daftardar 

In the context of quantum gravity, besides the loop-representation of the non- 
perturbative theory, which is described i n  the rest, of this report.. Rent,eiii and Snioiin 
[33] constructed a lattice formulation of canoni~al quant.iim gravily rising t.lie new 
variables, and Rent,eln [34] studied niinierically the algebra of t,lie lattice quantum 
constraint,s. IIusain constriict.ed the quant,um theory in the strong coupling limit 

_ _  A well knnwn nnen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_r"._ ' nrnhlem ~ ._... in general r&!.ivity is the dc 

[321. 
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[35]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAshtekar et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl [36] studied possihle qualitative predictions of a quantum gravity 
theory. They considered that the internal gauge may provide the topological sctting 
for topological and 0-angle-like violat,ions of classical invariances. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA detailed analysis 
of the topological properties of the phase space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the theory Icd them to formulate 
the hypothesis of quantum gravitational CP violations. 

2.2. Selected applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M i .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'The general soiuiion i o  ihe ciassicai diDeomorphism and iiamiiionian 
consfrainf. In terms of the new variables, it is possible to solve the gauge constraint by 
going to the loop variables. Alternatively. it is also possible to solve tlie dilfcomorpliism 
and Hamiltonian const,raint. A general solution of all the constraints together is still 
missing in the classical theory. The solution of the Ilamiltonian and diffeomorphism 
constraints is the following. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-~ 1.ef. ~ ns c!inose an  arhitrxry connert,ion 4 a  (z) and an arhibrxry symmet,rir t.racelcss 
tensor field &(z). Then we may construct the triad field 

where the notation $I-' refers to !,lie inversion of the 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 3 matrix @. \?'e have the 
following theorem. The fields ( + [ A , 4 ] ,  Ad) solve the diffeoniorpliinm and Hamilto- 
nian constraint. The proof is very straightforward: i t  suiiices to inseri (2 . i  j i n  the 
constraint and work out the algebra of the three-dimensional matricm. This surpris- 
ingly simple solution of the two constraint equations was ovcrlooked for several years, 
and then discovered by Capovilla e l  d [5]. 

The fields (+[A,#], A i )  solve two of the three constraints in terms of the inde- 
pendent variables A ,  4. In ordcr to have tlic complete solution of all the constraints, 
we must solve the gauge constraint. TIE gauge constraint, writteii in terms of the 
independent variables .4,+ looks as follows 

This equation can be read as a reforniulatiori or tlie constraint equations of general 
relativity. 

L.,".,". (2 + I)-dimmsronnl theory. Tlie vacuum Einstein cquaI,ions R,,, = 0 i n  three 
spacetime dimensions are trivial. In  t h e e  dimensions, in fact, llie Riemann curvature 
is entirely det.ermined by the Ricci tensor, therefore the Einstein equations imply that 
spacetime is flat. The only solution, u p  to gauge, is the three-diineiisional hliiikowski 
metric. 

However, if we assume t,liat the topology of the two-dimensional space C is non- 
trivial, then there is more than one solution t,o the theory, because flat spaces may 
be globally non-isometric. Therefore, tltc tlieory defined on a topologically non-trivial 
C has a non-trivial dynamics wibh a finite nitniber of degrees of freedom. These 
degrees of freedom are global, i i i  the sense that locally all the solutions are gauge 
equivalent. The theory is very interest,ing because it is a solvable diffeoniorphism- 
invariant theory. and therefore it represenk a good esercise-room for stndying the 
quantization of di;ieomorpiiisni-invariant theories. 

The theory admits a formulat,ion in terms of Aslrl.ekar variables. The Lagrangian 
fields are three covariant vect,or fields e l  and an SO(2,l) connection , A t .  Here the 
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Greek spacetime indices run from zero to three, and the Latin internal indices also 
run from zero to three. The action is 

S[e,A] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d3z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFjn  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp"".  (2.3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
The canonical formalism is defined on the phase space with canonical coordinates 

(here a = 1,2), by the constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C; = D, E,' (2.4) 

D' = F:sc"b. (2.5) 

The first one is the standard Gauss law, which implements the internal SO(2, l )  
invariance, and the second one requires that the space connedon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA i  is flat. The 
physicai configuraiion space is therefore given by the moduii space o i  A i ,  namely by 
the gauge-inequivalent flat connections. 

The const,ra,ints close, and their algebra is t,he algebra of the (2 + 1)-dimensional 
Poincarh group. There is an equivalent formulation of the theory as a Cherii-Simons 
theory of tlie Poincar4 group, in which the triad e; and the Lorentz connection A; 
are considered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas components of a Poincarh connect.ion A:, I = 0,5. With a suitable 

can be re\i:i-itten a Cheiii- 
Simons action for this Poincar6 connection. 

Finally, it is possible to define the loop observables. I write here the smeared 
version of them, which will be used i n  section 3 for tlie quantization of the theory. 
Tlie T loop observable can be defined precisely as its three-dimensional counterpart 

&eiie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the poLiiiizi& tiace, the 

~ [ - y !  = Tr p exp f nC A\ ( 2 ~ 6 )  U, - - j  

while the analogue of the smea,red 2'" observable, namely of the 'ribbon' observable, 
is 

J T[R] = /dsk"(s)r,,T'[R](s) = dsRb(s)cb,Tr [Li,(s)E"(R(s))] (2.i) 

where, here, R"(s) is a loop. What is going on is the following. In order to smear 
Ta we need to contract its free index. To preserve diffeomorpliisin covariance the 
index can only be contracted with the t.ot.ally antisymmetric tensor. Tlie other indices 
of the totally antisymmetric tensor must be contracted with tlie area element of the 
surface over wliicli we smear. Therefore Ta must be smeared over a surface with one 
dimension less that tlie space. In three dimensions this surface was the ribbon. In 
two dimensions the ribbon is replaced by a (2  - 1 = 1)-dimensiona,l object, namely a 
loop. Thus in two dimensions tlie smeared T" observables also depend on a loop, as 
the T observables. In spite of that, I keep the notation R for bliese loops, to remind 
that they are the two-dimensional a,nalogues of the three-dimensional ribbons. 

2.2.3. Other models. Consider a Lie group G ,  a Yang-Mills connection A ,  with values 
011 the Lie algebra 
an invariant trace on G .  Then tlie action (1.2) can be generalized to  

of G ,  arid a iwv,iiaiit yei?,oi field ep tav,iig ~alcies jii G ,  Choose 

S[e,,4] = d42 ?i. [e,e, 4FTo] cpv ro .  (2.8) J 
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Iiucliai. and Husain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[30] studied the theory defined by the group zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASO(3). The 

theory has three physical degrees of freedom per space point (rather than two, as in 
general relativity), but its equations of motion can be solved exactly. The canonical 
formulation of the theory turns out to he precisely given by the canonical formulation 
of the Ashtekar theory without the Hamiltonian constraint. Thus, the theory has all 
the features of general relativity, but without the ‘difficult’ part of it. It represents 
a non-trivial generally covariant, model. wliicli can be used as a laboratory for any 
attempt to quantize gravity. 

Smolin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[31] studied the theory defined by the group U(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx U(1) x U(1). He 
has show11 that this theory is equivalent to the linut in  which the Newton constant is 
sent to zero keeping the canonical variables fixed. The resulting theory is equivalent to 
linearized general relativity if tlie standard reality conditions are imposed. However, if 
Euclidean reality conditions are imposed (all the fields real) t.hen the theory represents 
Llie self-dual Einstein theory plus the linearization of the antiself-dual part. Smolin 
suggested that this form of the linearized theory can be used a s  a starting point for a 
perturbation expansion. 

To my knowledge, other theories in this class. obtained by using other groups 
C, have not been studied. These thcories are diffeomorphism iiivariant, and are non- 
trivial in the sense that they have an infinite number of degrees of freedom. Thus they 
are ‘infinite-dimensional topological field theories’ i n  the sense that they are defined 
on a manifold with no metric structure, like the topological field theories recently 
discussed in the literature [37]; however. unlike the topological field theories, they are 
genuine field theories with infinite degrees of freedom. Note that tlie existence of these 
theories contradicts the widespread assumption that any field theory with no fixed or 
dynamical metric has a finire number of degrees of freedom. I think that it would 
be very interesting to study this class of theories. both as classical and as quantum 
h o r i e s .  

2.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHamilto?t-Jaeobi theory. Finally. I would like to point out a potentially in- 
teresting direction of investigation. In the Hamilton-Jaco!ii framework, tlic classical 
dynamics ofgencral relativity is essentially cont,ained in the IIamilton-Jacobi equation 

(2.9) 

This equation follows from tlie IIamilt~onian constraint by considering E’p(z) as the 
momentum and by replacing it, with tlie derivat,ive of the Hamikon-Jacobi function 

Now, an e z a d  solution of t,liis eqiiaf,ioii, depending on an infinite set of constants, 
S[A].  

was found by Jacobson and Sniolin i n  [38]. This solution is 

S[A.a] = Tr ’Pexp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 4 (2.10) 

where the loop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis dilferentiahle and wit,liout, intersect.ions. (The loop a can be 
considered as the set of the Haniilt~on-Jacobi constants.) This result follows from a 
straightforward computation of t,he functional deriuat.ive: 

‘ Tt’Pexp (1 A )  = j d s  2 ( s )  fi3(o(s),.r)Tr [U,,(s)r’] - (2.11) 
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and from the antisymmetry of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF:&. 

The relevance of this surprising result to the investigation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  the Einstein equations, 
or, more precisely, to the Ashtekar version of the Einstein equations (which allows also 
degenerate metrics) has not yet been explored. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Quantum field t heo ry  on manifolds: the loop representat ion 

In this section, I describe the general approach a,nd the main techniques that will be 
used in the next section for quantum gravity. In section 3.1, I introduce the quantum 
gravity problem, discuss the motivations for seeking a non-perturhative quantization, 
and illustrate the general quantization scheme used, which is a modification of Dirac’s 
technique of quantization of first-class constraints. 

The loop representat.ion is introduced in section 3.2. I t  is int,roduced in the familiar 
context of Maxwell theory and non-Abelian Yang-Mills theory, in order to separate the 
description of the loop technique itself from the difficulties of gravity. The advantage 
of  the loop quantization is that, i t  handles diffeomorphism invariance in a natural way. 
To illustrate this point, I describe the use of the loop quantization in the quantization 
ofgeneral relativity in (2+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  dimensions. Certain coiiceptual questions related to the 
construction of a quantum theory on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, manifold are discussed in blie last part of this 
section. 

3.1. Quantxm geireral relafivify: ideas and kopes 

3.1.1. The need f o r  a non-pei-turbatizre Ih,eory. General relativity and t.lie SU(3) x 
S U ( 2 )  x U(1) standard model constit,ut,e a theoretical framework which, in principle, 
predicts the behaviour of any physical system in any physical circ.iimstance, ezcepl i n  
one case. This ‘hole’ is constituted by the phenomena in which the quantum properties 
of the gravitational interaction cannot be disregarded. 

This theoretical framework will perhaps (probably?) be challenged by future ex- 
periments, and, due for instance to the numher of free paramet,ers, it may be consid- 
ered aesthetically unsatisfactory and more or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAless likely to be incomplete. IIowever, 
to have a fundamental theory which is  not^ contradicted by any known pliysical fact 
is a novel situation in the hishory of modern physics. I n  such a sitiiat,ion, it is natural 
to concentrate on the open Ll~ole’. and focus on tlie single crack of tlie present theory. 

The crack is more substantial than the mere impossibility of calculating Plaick- 
scale plienomena. Indeed, quanbum field theories of the standard model on the one 
hand, and general relat,ivity on the other, provide two strikingly different pictures 
of  nature. So different that one wonders how physics students may accept sucli a 
schizophrenic description of nature i~s  a reasonable one. Clearly, there is a contra- 
diction here at the basic level in the present description of the world. Of course, to 
face contradictions at the fundamenbal level has always been a vital tool that has 
led to major advances i n  theoret,ical physics. (The contradiction between Galilean 
invariance and the hlaxwell equat,ions motivated special rehtivity; the one between 
Newtonian gravit,y and special relabivit,y motivakd general relat,ivity; t.lie one between 
the Galilean earth physics and llie Keplerian celestial physics molivatcd !,lie Newto- 
nian synthesis, and so on.) Thus. the problem of t,he quant,mii description of gravity 
is at the heart of today’s physics. 
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Let me analyse tlie problem more closely. There is an important observation to 

be made: one should dist~inguish qitant,um mechanics, which is a general mechanical 
theory, from the standard formalism of quantum field theory, which is a particular ap- 
plication of quantum mechanics to certain systems with an infinite number of degrees 
of freedom. General relativity is incompatible with the standard formalism of quantum 
field theory, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6ui zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdoes nof necessarily imply fhad general relafivify is incompatible 
with qaanium mechanics. 

Standard quantum field theory relies on the existence of a fixed causal structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
on the spacetime manifold, as well as on the Poincari invariance of such a structure 
(without a fixed causal struct,ure one cannot define the local quantum field operators 
as operators commuting at  spacelike separations). General relativity does not allow 
any non-dynamical causal structure and is not Poincark invariant. The reason for 
the failure of all the attempts to construct quantum gravity within the standard 
framework of quantum field theory appears clear, at  least a posteriori: in order to 
squeeze general relativity into !he standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAforma!kcm, uIe are forced to ar!ificia!!y 
incorporate into the theory a background Minkowski metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,”, and assume (against 
general relativity itself) that tlie physical causal structure is defined by qpU, &her 
than by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,,. (Quanbum field operators are then defined as operators that, commute 
when they arc spacelike separated, where ‘spacelike’ is defined by v$,~.) 

Thus, the problem of quantum gravity is tlie following: is it possil,le to construct 
a quantum tsheory for an iiifitiite-diinetisional systeni without assuming the existence 
of a background causal structure? Surlr a quantum field theory slioitld be radically 
different from nsual Poincar&invariant quantum field theor ist .  

In gravity there is a subtle interplay between this addition of a fictitious back- 
ground metric, and tlie use of a perturbation expansion. Since the causal structure 
is defined by the dynamical variable g,,, ibself, a perturbation expansion around the 
Minkowski solution implies that we are using tlie Minkowski fictitious metric as a back- 

~ smmnrl rn>,+ml  -..I_-. xt.rnrt,,re -”_-_” B y  defi!?i!lg the !oca! operator. in  perturbation cxpan&n, 
we commit them to respect the unperturbed (and therefore fictitious) commutation 
relations. Thus, while in usual qnant~nm field tlreories the perturbation expansion is 
a method for solving the theory, in gravity it is a method for defining tlie theory. 

A forniulat,ion which does not, use the unpliysical Minkowski metric in order to 
define the tlieory is therefore needed. Any such formulation will be denot,ed ‘non- 
perturbativc’f. Thus. the problem is to develop a quantum field theory wit,liout back- 
ground geometry, namely a field t,lieory on a dilTerentiable manifold rather t l ian on a 
metric space. In section 2.2, 1 describe a fornii~lation of quantum field theory which 
amids any reference to tlie backgrountl geometry, and which is in a position to han- 

t A few examples: the concept of partidc is intimately reiatnl to Poinend invariance: there are no 
well defined quantum particles i n  a quantum field theory on a manifold. Similarly, t,lie”c is no concept 
of vacuum in a theory with no Flamiltoninn. And so on. 
t The need for a non-perturbalive theory is reflectcrl in mothm peculiarity of thr gravitational field. 
Quantum gravitational elTccts appear only at the Planrk scale. Tlwvcfore any pvturlntion expansion 
should reach th is scale i n  order to he pltysicnllp meanin@ul. Pertttrlmticm expnnsiorts in qmnt.un, ficld 
theoiy (or string theovy) are in general divwgmt.. Since the Planck consta~t is tlic only dimensional 
quantity, the perturbation expnmion most likcly diverges at the Plank scalc. But t l i ~ n  il never 
reaches the region where the pl~ysics is. I f  the theory i s  defined \,ia I( perturhtion expulsion, the 
perturbation expansion has to be convergent. < o t h e i ~ i ~ ~  the tliwry is meaningless: a venormalizable 
peyturbation expansion (or even finite order by ordrr) is not a solution of l h e  problem. 1x1 R sense, the 
difficulty of string theory of providing suhs tmt in l  pl,ysical inlormatinn on what hnppcns ill o n  

or at IO2’ GeV is a manifestation of this prohlcm. 
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dle this diffeomorphism invariance. This formulation derives from the early work in 
canonical quantum gravity of Wheeler and DeWitt [39] and, more recently, on tlie 
work of Kuchaf [40] and especially of Isham zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[41]. I t  was introduced by Smolin and by 
the author [8], following results obtained by Jacobson and Smolin (381 and has been 
developed by Ashtekar, Smolin and the author [2,42-441. In the context ofYang-Mills 
theories an essentially analogous formulation had been (independently) introduced by 
Ganibini and Trim 1451. This formulation is based on the possibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof coding the in- 
formation about the quantum field on a space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC over which we have a certain control 
of the action of the diffeomorphism group. This space is the space of the loops over 
the manifold. 

The fact that a gauge theory can be expressed in terms of loops has been known 
for a long time. There is a persistent line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof thought, that advocates that loops are the 
natural objects in terms of which a gauge theory should be described [46,47]. Among 
others, i t  includes Polyakov, Mandelstam, Wilson, and it dates back to Faraday. At 
the same time, loops have the remarkable feature that their diffeomorphism-invariant 
properties are simple: they are captured by the way the loops are knotted and linkcd. 

The Ashtekar formulation of general relativity provides an unexpected bridge be- 
tween these two characters of the loops (that they describe gauge theories and they 
capture diffeomorphism-invariant properties): by representing gravity i n  t e r m  of a 
Yang-MiUs-like connection, tlie Ashtekar formalism furnishes an object, namely the 
Wilson loop of this connection, which captures the gravitational field and that. a t  the 
same time, has a manageable behaviour under diffeomorphisms. 

3.1.2. Dime quantization and its problems. Many aspects of quantum gravity follow 
from the fact that the canonical Hamiltonian of general relativity vanishes weakly. 
This fact is not accidental: rather, i t  is deeply rooted in the physics of the gravitational 
field. The Hamiltonian is the generator of time evolution. The physical meaning of 
the general covariance of general relativity is that space distances and time intervals 
have no meaning a priori, but can only be defined by the dynamics of t,he gravitational 
field itself. Therefore evolution in a pre-assigned universal time is iinphysical iii general 
relativity. Accordingly, there is no IIamiltonian in the theory. 

In spite of the vanishing of the Hamiltonian, the canonical formalism does provide a 
viableframework. The canonical formalism to be used is not the standard IIamiltonian 
one, but the generalization provided by Dirac’s constrained-systcms theory, or, in 
modern terms, by presymplectic dynamics. The constraints in gravity are not just 
a nuisance, like the Gauss law constraints of canonical Maxwell tlieory; rather, they 
encode the physical content of the theory. 

Accordingly, the main instrument for the qirantization is Dirac’s theory of quan- 
tization of first-class constraint syst,ems (not. to be confused with t.he Dirac theory of 
second-class constraint systems-the theory of the Dira.c brackets). The Dirac theory 
is well known: quantize the system as if there were no const~raint, pick up t.lie subspace 
‘HPh of the Nilbert space 71 defined by C,U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, where Cc are the quantum operators 
corresponding to the constraint.s, and choose a set of observahles 0, that commute 
with the constraints. Then ZPh and the b),,,operat,ors define the qiianlum theory. 

There are two problems i n  t.liis approach. The first one is the difficult,y of recogniz- 
ing how the quantum theory describes the physical time evolution; t,liis issue will be 
discussed in section 3.3.2. The second problem is that Dirac’s theory is incomplete in 
the following sense. In general, the scalar product i n  31 does not, induce a viable scalar 
product in ‘Hph because (when, a5 usually happens, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi have conbinuum spectrum) 
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Xph is in general formed by improper vectors of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,  and the scalar product of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis  not 
defined on these vectorst. In order to apply Dirac's quantization scheme to general 
relativity, we have to supplement it with a method for choosing the physical scalar 
product. 

The difficulty with the scalar product has raised a certain confusion in the litera- 
ture, including claims that tlie theory cannot be defined in a standard Hilbert space 
framework, that the theory is under-defined because we do not know how to pick tlie 
physical product, or that a theory without time cannot have a scalar product. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
straightforward way oui from this dimcuiiy is discussed in ihe next seciion. 

3.1.3. The reality condiiions determine the inner product. The linear structure of a 
vector space is well defined by itself and is independent of any eventual scalar product 
that one may define on that space. On the same linear space different scalar products 
can be defined. By using this observabion, a theory can be quantized in  twosteps. The 
first is to pick a linear space 'H, and linear operators 8, corresponding to classical 
observables 0, (with the correct commutation relations, for instance the canonical 
comniutation relations). The second step is the choice of tlie scalar product. This is 
a shift in perspective with respect to the usual procedure, in ah ic l i  one starts hom a 
Hilbert space and then chooses sel/-ndjoitrt operators 0,. 

The question is: how to  choose the scalar product? Of course, in order to get the 
correct final answer, the requirement. on t,he choice of the scalar product is that the 

(The definition of the adjoint operat.ion depends 011 the scalar product.) Thus, the 
strategy is first to work out tlie linear structure entirely, and then choose the scalar 
product that makes the observables selC-adjoint. I f  the programme is completed, tlie 
final result is clearly independent of the procedure followed. 

The advantage of this procedure is that we may solve tlie quantum Dirac constraint 
at the linear level, and only laler are we coiiccrned with the inncr product. But then it 
is clear which is the condition that determines the clioiceof the inner product i i i  7ip1,: 
the condition is that the operat.ors corresponding to the physical observables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,, must 
be Hermitian in tlie cliosen scalar product. This is a highly non-trivial requirement 
on the clioice of the scalar product. In general, i f  t,lie operat,ors 0; are 'enough', this 
requirement fises the scalar product urtipuely. Thus, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a precise criterion for 
tlie selection of the scalar product on Xph: tlie IIermiticity of the gauge invariant 0;. 

now, in iiie new variables Formriiaiion ihcre is an addiiionai issue i.0 'De addressed. 
We work with complex classical observables, namely with complex linear combinations 
of classical observables: 0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( s , p )  + r g ( ~ , p ) ,  where f and g are real observables. 
Obviously f and g must be IIermit.ian, not 0. At the linear level, we can simply 
quantize 0 in  term of a linear operator 0, bitt then at the moment of choosing the 
scalar product llie adjoint or 0 must liave suitable properties, such  that f and g be 
Hermitian. 

Specifically, the Aslitckar connection is a complex linear combination of two real 
observables: A = p t iu[e]. In order to have real observables represented by Ilerniitian 
operat.ors tlie inner product. should be such that 

Linear opeia~,ois & niusi be *i[&j0iiit iespeci io the sca;ar produci 

I, 

A! = A,, - 2iw,[6]. (3.1) 

t This is a well known problem in the quantization of any theory with a gauge invariance. In 
standard Yang-Mills theories rliere are known ways around it (for instance the introduction of ghosls). 
Moreover. there is a guiding principle that is used for fixing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscdm p~odtict: Poinrat-5 invariance. 
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Equation (3.1) is the quantum version of the reality conditions equat,ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1.41). The 
inner product should be such that equation (3.1) holds. Thus, ihe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinner product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
determined by the reality conditions [l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARI. 

Let me be more precise. The variable A is not gauge invariant, A does not commute 
with the constraints, and it is not defined on 'H,,,,. What we have to do is to compute 
the reality conditions for the gauge-invariant observables 0, that follow from the 
reality conditions for A and E: . Let these reality conditions be 

0, = fi(Oj). ( 3 4  

Then the inner product on 'HPh is dekrmined by the corresponding quantum reality 
conditions: 

Namely, the scalar product is determined by the condition 

(bi+l4) = (+Ificoj)m,. (3.4) 

Examples of this procedure for fixing the inner product are the quantizat.ion of Maxwell 
field with self-dual variables in appendix 3, and the quantization of linearized gravity 
in the next section. 

3.2. Loops 

3.2.1. Maxwell: quanlam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFumifuy lines. The idea of using loops zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the objects for 
describing a gauge theory has been concretized i n  several forms. Here a canonical 
theory is defined. I follow the work of Aslitekar and the author in [42]. 

Maxwell theory is a free-field theory and the standard quantizat.ion is st,raightfor- 
ward. For instance, one may fix the radiation gauge 8,A' = 0 and decompose the 
fields in Fourier modes. Each mode is an liarmonic oscillator for whicll creation (or 
positive frequency) and annihilalion (or negative frequency) operat,ors can be defined. 

The positivefrequency field, which I denote by +,4, is given in t,erins of the real 
Maxwell connection A, and its inoinentiim (the electric field) E" by 

(3.5) 
1 

+ ~ , ( k )  = - ( . I , ( k )  - i lk1- 'Ea(k)).  

The negativefrequency field, whicli I deno1.e here by -Ea, is 

(3.6) 
1 

E,(k) = - (&(k) + ilkI-'Ea(k)) - 
Jz 

These two fields satisfy the st,andard canonical commutation relat,ions and can be 
represented in the quant,um theory i n  terms of creations and annihilation operators 
on a Fock spa,ce. By doing so, one discovers that, 1.he Ilainiltonian is diagonal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the 
Fock basis of the n-photon stat.es. Tlit basic predict,ion of (,lie t.lieory is the existence 
of the phot,ons. 

The loop representa1,ion of Maxmcll theory is a diflerent representat.ion of the 
theory, which turns out to be equivalent to the Fock representation. 
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Consider the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ A ,  field i n  coordinate space. Consider its Wilson loop. More 
precisely, consider the (Abelian) holonomy of -i times +A,(.), and denote it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATIT]: 

T [ y ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= exp ( - i i + A )  (3.7) 

where the line integral along the loop is defined as (this is the standard line integral 
of I-forms) 

+A = j d s  i . " (s )  +A,(y(s) ) .  
V 

T[7] is the first relevant variable to be used for the quantization. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t  is of course the 
Abelian version of the gravitational T observable defined in section 1.5t. The second 
relevant variable is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-E"(k). 

The Poisson algebra of T and -E closes: 

{T [7 ] , -E0 (k ) }  = iF'[y,k] (3.9) 

and is denoted A b e l i n s  l oop  n lgebm.  Here, F " [ y , k ] ,  called t.he form factor, is defined 
as 

F"[-y,k] = j! dsya(s)eik ' . r (s) .  (3.10) 

The form factor F' [7 ,k ]  will be a very iinporhant object i n  wlmt follows. Its main 
property is that its Fourier transform is the real function (distribution) wit,li support 
on the loop itself Aa[7.z] defined above in equation (1.75). Note that the holonomy 
T can also be written as 

T(7)  = exp (-i/d31. A n [ 7 , c ] A o ( ~ ) ) .  (3.11) 

The key idea of tlie loop representat,ion is the following. Rather t,lian looking for a 
representation of the canonical creat,ion-annihilation algebra, namely a representation 
of the Poisson algebra of + A  and -E, wc look for a representation of the Poisson algebra 
of T and -E. In other words. we search for two operators ?[7] and &(k) (I drop the 
superscript - from tlie electric field operat.or) which sat,isfy the commntation relations 

(3.12) 

The idea that non-canonical algebras are bett.er suited for non-perturbative quan- 
tization has been advocated by Isham [41]. As we shall see, this change of basic algebra 
is harmless in simple theories. but has far reaching consequences in gravity. 

The loop representat,ion is based on tlie fact that there is a representation of 
tlic loop algebra (3.9) i n  terms of fiinct.ions on a loop space. A single loop is liere a 
piecewise smooth closed curve a"(s) in a fixed three-dimensional manifold. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA miiltiple 
loop is a collection of a fi11it.e niiml)er ofsingle loops. Multiple loops will also he denoted 
with Greek letters: a = a, U ... U a , .  Let, C. be t.he space of all these multiple loops. 

t The i in the definition is just a matter of convention. 

[?[?I, P(k)] = hF0[7, k]. 
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The wavefunctions that represent the unconstrained quantum states of the theory will 
be complex functions on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. They assign a complex amplitude to every multiple loop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

wavefrinction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* (a ) .  (3.13) 

On the space of these wavefunctions there is a representation of the observables T[y]  
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-E"(k) ,  defined as follows: 

(3.14) 

(3.15) 

These operators satisfy equation (3.12). They answer the quantization problem 
in the same sense in which the creation and annihilation operators on a Fock space, 
or the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL and -iha/dz operators do. Thus, we have a linear space of stat,es, and a 
basic set of operators on t,his spac.e, with the correct commutat,ion relations for the 
definition of the quantum theory. 

Notice that the wavefunction *(a) is not a wavefunction on a configuration space. 
Rather, i t  has to be thought of a5 an abstract vector in a linear space. To provide an 
analogy, consider a hydrogen atom quantum state IQ), and its comp0nent.s on the basis 
ln,l, m) which diagonalizes energy, tot.al angular momentum and one component of 
the angular momentum. Such components are *(n, I ,  m) E (n,I,mlQ). The quantities 
@(n, I ,  m) provide a representation of the physics of the hydrogen atom. Here n, m, I is 
not a classical configuration variable, and the *(TI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: m) picture is not very intuitive. 
However, the set of the *(n, I ,  m )  plus a definition of the action over them of the 
relevant operat,ors provide a complete description of the physics of t,he abom. Later I 
will discuss the physical int,erpretation of the term a that appears as argument of the 
wavefunction. 

The classical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT observables are not. independent. They are invariant. under (mono- 
tonic) reparametrizations of tlie loops and, a,s their gravitational analogues, they sat- 
isfy the following relations: 

lim T [ 4 ]  = 1 (3.16) 

?-[CY 0 I o  1-11 = T[a] (3.17) 

(see section 1.5 for the notation) Because of the Abelian character of the group, the 
spinor identit,y (1.G9) is replaced by a simpler relation: anytime a loop a has a self- 
intersection which breaks it into two loops @ and 7 ,  we have 

&I *(a) = *(CY U Y )  

&(k) *(a) = hF'[y, k] *(CY). 

r-0 

Tl.1 = T[@IT[Yl. (3.18) 

If the basic observables chosen for tlie quantization are not. indcpendent, t.he resulting 
quantum theory may be reducible ('larger' than necessary). To fix tliis. we have 
to implement these relations in the qiiandum theory. We impose t.liese relations as 
operator equations. This is equivalent t,o restricting ourselves to tlie stat,es t.liat satisfy 

(3.19) *(S U CY) = * ( 6  U p U 7 )  

* ( a u y o l o I - ' )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=*(OUY) (3.20) 

l i inQ(y2) = 1 (3.21) 
r - 0  
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and which have the same value on loops related by a reparamet,rization. Thc first 
two of these equations imply that V is completely determined by its restriction on the 
single loops. 

In order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,o solve the theory, we have to consider gauge invariance and to find 
the eigenvectors of the IIamiltonian. Gauge invariance is straightforward: since both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T and E are gauge invariant, we are in fact already working in the physical gauge 
invariant phase space. Thus. we do not have to take into accoiint gauge invariance 
any more. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI will come bark to this point later. 

The Hamiltonian can be writ,ten in terms of the basic operators of the loop repre- 
sentation. The classical IIamikonian, written in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+A and -E is 

H = d3k -E “ ( - k )  +B,(k) (3.22) 

where +B is the magnetic field of +A. We need the operat.or that corresponds to the 
classical observable +L?. Note that for a smal l  loop 7c,a,T which is centred in I, has 
area L and is oriented ill tlie plane normal to tlie a direction 

T[7,,,,,] = 1 + ie+Ba(c) + o(2) (3.23) 

J 

so that 

(3.24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
c-0 f 
iim -(r[-,,,,,,] - 1 )  = i+B,(z). 

Accordingly, the quantum operator B corresponding to l,he classical ohscrvable +O 
(again I drop the superscript + in the operator) is defined by 

(3.25) 

In the last h e .  the notation 6/67; has been introduced i n  order to empliasiac tha t  the 
operator is a derivative operator. N0t.e. however, that i t  is not, a fiinctional derivative. 

In terms of this operat.or t,hc I1aniilf.oiiiaii is 

H = d3kE”(-k) B,(k) (3.2G) J 
and the time-independent Schrodiiiger equation is 

It is a straightforward calculation to check that this equation is satisfied by the states 

(3.28) 
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I t  is easy to recognize that t.liese states are the 11.-photon states. Indeed, the corre- 
sponding energy eigenvalues are 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlkl, Ikl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ / P I , .  . .. IIere, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, U are the polarizations 
vectors. 

These Fock states can be writt,en i n  coordinate space as follows. Consider a one- 
photon state with one-particle wavefunction f,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 )  (z). Then from equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.28) and 

the definition of tlie form factor i t  follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* p ( a )  = j /(1). (3.29) 

Thus, the loop fmc l i ona l  representing a one-parlicle stale i s  the line inlegral along the 
loop o f t h e  one-padic le wauefunction f .  Note that the line integral depends only on the 
transverse component of fa(.). This is how tlie loop representation naturally enforces 
gauge invariance. A two-photon state with two-particle wavefunction j$)(z, y) is 
given by the loop functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OT 

(3.30) 

where one line integral is on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and one on y. 
Some comments follow. 
(i) Gauge invariance. The transversality of the Maxwell field follows from the 

follow~ing key property of the forni factors: 

k,F"[cu,k] = 0 (3.31) 

which in turn follows immediately from the definition. Because of this property, there 
are only two independent photons for every momentum, as required by gauge invari- 
ance. The main advantage of the entire formalism is that i t  allows us to work on the 
space of transverse A fields without breaking manifest, L0rent.z covariance. 

(ii) What we have done is simply to give a different representation of the Fock 
space. This is a different representation in the same sense that the momentum repre- 
sentation and the coordinate representation of a particle are two equivalent represen- 
tations. We may look at the clioice of t,liis representation as a t  the choice of a basis 
la), in tlie Hilbert space of the theory: 

*(a) = (al@). (3.32) 

(iii) Since we have the explicit form of all the Fock states, me know the inner 
product. I refer to [42] for a detailed Jisciission of t,liis point, but I give here tlie basic 
expression for the scalar product i n  loop space. First, it inay be sIio\vn [43] that every 
loop fiinctional $ in tlie physica,l sdat,e space det,erniiries a (polynomial) functional 4 
over the space of t,lie (transverse) fitnrt,ions of k ,  F " ( k ) ,  via 

*(a) = 4[.""[k,cu]]. (3.33) 

Using this, the scalar prodirct j.5 defined bq 
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This expression reproduces the standard inner product for Maxwell theory. For more 
details see [42] and [2]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( iv)  Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.28) provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe matrix element,s of the operator (aJplfn, ,,,,p,,f,,) 
tliat defines tlie change of basis from the Fock representation to the loop represen- 
tation. Besides tlie Fock, or particle, representation, there is another well known 
representation of a free field. This is t,lie functional Bargmann representation [48], 
in which the quantum states are represented by holomorpliic funct,ionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘#[A] of the 
(positive-frequency) Maxwell connection. and the Fock-basis states are represented by 
power functionals. How are the Bargmann and the loop representation related? The 
answer can be worked out completely. Indeed. one can show that tlie relation is given 
by tlie following functional integral transform: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

*(a) = /dp[A]exp (ii A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘#[A].  (3 .35 )  

Tlie measure in the integral is the well defined free-field measure (Gaussian), and one 
can demonstrate [42] that the integral exists and converges for all the physical states. 
It is not difficult to check t,liat the Bargmann n-photon states are mapped in the 
states (3.28); this is just an exercise i n  Gaussian functional integrat.ion. The integral 
transform (3 .35 )  is a unitary oneto-one mapping from the Bargmann representation to 
the loop representation. It is an infinitedimensional analogue of the Fourier transform 
that maps the coordinate representation into the momentum representation. 

The loop representation can be introduced by first. constructiiig the Bargmann 
representation and then defining the loop t.ransforin (3.35). For a discussion of this 
approach, see the book [2]. 

(v) The main motivation for tlie loop representalion. presented at  the beginning of 
this section, was the need for a quantiim theory defiiied without any reference to the 
background metric. In this section, this goal does not seem to have been achieved. be- 
cause the separation between positive frequency and negative frequency field relies on 
the existence of tlie background metric. However, the entire formalism can be repro- 
duced starting from the self-dual connection, rather than from the positive-frequeiicy 
connection. (The split between self-dual and antiself-dual connection is metric inde- 
pendent.) The idea of replacing positive-negative frequency with self-duality in the 
quantization was introduced and discussed by Aslit.ekar [40]. The loop quantization 
of the Maxwell field in terms of the self-dual pokntial is described i n  appendix 3. 

(vi) Let me discuss the physical interpretation of the loop states Io). As it is clear 
from its definition (equation (3.15)), the positive-frequency electric-field operator is 
diagonal in tlie loop represent.ation. Since this is the anniliilation operat.or, it follows 
that the loop states Io) are eigenstates of this operator, namely they are coherent 
states. The corresponding classical configurat,ion is given by their eigenvalue. The 
eigenvalue is the form factor, wliicli in coordinate space is real, and is given by the 
distribution A”[&, z] (eqiiation ( l . i . 5 ) )  witli support on the loop it,self. 

Thus, the state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla) is the coherent state corresponding to the classical field con- 
figuration in which the magiietic field is zero, and there is a (distributional) electric 
field concentrated along tlie loop o and proport,ional to tlie tangent of the loop. 

(vii) Note that a gauge has not been fixed, but t,lie formalism is gauge invaria,nt. 
Because of gauge invariance. the elect,ric field has t,o he divergenceless. The simplest 
excitat.ion of a di\,ergcnceless vector field caiiiiot. be a point nxcilat~ion but, has t.o 
‘continue’ and (in ahsence of charges) Iias t.o he loop-like. Thus. loops are tlie simplest 
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excitations of a divergenceless vector field, namely the loops are the simplest gauge 
invariant ezcitat ions of the eleciric field. In this sense, the loop representation is a 
natural representation of a gauge theory. Moreover, gauge theories originated from 
Faraday's idea of description of electric and magnetic force in terms of loops that fill 
the space: the loops of ihe loop =presentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAape precisely the quanium version zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
Faraday's 'force lines', which hisforically gave birth to gauge theories. 

(viii) In conclusion, the loop representation provides a consistent and complete 
quantum theory for the Maxwell theory, which is equivalent to the Fock representation. 

3.2.2. Yung-Mills. In order to generalize the loop representation to non-Abelian 
theories, the problem is that the electric field is no longer gauge invariant. The 
solution is provided by the Ta observables (or the T[R] smeared ribbon observables) 
defined in section 1.5. 

Consider a Yang-Mills theory, where Aa(z) is the Yang-Mills potential, which 
takes values in the adjoint representat.ion of a Lie algebra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi7, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE"(z)  is the electric 
field. We pick for concreteness the group SU(2) ,  which is the one relevant for gravity. 
We consider the observables T[a] and T[R] defined in section 1.5, and their Poisson 
algebra, which is the non-Abelian loop algebra introduced in section 1.5 (equation 
(1.40)). 

We quantize the theory by considering again the space of loop functionals !€'(a), 
and the following two quantum operators: 

m ' @ ( O )  = W O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU Y) 

?[R]V(a) = h . x c i  (Q(a#,R) - Q(CY#~R-')) 

(3.36) 

(3.3i) 

the notation is described in section 1.5.1. Once again, t.lie commutator algebra of 
these operators reproduces -ih times the corresponding classical Poisson algebrat. 

i 

The unsmeared form of the operator T"[y](s) is 

ifi 
* [ ~ ] ( S ) * ( O )  = - ~ A ' [ ~ , Y ( s ) ]  (Q(%#iy) - '@(.#i~- ')).  (3.38) 

2 ,  

Note that t.he operator i '"[y](s) acts on a loop a only i f o  and y int.ersect at  the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-y(s). The action consists in insert,ing t,lie loop y in a, starting from t,he intersection. 
The point y(s) on the loop 7 is denoted the hand of the operator T"[y](s), and the 
action of the operator is denoted as the grasping of the hand over the loop a. 

I t  is easy to define also loop operat,ors corresponding to the loop operators with 
more than one index defined in section 1.5. The acbion of these operators is given by 
the sum of the grasping of each of their hands [8]. 

As in the Maxwell case, the loop firnctionals milst. satisfy the conditions (3.16) and 
(3.17) for irreducibility, but now the group is non-Abelian aiid t.he simple condition 
(3.18) is replaced by the condit,ion 

(3.39) V(O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu p )  = @(n#p) + V(ru#P- ' )  

t At this point. the reason lor choosing tlie se t  of piecewise smooth closed loops should be clear. 
On everywhere-di~~erenti~bl~ (or smootli) loops the non- Abelian algebra would not close. There is a 
smaller set of loops which mag be chosen (and maybe must IK chosen in order 1.0 lmve an irreducible 
represenlalion). These are all the loops obtained from smootli loops by rerouting at the intersections. 
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which implements tlie spinor identity (equation (1.69)) satisfied by the classical SU(2) 
holonomies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in the Abelian case, i t  is not difficult to show that a loop functional 
that satisfies all these properties is entirely determined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby its restriction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the single 
loops. 

The relation between the loop representation and a functional Sclirodinger repre- 
sentation is given by a non-Abelian analogue of the Abelian loop transform (3.35): 

(3.40) 

Unlike its Abelian version, this loop transform is far from being well defined because 
we do not have at our disposal a well defined gauge invariant measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp [ A ] t .  In spite 
of these problems, tlie loop transform is a very useful device. It can be used as an 
heuristic trick. Indeed, the form of most of the loop operators has not been pulled out 
of the air, but it has been suggested by Formal manipuiations on tile ioop transform 
(see [50]). Moreover, shortly after the definition of this loop transform, \$%ten (with 
different motivations) has been able to construct a definition of t.lie integral good 
enough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,o actually cotnpiite tlie integral in certain cases. I will come back to this 
later. 

Non-Abelian Yang-Mills theories in this non-perturbat,ive canonical loop formal- 
ism have ..... not, been ~~.~~ crtetlsive!y ...~ ..... st,udied (see, !!oweveri !45] and [51]), Tlie main dificulty 
that one may expect is related to Lhe renormalization of tlie IIamilt,onian operator. 
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABz term in the Hamiltonian may be defined by using a limiting procedure anal@ 
gous to the one used in the Abelian case. In this way there is a built-in regularization 
of the operator. One expects standard ult,raviolet divergences in the limit. However, 
there is a surprising result in pert.urbativc quant.um field theory wliich may be re- 
lated to tlie formalism I am describing. In spite of t.he fact that I.he T obscrvables 
are complicated non-polynomial operators. integrated i n  only one dimension, their ex- 
pectation value is multiplicatively renormalizable fo r  all orders i n  perturbation theory 
[52]. This result raised a certain interest. several years ago, but. to my knowledge, this 
direction of research has not been pursued. 

3.2.3. Lattice Yang-.llills. The loop quant,um theory defined by the previous equations 
has a naturai version on the iattice. The iattice version of the ioop representation oE 
Yang-Mills theories has been studied i n  detail. The lattice theory has a finite number 
of degrees of freedom, and its definition is completely under control. Itideed. tlie loop 
transform (3.40) is well defined on tlie lattice, wliere tlie gauge iiivariant measure is 
known. The transform defines a well defined change of basis i n  the 1Iilbert space. 
A complete construction of the t.lieory along these lines is given by Smolin and the 
..?!!or j:! K?l 

The new basis that defines the loop represeiit.atioii is the (overcomplete) basis 
formed by all  t,he (spacelike) \ViIson-loop states, which were int.rodiiced hy \\‘ilson a,nd 
Suskind in tlie first invesl~igat,ions of Ilnmiltonian latt,ice gauge theories [ 4 i ] .  There- 
fore, the loop represelltation is the continuum limit of tlie Wilson-loops Ilainiltoiiian 
formalism. 

t This same funclional integral rransfom wil l  relate  lie loop repreentat ion quentum general 
relativity with the connection wpwsentalion: in this C R . ~  the inlegal is even less defined than in the 
Yang-Mills case, because r e  need to asstime the meamre to  be also dilfeomorphism invariant. 

,““I’ 



Review art icle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1645 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I t  has been suggested that this loop ladtice formulation may provide a numerical 

calculation method as an alternative to standard Monte Carlo methods. This sugges- 
tion has been tested by Briigmann in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[54], where a (2 + I)-dimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS U ( 2 )  theory 
has been numerically analysed using the loop representation, with results in very good 
agreement with the ones obtained in other ways. 

3.2.4. Gravity in 2+ 1 dimensions. The application of the loop quantization technique 
to general relativity in 2 + 1 dimensions is a simple illustration of the natural way in  
which the loop representation deals wit,h diffeoniorphism invariance. The quantum 
theory was first constructed by Witten [28], using an  Ashtekar-like classical formula- 
tion similar to the one described in section 2.2.2, and geometrical techniques. Wit- 
ten's results were obtained again, using the loop representation, by Ashtekar, Husain, 
Samuel, Smolin and the author in [55]. I do not not discuss here the entire formulation 
of the t,heory, but only the key conceptual point which will be used again i n  the full 
theory. 

The quantum representation of the loop observables (2.2.2) is given by the opera- 
tors 

(3.42) 

where now the multiple loops live in a two-dimensional space with non-trivial topology, 
and the 'ribbons' R, I recall, are (in two dimensions) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjust  standard loopst. 

The only remaining constraint is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD' = 0 (see (2.4)) or Fjb = 0. I n  terms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T observables, this constraint is equivalent t.o tlie requirement that. the holonomy of 
any two loops that can be smoothly deformed one int,o tlie ot,lier is t,he same, namely 

T[(U] - TI,$ ' CY] = 0 (3.43) 

for any dilTeomorpliism ,$ in the connected component of the identity. The quantum 
constraint is therefore 

(3.44) 

The solution is given by any state for which 

@(a) = @(,$ ' (U). (3.45) 

- _. 
Does tiis mean that the stat,e is constant everywhere on ioop space.! 'l'he answer is 
no, because two loops that wrap around tlie manifold i n  different ways, namely which 
are in two distinct liomotopy classes of the manifold cannot be smootlily deformed 
one into the other. Thus, tlie physical sjbatrs have the form 

@(a)  = @(h(o ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.46) 

where h is the homotopy class of the (miiltiple) loop n 

t In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 5 ] ,  therepresentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  inlrodured d i r e d y  in termsofits rest,tic~ion on the single loops sector. 
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The conclusion is that tlie physical quantum states oftlie theory can be represented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

as functions ' $ ( / I )  on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of the liomotopy classes h of the two-dimensional manifold. 
This is indeed the same conclusion reached by the previous investigation of this theory. 

Equivalently, we may introduce a state Ih) that has value one for the loops in the 
homotopy class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,  and otherwise vanishes; and we may represent a physical state of 
the theory as a linear combination of homotopy classes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(3.47) 

3.2.5. Olher works on t he  loop represeninlion.. The loop representation was first 
constructed by Gambini and Trias [45]. The form of the loop representat,ion developed 
by Gainbini and Trias has certain inleresting differences from the form described here. 
These authors consider the group structure that is given on the space of all the loops 
i n  a manifold (witli a common base point) by the coniposition operation (at the base 
point). This group is denoted as the group of loops. The inverse is tile loop with 
reversed orientation. They assume the existence of a norm on this loop space, and 
they consider a loop derivative defined i n  terms of this norm. The loop derivative is 
essentially the generator of t,he group of loops, and can be essentially ident.ified with 
tlie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,(s) operator defined above. This interesting construction could be very useful 
in gravity. 

Other theories have been studied i n  tlie loop representation. Ilusnin and Smolin 
have considered tlie quantization of general relativily wit.11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo Killing fields [18]. 
Cherii-Simon theories have been st,udied by Rliao Li [5G]. Preliminary investigation 
of the loop representation for continuum Yang-Mills theories has been considered 
by Loll [57l and the author [51]. Loll [57] lias discovered a way to gct rid of tlie 
redundancy in the loop observables due t.o the spinor identily (3.39). She defines 
certain linear combinations of tlie T observables, denoted L observables. which solve 
the spinor identity. She studies tlie quantization of tlie L observahles algebra, and 
finds an interesting generalization oft lie loop representation. 

Rayner [58] has studied the possibilit,y of a rigorous mathematical construction of 
the loop representation. He has iiitrodiiced a natural scalar product i i i  loop space and 
studied certain natural self-adjoint operal.ors. 

htanojlovic [59] has noted that the loop observables are invariant iiiider change 
of sign of both E and A (and therefore are iiot good global observables i n  phase 
space) and has developed an alternative version of the loop observables which cure 
the problem. He has applied t,liis version of the loop representation to 2t I gravity, by 
making use of Ishani group t,lieorctical quantization, and considered tlie application 
to the fu l l  theory. 

Nayak [GO] has studied l l i e  problem of lime i n  2 + 1 gravity using the loop rep- 
resentat,ion, and lias considered the possihilit,y writ,ing the action d i r d y  i n  terms of 
loop observables. This is a very iiitercst,ing open problem. 

The loop representat,ion Iia3 been rederivcd from a 'Iiighest rvciglit' \"ma-module 
t,ype represenkdion of the loop-algebra by Aldaya and Navarro-Salas [Gl]. Using these 
tecliniques. t.liese authors also define a iiiodified representation of tlie loop algebra, 
and, i n  t.lie context of qiiantiim gravity, study the problem of tlie solution of the 
quantum constraints. 

Works on the loop rcpresentat,ioii specifically devoted to qi~antiim gravity are re- 
ferred to in the next section. 
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3.3. Quantum theory withouf background metric 

Before facing the technical difficulties of quantum general relativity, I discuss here 
some conceptual issues which raised a certain confusion in the literature. The subject 
of this section is controversial. I do not intend to describe the different solutions 
proposed; rather, I present an overall point of view, which may constitute a possible 
(but not the only possible) conceptual ground for the technical construction of the 
next section. The point of view presented here is not shared by all the people working 
on non-perturbative quantum gravity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3.1. Obserwables. The physical interpretation of a classical dynamical theory with 
a gauge invariance requires that only observables which are gauge-invariant (have 
weakly vanishing Poisson brackets with all the constraints) have physical meaning. 
In the quantum theory, this requirement becomes stringent, Cor an operator is well 
defined on the space of the physical states if and only if it commutes (weakly) with 
the quantum constraints. 

I t  has been suggested that this rule should be relaxed for general relativity, on 
the grounds that measurements require a physical reference frame, and the gauge of 
general relativity just reflects the freedom in choosing this reference frame. While i t  is 
certainly possible to have in the formalism objects that are not gauge invariant, still 
all the quantities that can be pred ided by the theory-and therefore the quantities 
to which physical quantum operators can be associated-must be gauge invariant 
quantities. These quantities are the physical observables, in the sense of Dirac. 

This comment is relevant for the interpretation of the quantum theory. One should 
be careful, indeed, to give physical meaning only to gauge-invariant properties of the 
wavefunction. For instance, to say that ( in  the metric represent,ation) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIq[g]I? (where g 
is a ‘3-geometry’, namely an equivalent class of 3-metrics under three-dimensional dif- 
feomorphisms) represents the probability th.nt fhe geonartry be g7 is certainly incorrect, 
because this statement is not invariant under the transformations generated by the 
scalar constraint, namely i t  is not invariant under four-dimensional dilfeomorphisms. 
For a detained analysis of the problem of the observability in quant,um gravity, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[621. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3.2. Time. A subproblem of the problem of defining the observables is the issue of 
time. To deal with the problem of t.ime iii gravit,y forces us to slightly ext.end standard 
quantum mechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[63]. 

According to the discussion in t.he previous section, physical time evolotioii in grav- 
itational physics should be expressed in a gauge-invariant fashion. It may be shown 
that i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis indeed possible to write gauge-invariaiit. observables that express evolution 
[G2]. This evolution, however, need not be a standard Ilamiltonian evolution In 
other words, the kind of ‘evolirtion’ described by a constrained system with vanishing 
Hamiltonian may be a genuine extension of the evolution generated by a IIamiltonian, 
and, in general, cannot be reduced to it. Physically t.liis reflects the absence of the 
‘absolute clock’ postulates in Newtonian (or special relativist,ic) dynamics [G4]. 

As far as the classical theory is concerned, we have enough pliysical intuition 
about soli~tions of Einstein equat,ions t.0 be content with t,he theory, even if i t  has 
a vanishing Hamiltonian. In the quant,um theory, on the contrary, we are used to 
having at  onr disposal a Schrodinger equat,ion (namely a I.lamilt,onian). But the 
Schrodinger equation and the Hamiltonian operator are equivalent to the assumption 
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of the existence of the external absolute clock, whicli is in contradiction with the 
physics of the gravit,ational field. 

I t  has been suggested that, bccause of this problem, general relativily and the 
Hilbert space formulation of quantum mechanics are intrinsically contradictory. This, 
I believe, is not necessarily the case. The constraint formulation of classical canonical 
theory is a genuine extension of Hamiltonian canonical mechanics [65], because there 
are systems that admit a formulation i n  terms of constraint,s, but not in terms of a 
Hamiltonian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[G6]. More precisely. there is an extension of symplectic mechanics- 
presymplectic mechanics-which has t.he advantage of treating time (clocks) on the 
same ground as other variables [G3]. In a completely analogous fashion, the quantum 
theory of a constrained system is a genuine extension of the qiiant,um theory of a 
Hamiltonian system. The corresponding quantum mechanics is a standard quantum 
mechanics, where, however, the axiom on the existence of the llamiltonian is dropped 
and, in its place, the Hamiltonian constraints define evolution in implicit form. 

The standard interpretat,ion oi quaninni mecha,nics can be appiied i n  tlie general 
case (finite norin sh ies,  self-adjoint operators which commute with t,he constraints, 
probability, projection of t.lie wave function...), even in the absence of the Hamiltonian 
operator. For a detailed discussion, sec [G3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEE]. 

In conclusion, the physics of general relativity forces us to extend quantum me- 
chanics by dropping the postulate of the existence of the Ilaniiltonian. Tlic rest of 
sbandard qnantun? niechanics is s!.i!! completely viable [G3]. Evolution sliould be cx- 
pressed by suitable gauge-invariant operabors which represent evolution in spite of the 
absence of an absolute ext.erna1 clock. 

3.4. C o d u s i o n s  

The results described in this section can be summarized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm follows. 
( i)  Every theory written in terms of a connection admits a representation in terms 

of functionals on a space of loops. The representation is defined by the loop operators 
(3.36) and (3.37). 

(ii) These loops represent the gauge invariant quantum excitations of Llie electric 
field of the theory (the Faraday lines). 

( i i i )  In the cases in which we have a coniplete control of the theory. like the non- 
Abelian lattice theory and (lie Abelian continuum theory, it is possible to rigorously 

( iv)  For non-Abeliaii coiinectioiis. the action of h e  basic observables is rclat,ed l o  
rerouting of t h  loops at  the intersect,ions. 

(v)  In  2 t 1 gravity, dilTeomorphism invariance reduces the functionals of loops to 
functioiials of Iioniotopy classes. i n  agreeiiient wit~l i  otlier independent treatments of 
the theory. 

(v i )  The difficulty i n  const,ructiiig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa nieaiiingful quantum 1,Iieory of gravity is  the 
difficulty of constructing a quaiit uiii field t,tieory-on a manifo~d wit~iout a fixed metric 
structure. The loop representat.ion does not require a background causal structure to 
be defined. and deals natiirally with dilfeoniorpliisin invariance. 

Armed with all t.liis. we facc qiiantiim general relarivity. 

~"-..-+I... ---- 1..+~,.~..:..._1..~.... h-4 ...- __ $ 1 . -  I ---- _..<I .-.. 1- -..,I ,,&-..,LA F -.-... l . ~ b : a , . -  
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4. Non-pe r tu rba t i ve  quant i r in gciicral relat iv i ty 

In this section, I describe tlie present. st.age of the coii~triictioii of a non-pcrturbative 
qoantum gravity theory. ~ o l l o ~ ~ i n g  the discussion at tlie beginning of section 3, the 



Review zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAariicle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1649 

hypothesis here is the following. That  the difficulties of pertur6atiue quantum general 
relativity do not follow from any intrinsic incompatibility between general relativity 
and quantum mechanics; rather, they reflect the inadequacy of the standard Poincar6- 
invariant perturbative formulation of quantum-field-theory for a generally covariant 
theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas general relativity. 

The project of a non-perturbative canonical quantization of general relativity dates 
back to the work of Wheeler and DeWitt [39] in the sixties. In their approach, the 
quantum dynamics of general relativity is encoded in the (Dirac) quantum version 
of the ADM constraints. These are the quanhm constraint that implement three- 
dimensional diffeomorphism invariance and tlie quantum Hamiltonian constraint, also 
denoted as the Wheeler-DeWitt equation. These constraints are expressed as func- 
tional equations for the quantum states in a Schrodinger-like representation of the 
quantum theory. In spite of intense efTorts in this direction, tlie complexity of these 
eqiiations ha5 long prevented substant,ial developments. 

Ashtekar’s formulation of general relat.ivity in terms of the phase space of a Yang- 
hlills theory allows us zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,o apply to quantum gravity the non-perturbative loop quan- 
tization technique developed in the previous section. As anticipated, the loop rep- 
resentation is in a position of handling ditkomorphism invariance. Indeed, tlie first 
result of the loop formulation is to provide tlie complete solution of the quantum 
diffeomorphism constraint. This is described in section 4.1.1. 

The surprising result of the loop representation, however, is that the Hamiltonian 
constraint (namely the loop-analogue of the Wheeler-DeWitt equation) can also now 
be solved. More precisely a,n infinite-dimensional class of solutions of the entire set of 
constraints are known. These solutions are represented in terms of knots classes; they 
are described in section 4.1.2. 

In order to understand t,lie physical cont,ent of t,hese knot states, i t  is necessary 
to relate them wit,li the classical field (tlie spacetime geomet,ry) and wit.11 the concept 
of gravitons. Work is in progress in this direction; its present state is described in 
section 4.2. The main result is a relation established between blie graviton Fock- 
space of the linearized quantum theory and the knot states. At least in principle, 
i t  is possible to express the quantum vacuum state corresponding to flat RIinkowski 
spacetime (and any n-graviton st.ate) i n  terms of a linear combination of the knot 
states. In this way a physical interpretation of the exact knot states is established. 

In the process of establishing this relation, certain surprising indications of a dis- 
crete structure of spack around the Planck scale appear. These will be described in 
section 4.2.5. Finally, i n  section 4.3.2, I summarize the results obtained in the loop- 
representation of general relativity, discuss tlie open problems and t,he overall picture 
of quantum gravity wliicli is emerging. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1. Loop qiianfzini gravity 

We choose as basic variables. to which we want, to associate the quantum operators, 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT observables (1.61) and (1,77). We associate to t.11ese observables t,he operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
? defined in equations (3.35) and (3.37), which are defined on the space of loop 
functionals @(a). The task is to solve t . 1 ~  qiiant,iim constraints eqiiat,ions. 

The internal gauge constraint, is solved by using t.lie gmge-invariant loop variables, 
and we do not, have to worry about it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1.1. Diffeotr~orphism consfraisfs: I l ia knof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsfnfes.  The diffeomorpliisni consbraint is 
written in terms of loop variables i n  ( I  .G5) .  The quantum diffeomorphism constraint 
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C ( N )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis obtained by substituting the classical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT variable with the quantum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT oper- 
ators. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA straightforward calculation (see for instance [G7]), shows that the operator 
that one obtains is the generator of diffeomorphisms: 

d 
dt 

C(N)V(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--u($Jt ' a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.1) 

where $J2 is the one-parameter family of diffeomorphisms generated by the vector ficld 

the ADM vector constraint is the generator of diffeomorphism invariance. 

requirement of diffeomorpliism invariance on the loop functional 

-.  N . This - ... " ia .- t.he lnnn . - - ~  rrnrewntatinn ._r versinn nf -. t.he -..- atanrlmrl reanlt (dce to Iiiggs) that 

In exponentiated form, the first constraint equation is therefore equivalent to the 

*(a) =-U(@, a). (4.2) 

Ih is equation can be exactiy soived in ciosed iorm. 'This is because the orbits oi 
the ditkomorphism group in the spacc of the loops are well known: they are the 
knot classes. A knot, in fact, can be defined as an equivalence class of loops under 
diffeomorpliisms: two loops can be mapped one into the other by a diffeomorphism 
(in the connected component of the identity) if and only if they are knotted in the 
same way. Thus, the general solution of the first, quantum constraint is 

C.. 

*(a) = *'(li(aj) (4.3) 

where I< is the knot class of the loop at. Equivalently, as we did in 2 + 1 dimensions, 
we may introduce states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQt i (o )  or, d lo Dirac, simply / I<), picked on llie knot class 
IC 

, , __, I 1 if a is in the knot class Ii' 
9K(aj E (qn) = (4.4j 1 o otlierwise 

and represent the general diffeoinorpliisin-invariant state in quantum gravity as 

(4.5) 

A technical point. nceds to he emphasized here. In order to represent tlie loop alge- 
bra, loops with intersections and corners (poinbs where the loop is non-diiTercntiable) 
are also required (otherwise the algebra does not close); therefore, tlie knot classes 
A' miist be defined as t,lie equivaleiice classes under diffeomorphisms of loops which 
may have also intersections and corners. These are denokd g e n e r a k e d  ktrot classes, 
to distinguish them from the standard knot classes studied i n  knot theory (see [OS]) 
which arc the knot classes formed by the loops wi th  no intersections and corners. I de- 
note the loops with no intersections and no corners as regulnr loopb, and t,lie standard 
knot classes of knot theory as mgdnr h i o f  rlasscs. What was shown above is that a 
diffcomorphism-invariaiit quantllm state of the gravitational field can be represented 
as a linear combination of generalized knotdass states. 

t If we ollnsiaer the s ts t=  as ~~z.nc!ionp !!!u!!iloop+: ti!en yp 8!lnrdd c.nsir!er !ink c!ss5 rati!er !.ha!? 
knot classes. A link cless is  an eqitivalence class of multiple loops under diITeomorphisms. I l omvn . ,  as 
dressed above (after equation (3.30)). the va111c of the wavefunction on multiple loops (and tllerrfore 
on links) is determined by its YBIW on the single loops (and tlierdnre on knots). 
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This is the first basic result of t,he loop representation for quantum general rela- 

Some comments follow. 
(i) This result is based on two physical ideas. The first is that loops are the 

natural objects for a Yang-Mills theory. The second is diffeomorphism invariaiice. 
As was already observed, the Ashtekar formalism provides the bridge, by expressing 
general relativity as a gauge theory. The physical excitations of the gravitational field 
ca11 ue represericeu uy ivops anu,  uecausc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 uiiiwmorpriism iitvariaiicr, mese loops are 
only distinguished by the way they are entangled. Namely, the physical states of the 
quantum gravitational field may be described in terms of knots. From this perspective 
the result is quite natural. 

(ii) In the metric representation, too, the vector constraint requires the state func- 
tional P[g] to be diffeomorphism invariant (here g is the three-dimensional metric). 
As sometimes stated, PJl[s] must be function of the '3-geometry' alone, namely it must 
have the same value for any two g related by an (active) diffeomorphism. While the 
physical meaning of this requirement is transparent, the explicit solution of the con- 
straint is unknown because very little is known about the '3-geometries', namely about 
the orbits of the diffeomorphism group on the space of the metrics. 

(iii) An example: consider the connection representation of quantum gravity [1,2], 
in which states are functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'€'[A] of the connect,ion. As discussed in section 3.2.2, 
the loop representation is related zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,o the coiinect,ion representat.ion by the formal inte- 
gral transform (3.40). 

If we include the cosmological constant X i n  the theory, there is one known solution 
to all t.he constraint. equations i n  the connection representation. This is the exponent 
of the Chern-Simons integral of A$ 

tivity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
..-L~ .._...._ >.,L..,..--.-> L -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- r i :P . -~ -  ..._ L:-...!-.-~~: ..... I L . . . I ~ -  _... ~ 

This state is gauge invariant and diffeomorphism invariant by inspection, and i t  is easy 
to check that it satisfies the IIaniiltonian constraint (this was pointed out by Kodama 
[691). 

The state P(CS)[A] should be represented in the loop representation by 

P(")(Cu) = /dp[A] Tr'P exp (4.7) 

In spite of the difficulty of defining this functional integral, the integral has been 
calculated. The calculation is a, celebrated calculation performed by Witt,en in 1281. 
The result is 

Y ( ~ ~ , ( C ~ )  = .JA(I<(a)) (4.8) 

where J,( IC) is the Jones polynonlial [(is] in the variable A.  The Jones polynomial is a 
well known and well studied function on the space of the knot classes. Thus, there is a 
state ihai can be written i n  tile two representaiions, and wiiicii is an exact soiution of 
the Hamiltonian constraint in the presence of a cosmological constant. Note, however, 
that the Witten calculation does not specify entirely the loop state 'Z"csJ, because i n  
the calculat.ion o( is assumed t,o be regnlar. 
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(iv) A surprising feature of the general solution of the diffeomorphism constraint is 

that  it is given in terms of a discrete basis. A discrete basis is unusual in field theory, 
but there is nothing particularly strange about it. The Fock space of any quantum 
field theory is a separable Hilbert space.and therefore it is easy to constrtict a discrete 
basis in it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1.2. Quanium dynamics: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf k e  HamiNon,inn constraint. There is a surprising number 
of versions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the loop-representation Hamiltonian constraint that appeared in the 
literature. 

( i )  In the original paper on the loop representation [8], the quantum Aamiltonian 
constraint w a s  constructed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi n  terms of tlie limiting procedure defined in section 1.5. 

( i i )  In the same paper. it w a s  suggested that there should be a simple operator 
in loop space with a direct geometrical meaning, denoted the shift-operator, which 
represents the Hamiltonian constraint. An incomplete definition of this operator was 
suggested and some preliminary calculations that indicated that the operator agreed 
with the one defined by the limiting procedure were given. 

(iii) Later. Blencowe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[67] suggested a n  alternative definition in terms of loop deriva- 
tives, which lias the advantage of a larger domain of definition i i i  loop space. 

(iv) Gambini and Trias 1451 in turn suggested a definition i n  terms of the generator 
of the 'loop group' defined in their formalism. 

( v )  Briigmann and Pull in [70] suggested that the IiiniLing procedure that defines 
the constraint in the original paper is exactly equivalent to tlie Gambini and Trias 
operator, and this, in turn, to the shift operator. 

The reasons for this diversityt is part,ially related to the fact that there are many 
ways of defining a quantum operator with a prescribed classical limit. A complete 
demonstration of the equivalence of these different approaches, is still lacking. In this 
review, I do not describe the details of the calculations, I refer for these to tlie quoted 
papers. I just present the main result on tlie solution of the Hamiltonian constraint 
and a sketch of the proof. The result is the following. 

Theorem. If a loop sthte @(o) has support only on the regtdar loops (namcly if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q ( a )  = 0 for every loop n which  lias coriiers or int.ersections), tlren @(a) satisfies tlie 
quantum Aamiltoniaii constraint. 

This is the second iiiain result. of the loop representatioii. 
The classical constraint is Tr[Pobl?"kbJ. F,,,J>eing a curvature, is aiitisymiiietric 

in the indices ab. In t h e  quant~um theory, the E" corresponds to t,lie 'hand' i n  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e* operat.ors. These hands act on the argument a of the loop functional Q ( o )  by 
breaking and rejoining (see equation (3.38) and the following comments). Any time 
they act, they produce a multiplicat~ive coefficient proport,ional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl o  c i a  in front of the 
result. The two hands corresponding to I? and Eb produce two miiltiplicative factors 
&" and r i b .  Since the ab indices must be aiitisymmetrieed. I,lirre is a term ci["irbl in 
the result of tlie action of the 1Iamilt.onian constraint. The loop n must. have, in at 
least one point, two differen(. tangent,s c i  and &', in order not to vanish. This 
may happen, Cor instance, if the loop intersects itself. But if the loop is regular there 
is no point. of this kind. and therefore the Hamiltouian constraint, acting on lliat loop, 

t To complicate the malter. Blencou,c poinlnl mil, n technical mistake i n  thr paper [SI, wliich WAS 

corrected by sliglilly changing the dcfinilirm of the quantum comlmint [ i l l  (the find Pesult is not 
aRecled by the mistake or by the change). 
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gives zerot. 

Having a set of solutions of the Hamiltonian constraint and the general solution 
of the diffeomorphism constraint, we may look for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolulions of the entire set of con- 
straints. This is easy, because the set of the regular loops transforms into itself under 
diffeomorphisms. Thus we have the following final result. 

Any quantum state of the form 

is a solution of all the quantum constraint equations, namely it is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa physical state of 
the quantum gravitational field. These states are denoted physical knot states. 

Some comments follow. 
(i) The theorem does not make any statement about the general solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 

equation. Little is known about that. The set of solutions described form an infinite- 
dimensional space. This space is a sector of the physical space of quantum gravity, i t  
is denoted as regular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknol seefor. It is likely that there are other solutions of the full 
set of constraints. Indeed, solutions of the IIamiltonian constraints corresponding to 
loops with intersections have been found in tlie connection representation by Husain 
[72] and Brugmann and Pullin [ i 3 ] .  Briigmann and Pullin have developed a computer 
code which can construct solut,ions for intersections of any order. 

(ii) The physical knot states are solutions of the quantum dynamics of the gravi- 
tational field. To clarify this point consider the analogy with the qitant,um mechanics 
of a free relativistic particle. The quantum IIamiltonian constraint. is the analogue to 
the Klein-Gordon equation. In fact, tlie Klein-Gordon equa(,ion too can be obtained 
as a Dirac quantum constraint that quantizes the classical constraint p,p’ -m2 which 
ueiiuca brit. uyiiarrucs OL a IKC p u b m e .  I i ic pnysicnr liiio~, sLabes I I I ~ ~ ~ ~ ~ ~ , . ~  \wucri soive 

the Hamiltonian constraint) are the analogue of the quantnm states 

,.=-.-A?.. 1 : . . . c .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ..._._ L Z . 1 ~  - 8 . .  ~~,~...:..,,~...* I r r  , ,~~.,.: -1. 

(4.10) 

which solve the Klein-Gordon eqiiation. These stat.- contain also the entire evolution 
(1-uepenaence) 01 LIIE S G ~ C .  

(iii) This analogy call be extended: the uiiconst~rained quantum stat,e space of a free 
particle is spanned by the states Ik”). The solutions of the Klein-Gordon equation are 
spanned by the subset of these states which are on the mass shell: lkkass This is 
completely analogous to the ] IC)  and IiCrcgular) structure. III tlic momentum represen- 
tation ((a”$) =$(ha)) ,  the Klein-Gordon equation is astatement on t.he support of 
$(V) (mass shell). In the loop represent,at.ion ((IiIFj = F(A’)j, the Hamiltonian con- 
straint is a statement on t,he support of @(A’) (regular knot,s). (The analogy is partial, 
since we do not know the general solut.ion of t,lie Ilaniiltonian const,raint.) Thus, the 
loop representation ‘diagonalizes’ tlie Ilaniiltonian constraint, equat,ion (partially), in 
the same sense in which t,lie moinent.iitii representat.ion diagonalizes 6lie Iilein-Gordon 

I ,  ,.-.~~., ..... \ - C L , . .  

operator. 
(iv) The fact that. the Ilamilt~onian constraint turns out to be diagonal in the loop 

representation, namely that we may find solutions simply by rest,rict,ing the support 
of the wave function, is quite surprising at  this point. IIist.orically, t,lie development 

t Note the analogy with the computation in section 2.2.4. 
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followed a different path. The fact that tlie states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla), where a is a regular loop, 
satisfies the Hamiltonian constraint was discovered by Jacobson and Sniolin in the 
connection representation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[38] before the definition of the loop reptesentation. This 
result was the starting point of the loop representation: the idea was to take the 
Wilson loop states la) as basis states. In this basis, the IIamiltonian operator was 
expected to be diagonal, and the functions with support on the regular loops were 
expected to satisfy the coiist.raint. The loop representation is the realization of this 
programme. 

The ‘miraculous’ aspect of the constraint solutions in tlie loop representation is 
the fact that the same basis is tlie basis that ‘diagonalizes’ the Hamiltonian constraint 
end the basis that allows us to immediately solve the dilfeomorphism constraint. (By 
‘miraculous’, as usual in  theoretical physics, I denote something we like but do not 
understand.) 

(v) I t  is difficult to jridgc to nhat  extent the discovery of these solutions brings 
us closer to the constructioii of a consistent non-perturbative quantum gravity. Ma- 
jor problems are open. Among these, the construction of tlie pl~ysically observable 
quantities and the definition of the inner product. In any case, in order to understand 
t.hese solutions, the first step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,o take is to unravel the physics they contain. This is 
the argument of the followii~g section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2. In.terpretation: the 1ineari:afioa problem 

To get some understanding of the physics contained i n  tlie knot states, we need to 
relate them with usual concepts i n  terms of which gravity is described. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe are 
dealing with pure gravity, we expect. tlie theory t.o describe, in some approximation, 
a state in which there are gravitons wandering around some background geometry. 
How can this physics be described i n  the loop picture? Equivalently, bow can we g e t  a 
metric manifold and metric relations / m m  the purely topological world of i k e  knots? 

To describe gravitons on a background geometry, I introduce the backgroiind met 
ric g(’). The physical metric g will be given by the background metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(n) plus small 
dynamical fluctuations. I choose g(”’ to be flat, and fix a coortlii~nt.esyste~ii i n  whicli it 
is the Euclidean metric. The Einstein eqiiatiotis can be linearized around titis flat met- 
ric. The corresponding quantum theory describes two (traceless transverse) gravitons, 
namely a spin-2 particle. There sliould be some limit (low-energy. or long-distance 
limit) in which the full theory reproduces this free-graviton theory. 

We are interested to find llie description of these free gravitons witlriii the h o t  
framework. Note that this point of view is reversed with respect. to tlie standard one: 
the problem is not how the gravitons describe the full theory, but the way the full 
theory may describe states that look like gravitons, a t  least at  large distances. 

Toachieve thisresult, amappinglias to be found between thespaceoftliegravitons 
states and the space of the qunnt.iini knot stat,es. If lp,u) is, say, a one-graviton state 
(with momentum p and polarization r ) ,  we want to calcri1at.e the coefficients of the 
expansion 

lp*r) = C p i I K ) .  (4.11) 

In particular, the quantum slate corresponding to the (free-feld vacuuiii on the) back- 
ground geometry g(n) will also be a linear com1)ination of ki1ot.s: 

10) = c)!illi). (4.12) 

IC 

h, 
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The task is to calculate the coeRcients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc$) that represent this flat geometry. 
The first step is to choose a convenient way to represent the free graviton theory. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31, (L  for linear) is the IIilbert space of this theory, the second step is to find the 
mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  that  relates 31, with the knot states space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAli. 

Assuming that there is no degeneracy, tliis mapping is uniquely determined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

follows. If the same classical observable 0 is represented by the operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, on 31, 
and by the operator 0 on K .  then M must send 0, i n  0. Namely 

0, = M O M - ' .  (4.13) 

To simplify the determination of M ,  it is convenient to start by a formulation of 
the free theory as similar as possible to the full theory. Thus, a loop representation of 
linearized general relativity is needed. 

4.2.1. Quantum linear gravity. The loop represeiitation of quantum linear general 
relativity has been coiistructed by Ashtekar, Smolin and the author [43]. Here, I 
give only a brief account of the construction. The classical linear theory is given by 
expanding the canonical variables around the flat-space solution 

(4.14) 

(4.15) 

(G is the Newton constant). Internal indices can be transformed to space indices, and 
vice versa, using the background met,ric. From now on, lower case letters indicate the 
objects in the linear theory. The theory is given by t,he linearized constraints 

,i = + ajp (4.16) 

c, = fli (4.17) 

c = f,,$ (4.18) 

where f,$ is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAbelian curvature of ad. The internal gauge constraints ci have 
vanishing Poisson brackets wit,h each other, and the connection a; transforms as an 
Abelian connection under their action. Indeed, in the linear limit the group SO(3) 
reduces to U(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx U(1) x U(1). 

The Hamiltonian that generates the shndard RIinkowski time evolution is 

(4.19) 

where 66 is the magnetic field: bb = 1/2cF fjc. This IIamiltoiiian is analogous to three 
copies of the Hamiltonian of the self-dual formulation of the htaxwell theory. 

There are two problems, not present i n  Maxwell theory, that have to be addressed 
in order to construct the loop representation of linearized gravity. The first problem is 
how to deal with the internal index i = 1,2,3.  Since the kinematics of linear gravity is 
like three copies of Maxwtll theory, it is natural to consider the triple tensor product 



1G56 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReview article zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the Maxwell state space with itself. This means that i t  is natural to choose the 
functions of l r i p k i s  of multiple loops as quantum statest. 

The second problem is that the Ashtekar connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis self-dual. In order to re- 
main zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas close zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas possible to the formalism of the full theory, we want to use the 
holonomy of t,he self-dual connection. Now the loop quantization of Maxwell theory 
in terms of the self-dual (rather than positive frequency) connection is described in 
appendix 3. The formalism is similar to the positive-freqnency case, bot the differ- 
ence in the Hamiltonian and i n  the reality conditions results in the presence of certain 
tiaussian exponentials of the form factors in the states. These exponentials are diver- 
gent. To cure these divergences a standard regularizat.ion procedure does not seem to 
be suficient [43]. The way out is provided by the use of the Iiolonomies 'averaged' 
over small tubes around the loops, whicli is described in appendix 2. As we shall see, 
this technical point has far-reaching conseqiiences. 

Because of the use of the self-dual connection, the new variables formalism is 
the 

dual connection), As a consequence, gravitons of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,wo opposite Iielicities turn 
out to be described i n  this formalism i i i  a remarkably asymmetric fashion. Again, 
see appendix 3 where the same is true i n  the quantization of the Maxwell field i n  
terms of the self-dual connection. This curious difference i n  tlre description of the left- 
and right-handed gravitons appears also in other formalisms aimed t,oward qua,ntum 
gravity, i n  particular i n  Penrose twistor approach [74], and in the ICozanieh-Newman 
light-cone cuts formalism [GI. 

Generalizing the quantization of hlaxwell field given in appendix 3, we define the 
three Abelian holonomies 

ayr,r,eiric (of c o i i r ~  there L; a spicii!ai foifi;a!isiii L i i  teim 

(4.20) 

Note that  this holonomy, in  spite of being gauge invariant under internal gauge trans- 
formations, has an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi index, and note the absence of the path ordering and Irace. As 
in blie Maxwell case, the loops can be smeared in terms of a universal function. The 
smeared holonomy is 

f ; [d = exp (/n3zF:lr..lob(r)) (4.21) 

The basic variables for the quant,ization will be t,hese holonomies and the symmelrired 
linearized triads ha' = ;(eai +e'") .  T!!e antisymmetric part of the triad is gauge. The 
loop algebra is 

{ l f [~ ] , /#J" (h ) )  = i6'" FP'[y,k.] (4.22) 

The loop reprcsentatioii of this loop algebra is defined 011 the space of states of the 

\" 

form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(a,.a?,o,) w7here each a, is a niiilt,iple loop. I use the notat,ion 

= 0 2 1  03) (4.23) 

and the notaLion 

a u , ~ = i o , u ~ . ~ ~ , a ~ j .  ji.2ij 

t The quantnm t,heory of three partirlcs is given in terms ors(ntrr J,(TI,xQ,x~) 
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The representation is obtained by taking the tensor product of the Maxwell represen- 
tation wit,h itself: 

a71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+(a 4 7 )  

P ( k ) + ( a )  = ti zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFjya"),k] $(a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.25) 

(4.26) 

This algebra. as can be directly checked, reproduces t,he classical loop algehra. 
Now we !lave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,o so!?? !,he consirain!,s; The deta_i!ed ca_!cu!atlon ca.n he found in 

[43]. The result is that a state satisfies all the constraints if and only if it is a function 
of 

n d k )  Fp[eb, k1 (4.27) 

where n,,(k) is symmetric, transverse and traceless. This is the standard result on 

can introduce the two independent physical components of the form factor (see the 
appendix 3 for the definitioii of the transverse basis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn " ( k ) ,  %"(k), k"/ lk l )  

the physic%! degrees of freedom of grz.?ivibon: Thereforei as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe did for Mauwe!!, we 

(4.28) 

(4.29) 

Finally the eigenstates of the Ilamiltoiiian are completely analogous to the htaxwell 
case. The vacuum is 

(4.30) 

The right-handed n-graviton states are given hy homoge~ieous polynomials of degree 
n in F+ times the vacuum. The iefi-handed n-graviton states are given by iierniite 
polynomials in F -  times blie vacuuni. Tlie final result is entirely equivalent, to the 
usual Fock space representatioii. 

4.2.2, The mapping M .  111 this section, I describe the relation between the graviton 
states @(a) and the knot states. This and tlie following sections describe recent work 
by Ashtekar, Smolin and tlie aut,lior [44]! which is still in progress. Therefore the 
present and following sections sliould be considered as a progress report of developing 
ideas. 

I begin by working in the space of the uncoilstrained states q ( a ) ,  and I deal later 
with the restriction to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiffeomorpliism-invariant. knot. states. 

The key to identify tlie mapping hebeen the linear theory and the f i i l l  theory 
is equation (4.13) above. In order to use this equation it, is necessary to write the 
linearized loop observahles t f  and hab in terms o l  the fu l l  loop observahles T and 'Ta. 
This cannot. be done exactly, because we may write only SO(3) invariant quantities 
in terms of T and Tu, and the linearized loop ohservahles are not SO(3) invariant. 
However, this can be done to first order in the Newton constant, and this is enougli 
here, because the ideiitificat,ion between the fu l l  tlieory and the linear rlreory should 
only hold to first order i n  G (the linear theory is meaningless beyond first order in C). 

r, firs? order i!? G .:Je !la... 

(4.31) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz is the loop obtained by displaciiig rigidly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 by an amounts r (this makes 
sense because there is the background geometry). In the full theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwc have, again to 
first order in G. 

T" [y ] (s )  = 2 + G 6; 

Therefore, up to order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. the relation bctween the two is 

t:[7] = 6; J d 3 r  / ( z )  T"[y +z](O) - 1. 

(4.32) 

(4.33) 

This equation is sufficient for our aim. 
Now, we are looking for a map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM : %' c vs sucl i  tliat 

< [ ~ I M = M  ( ~ ~ ~ ~ 1 3 ~ / ~ ( ~ ) ~ [ ~ + ~ 1 ( o ) - i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + o ( G ~ ) .  (4.34) 

This is the basic equation for the determination of M .  The map iM that satisfies 
equuatlon (4.34) is given below in eq::zt.ion (4.39). !n t1:e following, I? is cons?ruc?ed 
step-by-step from equation (4.34). 

I start from the following ansatz: that there exists a (multiple) loop A in tlie 
multiple loop space, such that, 

dl(Fr,8,8) = 'W) (4.35) 

whenever li, = M o .  ( ! he  pl is the no-loop mukiple loop.) 
In equation (4.34), the operator <[y] in tlie LHS creates a yi loop in t.he argument 

of $, while the operator F [ y ]  on the RMS attaches a loop 7 to the argument of tlie 
loop functional W. By acting t h e e  times with tlie equation (4.34) on a state @, then 
evaluating in A and using tlie aiisata we may build the entire M .  

The loop A may be specified by requiring tliat also hab transforms appropriately. 
IIere, I do not t,ry to derive the properties of A: rather, I postulate these properties 
and study their consequences. 

Let A be the union of t.liree multiple loops: A = A, U A? U As, which have the 
following property 

g ( s )  = 6; (4.3G) 

and assume that the single loops tliat form one component Ai (wl~ic l~ are parallel 
because of the last equation) are equally spaced. Finally, as..ume tliat A does not 
contain self intersections. These properties det.erniine A almost complet~ely. The 
multiple loop A is denoted 16e  wentie. The weave is formcd by a three-dimensional 
cubic lattice of non-intersecting lines. A key quantity not yet specified is the 'lattice 
spacing' Q ,  namely the distance betwcn the single parallel loops. The follo\ving section 
will be devoted to a discussion of t,liis qnantit,y. 
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Let me work out the mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM determined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ = MB, then 

d(a,!&91) = ( t1b14 (B,FI,yI) = ( t 'MMQ)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0,0,0) 

= [M 

= ( j d 3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf&) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6:?[0+ z](O) - 1 Q(A) 

= /d3= f,(z) 6dFP[A,(a+z)(0)]  

= j d 3 r  f,(z) I d s  S3(41(3 ) , ( ,+  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz)(O)) 

f(z) &:*[a+ zI(0) - 1 Q ( p l , y I , y I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> I  
j 

x [B(A#(o t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe)) - B(A#(a + =)-I) ]  

x Q(h,# ' (a+o)UA?UA,)  

I have used the definition o f t ' ,  t.lie fact, that $ = MO, t.he basic equation (4.34), the 
ausatz, the definition of and the property of the tangent of the weave. 111 the last 
line I have introduced the notation 

W # * D )  = 'u(a#P) - @(a#P-'). (4.37) 

The final quantity is finite and well defined. 
The result can he described as follows. The zero loop in tlie linear theory 'corre- 

sponds' to the weave in the full theory: the loop al corresponds to the weave plus the 
loop a attached (in tlie two possible ways) t o  the A, component of tlie weave. More 
precisely, to a Linear coinbinations of such loops, in each one of which a is attached to 
?he wea-~e in a s!igh?!y diRerent position. 

A second run of tlie same calculation gives 

x B(Al#*(o + z) U + y) U A,) t O(a/c) (4.38) 

where the last term comes from the grasping over o and is as small as a/€ (recall that 
a is the labtice spacing of t,lie weave). And similarly for a third run with the third 
component of the linear loop, These equations define M .  Note t.liat. for consistency 
the term in a/€ must be small in tlie approximation that we are using. This follows 
from the fact that tlie if operat,ors comniute, and this term breaks tlie commutativity. 
Therefore, we must choose a. izersion of Ihe linear t.lieory in which the smea,ring c is 
much larger than the weave lattice spacing a. 

The  picture that emerges is the Collo\ving. The loops ai that describe gravitons in 
the linear theory are relat,ed t,o complex loops i n  the full theory, wliich are obtained 
by inserting tlie ai on the weave, iii t.lie specified manner. In terms of abstract states 
the result can be written as 

M'b)  = / d3= f , (a ) /ds  6 3 ( A ~ ( s ) , ( n l  t z ) ( 0 ) ) / d 3 ~ f 6 1 v )  

x / dt b3(A2( t ) ,  (e? + u)(O)) /d3: f , (~)  / r i l l  63(A3(i i ) , (03 + t ) ( O ) )  

IAl#*(q t z) U (4.39) t g) U A3#*(a3 +p)) t O ( n / c ) .  
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Using this equation, we can express the linearized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla) states in terms of the ful l  theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Io) states. 

Essent,ially a state la) corresponds to a linear combination of full theory states 
obtained by inserting the three CY' loops on the weave. These insertions look like an 
embroidery over the weave. 

Given a quantum state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"(a) in the full theory, the equations above t.liat define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M produce a unique corresponding quantum state $(a) in the linear theory, which 
represents the same physics described in the linearized variables. Note that this con- 
struction is simply t,he loop space version of the equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

?(h) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= *(q + h)  (4.40) 

which relates the metric-representation quantum state Q(g) with the linear-gravity 
Schrodingcr-representation quantum state $(h) .  The weave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA plays the role of the 
background 3-geometry q. 

4.2.3. Gmvitor~sfmn~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh o t s :  ibr  embroidery. At this point, tlie last step caii be taken, 
by considering diffeomorpliisin invariance. Assume that a state * ( C Y )  depends only on 
the knot class of CY. A key observation is then 'die following one. 

The states $(a) depend on the actual posit,ion in space of the loops a;. Namely 
$(a) changes under any displacement of ai; the states q ( a ) ,  on the contrary, depend 
only on the way CY is knotted. Is this a source of inconsistency for the relat,ion developed 
above between tlie two descriptions of the quantum field? 

I f q  is displaced to, say, a: in $(a), then, under tlie M mapping, ai is entangled 
around the weave A i n  a different way tliaii ai. Therefore a 'slrifted' linear loop 
does correspond to an inequivalent. knot, unless the shifting is smaller than tlie weave 
lattice spacing. Thus. by postulating t,hat " (a )  is a knot state, only information on 
the linearized states at scales smaller that the lattice spacing a is lost. 

The space position of lhe loops that  represeni gravitons-in the l inear theory- 
is coded in the entangling of these loops with the weave-in the f u l l  Iheoy.  The 
weave translates between metric properties and topological relations. It allows met,ric 
relations to emerge from t.he purely t,opological world of t.he knots. These metric 
relations, however, exist only at  scales larger than a. 

The picture that emerges recalls an enihroidery. Embroidery is the art of con- 
structing pictures (which have metric properties) by using only the knotting of a 
thread (topology). I n  the embroidery, we have a one-dimensional object,, tlic thread, 
which first builds up  an higher-tlimpiisional space. tlie weave, by self-ent,angling; then, 
tlic thread may draw shapes by get,ting entangled w i t l i  tlie weave. 

Up to bhe (I scale. it is possible to reproduce any st,atc of linear gravity i n  terms 
of states that depend only on knots. I11 particular, recall that the linear vacuum 011 

Minkowski spacetime is the loop funct,ional (4.30). We have all the ingredients to 
calculate the coefficient c$) i n  tlie knot basis of this state: 

Similarly, we can define the linear conibiiiat,ions of knots that correspoiid to R- 
graviton states. Smoliii [IO] has shown t,liat t,lie requirement tliat. t.he state "(a) is 
function of a knot classes translat,es under M ( t o  first order in  G) t.o tlie sthtement 
that there are no longit,udinal gravitons. 



Review ar f ic fe  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1661 

4.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOther background geomefr ies.  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconjecture. Up to now, I have considered only 
a flat background geometry. The relation between the weave A and bhe flat metric 

(4.36). Given an arbitrary background geomehry, defined by the metric g s ' ( x ) ,  or 
by the triad E@')?(x), i t  is natural to assume that the corresponding state in the full 
theory is constructed around the knot defined by the 'distorted weave' defined by 

gob zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,,, or more precisely, tile flat triad E"$'(r) = Sp, is given by equation 

(4.42) 

I t  is easy to show that if two triads zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(OIS(z) and E'(')q(x) are related by a diffeo- 
morphism, then they define the same knot via equation (4.42). 

!t se2ir.s ;eaxnable to coEjeitiire that two iiidrics whish are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi io t  rdated by a 
diffeomorphism define, via equation (4.42), two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiferesl knots, provided that the 
lattice spacing a is taken sufficiently small. 

This observation suggests t,hat it may be possible to establish a correspondence 
between knot classes of a manifold and equivalence classes of metrics (3-geometries) of 
the manifold. Consider for simplicity a three-dimensional manifold with boundaries 
and consider all the possible metrics on the manifold that go to the flat metric on 
the boundary sufficiently fast. Assume t.hat a unique way to associate a triad field 
to every metric has been chosen. Consider a metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. Fix a lattice of points, with 
lattice spacing a, on the boundary. and, originating from these points, integrate the 
triad fields, as in equation (4.42), up to the point in which t.he integral line reaches tlie 
boundary again (assuming that. t,lie metric is sufficieiitly regular so that every integral 
line emerges from the interior). The iiitegral lines define a knot (more precisely, a 
braid), which i denote j(,igj. i t  is ciear that dilieomorpl~ic-equiva!e~~t metrics define 
the same knot. The conjecture is t.hat, provided that a is taken small enough, if two 
metrics g and g' are not diffeomorphic-equivalent, then K , [ g ]  and K, [g ' ]  are different 
knots. 

If this construction can be made precise, and the conjecture is correct, then it is 
possible to characterize a 3-geometry, up to any given scale, by assigning the corre- 
.pondir,g 1 E t .  

4.2.5. Emergence oJlhe P l a i d  scale sfruclure. What is the value of the lattice spacing 
a? Recent calculations seem t,o indicate that the theory fixes the value of a. These 
are preliminary results, and tlie cont,ent of this sect.ion is still specillative. 

Consider the three-dimensional metric qob. The metric is not well defined as an 

operator in the loop representat,ion. ior it is a product oi iocal operators q 1x1 - 
E"(r)E"(+). However, i t  is possible to define an integrated version q ( F )  of the 
metric, by smearing E'(x) and Eb((z) over a region of finite radius, witli a smearing 
function Fob(x) which varies only a certain large scale. Let 6 ( F )  be t!ie value of t,he 
flat Euclidean metric smeared with P. 

It is possible to construct an operator 4(F) i n  the loop representation such that 

The loop state la) is an eigeiistak of the operat.or i ( F )  d l i  eigenvaluc 6 ( F )  

zob.  . 

its c!rzssic~~ limi? is tile snle...rec! me!.ric q ( ~ j ,  T ! ~ ~ ! ~  y e  !isre tile ~o!!o..!.i!lr roQ,lit. iddl 

(4.43) 

e L A - , '  

i ( F )  I N  = 6 ( F )  14 
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if and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe latt ice spacing is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeract ly t k c  PInnrk l cng fh :  

~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. ~~ ~~~ (4.44) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Some comments follow. 
(i) The demonstration of t,his result involves a careful construction of the smeared 

metric operat,or, and a delicate calculation with the loop operators. The result is still at  
some preliminary stage, but the reaqon for tlie result is perhaps intuitive: every thread 
of the wewe carries a certain ‘flux’of metric. The weave gives a certain approximation 
of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflat metric. One may think that it is possible to obtain a better approximation 
by having a thinner lattice, but it is not 50, for if we double !he number of threads, 
we get a doubled number of elementary excitation of the ‘flux’ of the 3-metric, and 
therefore we do not get the Euclidean metric, but the double of the Euclidean metric. 

(ii) The result is coordinate invariant, and in a sense, scale invariant: if we double 
the number of ?!:e !oops, t!ieii !he <=ordinate distance betwen eac!: sing!e thread is 
half of the Planck length. But the resulting (inverse, densitized) metric is four times 
!he Euclidean metric. As a consequence, the inoarinnl distance between the threads is 
still the Planck length. The result, therefore, can be stated by saying that at  whatever 
distance we put the threads of the weave one from tlie~other, they always turn out to 
be at  a physica l  Planck distance. More precisely, they determine a (Planck-length) 
unit of distance. 

(iii) The emergence of the Planck length may seem surprising. Tlie Plank constant 
comes from the quantization [there is the usual Planck constant in !.lie definit.ion of the 
quantum operators); but how does the Newton constant enter the game, given that 
tlierc is no Newton constant i n  the vacuum Einstein equations? Consider the classical 
thcory of a free (non-relativistic) part,icle. Tlie equation of motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i = 0) does not 
contain the mass. There is no way to measure the mass by observing the classical 
mot,ion of a free particle. However. the mass does enter in the quantum theory: the 
Schrodinger equation contains the mass, and tlie spread of the wave packet (or the 
Compt.on wavelength of the particle) dppends on the mass. By measurements on the 
quantum particle, we may measure its mass. The specification of the mass is required 
in order to write the Lagrangian and tlie Hamiltonian theory (tlie inass appears as a 
multiplicative overall factor in t,lie action). Physically, thc Heisenberg indetermination 
relations know the mass, becarise t,liey are defined between position aut1 momentum, 
and tlie kinematical (measurable) indctermination between position and vclocity is 
the Plank constant divided by the mass. 

In pure gravity, the Newton constant fol!ows the same pattern as the mass for the 
particle. The classical equat,ioiis of motions do not depend on G, but 1/G comes in 
front of the Lagrangian and enters the definit,ion of the momenta. The Heisenberg 
indetermination relations between the 3-met,ric and the extrinsic curvatlire depend on 
tile Pianck constant multiplied by G. i t  may not be the more eiicieni way, but in  
principle i t  is possible to measure G in pure-quantum-gravitational experiments. 

(iv) The physically int.eresting state is not the loop st,ate [ A ) ,  hut the knot, state 
IKJ, where I<, is tlie knot to whicli the weave A belongs. If tlie ideas developed so far 
are correct, we expect tlia,t. the oubcome of any dilfeomorphism invariant nieasurement 
of the geometry 011 sl~ould be flat space, provided Ilia( tlie geometry is tested 
only on scales mucli larger than !,he Planck length. 

Tlie existence of a 
discrete striic.ture h a s  been suggested many times, but here t,lie striict.ure emerges 

( v )  A discrete st.ructure at !,lie Planck level is intriguing. 
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from the theory, without artificial inpiit,s. At this stage it is not clear how we should 
take this result. In particular, it is not clear what is precisely the physical meaning 
of the state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/A).  I t  is clearly related to flat space, but how? Note tha t  the quantum 
field theoretical vacuum of the linear theory is ‘peaked’ on the knot state IICA), 

(vi) The weave A was introduced in order to discuss the relation with the linear 
theory, but the result described in this section is unrelated to the linear theory. As far 
as the the linear theory is concerned, recall t.hat the mapping from knot space to the 
graviton states is consistent only provided that in the linear theory we use a smearing 
t much larger than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Since a is the Planck length, it follows that the graviton 
picture makes sense only at  scales much larger than the Plank length. The origin 
of the divergences in perturbation theory are integrals at  small distances, namely 
the assumption that the graviton picture makes sense at  every scale. In the non- 
perturbative theory, the result on the discrete structure at the Planck scale may be a 
concrete indication of how perturbation t,heory goes wrong. 

(vii) I t  is not clear to what extent a similar discrete structure occurs in the loop 
quantization of the Maxwell field. The single elementary excitations of the Maxwell 
field are loop-like and quantized. Thus, it seems that the magnetic flux t,hrough a fixed 
surface should be quantized (in units of Bohr magnetons). This is not unreasonable: it 
makes sense, for instance, to interpret the quantization of the magnetic flux measured 
by aSQUID magnetometer as a quantum pr0pert.y of the electromagnet.ic field itself. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo 
my knowledge, a rigorous analysis of t,he spectrum of t,he magnetic-flux field-opera,t,or 
in the free Maxwell theory, using standard formalism. has never been performed. 
(The difficulties come from t.lie boundaries of the 2-surface. If tlie 2-surface has no 
boundary, the flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis quant,ized, but the quant.ization can be attributed to topological 
effects.) On the other side, in  the loop representation there are technical differences 
between blaxwell theory and gravity (see [43]) that indicate that tbe flux quantization 
is peculiar of gravity. 

4.3. Coricluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.9.1. Open problem,s. The construction outlined is preliminary. Some of the open 
problems are the following. 

(i) The definition of the physical observables. The linearization may help to find 
physical observables. The linearization around flat space by itself does not break 
diffeomorphism invariance. (It is the use of the background metric t,o fix the causal 
structure that breaks the invariance.) Provided that the wavefunction is (in the same 
sense) concentrated around Rat spacetime, the linearized gauge-invariant observables 
(transverse traceless components of the gravit,on) do represent diffeomorphism invari- 
ant properties of the full solution. In t,he embroidery construction, the transverse- 
traceless linear observables can be carried to the ful l  theory qiiantum space. Here 
they should read out invariant (topological) properties of the knot,s, namely the way 
the embroidery loops are entangled on h e  weave. 

An alternative way for getting ob%rvables is to couple matter to general relativity. 
By coupling a finite amount of mat.ter, concent,rat,ed i i i  a small region of space, we 
obtain a theory wit.11 two regions: an exteriial vacuum region, where t,lie constraints 
can be solved using the techniques described in this sect.ion. and an inbernal region 
where matter provides physical gauge invariant observables and a well defined ‘clock’ 
evolution. A model of this kind is construct.ed in [%I. 
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These are possible directions for construcbing the physical observables but tlie 

problem is entirely open. 
(i i) The inner product must be defined on the space of tlie physical states. As 

discussed in section 3, the inner prodnct is determined by the Hermiticity condition 
on the real physical observables. The linear theory may provide indications. In fact, 
the linear scalar product must be the scalar product inherited from the full-theory 
scalar product through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  Since the linear scalar product is known, the full scalar 
product may be be deduced from i t ,  at least up to the approxima,tion in which the 
reiation between the two theories inaiies sense. 

(iii) It is not clear to what extent the regular knot sector alone can represent 
interesting physics. Ot.her solutions involving intersections should be investigated. 
I t  should not be difficult to recover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the loop representalion the solutions with 
intersections discovered in the connection representation by Briigmann and Pullin 
[73]. Two important open quest,ions regarding intersecting-solutions are tlic Following. 
(a) Are otlier sn!u!.io!?s co!istruc!ed only in terms of particular linea.! co!nbi!>ationr. of 
intersecting loops with the same suppor l ,  or sliould they involve loops with difkcent 
support? (b) Are linear combinations of loops wit.11 int.ersect.ions of an inf ini te number 
of components required? 

( iv )  Briigmann and Pulliii 1731 noted that i n  tlie connection representation tlie 
known solutioiis of the Hamiltonian constraint satisfy tlie IIamillonian constraint for 
every value of the cosmological constant. Tliis result is disturbing, and it,s significance 
is not understood. 

(v)  A related problem is t,lte relation between the difrerent proposed forms of the 
Hamiltonian constraint. To fix a unique and simple definition for the Hamiltonian 
constraint is also necessary i i i  order to study tlie problem of tile quantum closure 
of tlie constraints. Note that the very existence of common solutions to all the con- 
straints shows that there are no anomalies proportional to the identity in the quantum 

these commutators. 
(vi) Perturbation theory. IIaviiig a construction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof gravitons within (lie full the- 

ory, in a context in whicl~ the continuum breaks down to a discrete structure at  die 
Planck energy, suggests tliat at  this point one could be able to reconsider 'perturba- 
tive' graviton-graviton scattering. The full theory should modify tile (approximate) 
linearized theory by providing a physical cut-off at the Planck length, 

(vii) The regular way tlie weave A has been constructed is perliaps a first approx- 
imation. 'we may expect the weave to look more like a tangle than like an ordered 
weave. Note, however, that the relevant object, is not the weave, but it,s knot class 
A',, wliich is an equivalence class of many very 'disordered' loops. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.5.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA n  overall p ic tu re  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 this section, the present stage of the construction of 
a non-perturbative quantization of generai relativity has been outiiited. Tile main 
results are the following. 

( i )  Quantumgencral relativity atlmitsa representation in wliicli t,lie qiiant,iimstates 
are represented by functioiials on a loop space @(a). and the loop varia1)les are repre- 
sented by operators T,@ that act by creating loops and breaking and rejoining loops 
at. intersect.ions. 

states IIC). These constitute the general solution to the quantum diffcomorphism 
constraint. 

co,Tm-tator =f the co::strai:lts, l$o;vever, i? v;ou!d he inter--t!ng to exp!!cit!y ca!cu!a?e 

( i r )  The diffpo!iiorpliis!?? inv?.ri.!!t s!at.es .re give!! by !j!!par co!i!bi!!atioEs of &:!!e! 



Review arl icle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16G5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(iii) An infinite-dimensional space of physical states, which describe solutions to 

the quantum dynamics, is given by (linear combinations of) the regular-knot states 

ev)  Preliminary results indicate that one of these knot states, the 'weave-knot' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1KA), is related to flat space. It has the property of being an eigenstate of smeared 
diffeomorphism invariant, operators, provided that the smearing is taken on a large 
scale. I ts eigenvalues correspond to a flat Euclidean metric. By measuring the metric 
over large regions in the state iKAj, the outcome of tile measurement corresponds to 
the flat metric. Different weaves (entangled in a different way) should correspond (at  
large scales) to different geometries. 

(v) By measuring the metric in the state IIiA) at smaller scales, some roughness 
appears, and the continuum structure breaks down completely at  the Planck length, 
where the metric has a discontinuous distributional structure. 

(vi) The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqnintum Ee!d theoretics! WCUUE of the !ineariaed theory ired Rat 
space is represented within the full theory by a Gaussian-like linear combination of 
knot classes, peaked around the weave 1KA). Gravitons are represented in terms of 
small deformations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIK,) obtained by attaching loops (embroidery loops) to the 
threads of the weave. The spatial posit,ion is determined in the full theory by the 
entangling of the embroidery loops with the weave. Position is determined only up to 
the Planck length. 

This picture is certainly incomplebe. Until a complete theory is defined, or until 
concrete calculations can be performed, the main question-which is whether or not 
a quantum theory of general relativity exists-does not yet have an answer. However, 
the indications are promising, and the hope is that we are not too far from calculating 
finite amplitudes above the Planck energy. 

The reason for the failure of perturbative quantum gravity now seems clear, and the 
non-perturbaiive methods presented here reveal an unsuspected richness of structures 
which could not have been caught in perturbation theory. In spite of the intricacy of 
the technicalities, the results that are emerging are surprisingly simple and intuitive. 

In conclusion, I would like to emphasize an important characteristic of the ap- 
proach I have described. The results presented here follow from applying standard 
quantum mechanics to standard general relativity. No additional physical principle, 

supported by observations. In a sense, the construction described in this report is 
an attempt to grasp the microstructure of s p a c e h e  by building on relatively solid 
grounds: the physical assumptions are only general relativity and quantum mechanics, 
which summarize so much of the present understanding of the physical world. 

IIL "Iar). 

er additions! !?ypoth&, hz heen added $0 these ?!?eo+s, w!iich are b& fir!~!y 
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Appendix 1. Coniplex Hainiltoiiiaii ineclianics 

In this appendix, I study t,he ext.ension of IIainiltonian mechanics to the case of com- 
plex actions. This extension provides a geomet.rical framework in which the phase 
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space of the Ashtekar theory can be interpreted. In particular, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI clarify the mean- 
ing of tlie Poisson structure (1.40). wliich is defined on a space that is half-real and 
half-complex. 

Let me assume, in general, that we have a configuration space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC with N (real) 
variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq i ,  which I represent by the single vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, and tlie following complex action 
is given 

si91 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= SRhl -t iS%I (ai.1) 

where SR and S' are two real funct.ionals of 9(2). The assumption is that the motion 
is given by the q ( t )  such that 

6s[q] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. (A1.2) 

Is there a canonical description of this set of equations? 
Since S is complex, (A1.2) has two components, the real one and tlie imaginary one. 

There are 2N equations of motions for the N variables q.  It is useful to think that we 
are dealing with two dynamical theories for the same systcm, namely for the same set 
of variables. The first dynamical theory is defined by Re SS[q] = @[q] = 0, namely 
by the real part of the act,ion. I den0t.e this theory as the R-dynamical theory. The 
second dynamical theory is defined by Im 6S[q] = SS'[q] = 0, and will be denoted as 
the I-dynamical theory. The physical motions of the system must satisfy the equations 
of motion of both theories, 

Since we have two standard dynamical theories, we may use tlie standard machin- 
ery of analytical mechanics, by running it twice, i n  parallel. By doing that, we may 
forget the imaginary unit, and work entirely i n  terms of real quantities. 

Let me consbruct the IIamilt,onian formulation of both theories. I define two mo- 
menta 

(A1.3)  

(LR and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL' are the two Lagrangians) and consider two phase spaces: the phase space 
SR with coordinates (pR, q )  and the pliase space S' with coordinates ( p ' ,  q ) .  The two 
spaces are two copies of the cotangent space of C. \\'e denote SR and S' the R phase 
spa.ce and the I pliase space. On each of these spaces the IIamiltonian theory is defined 
by the standard Legendre transformation. There is a symplectic form wR in SR and 
a symplectic form w1 in 9: 

w R  = dpR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA dq w' = dp' A d9 (A1.4) 

a Hamiltonia,n N R  and a I%amilt~oiiiaii If', and, possibly, each one of the two theories 
may lia.ve first-class constraints. (They bet.ter have to, if tlie total theory has to be 
non-trivial, since otherwise the 2N independent equabions of motions for the N fields 
tend to be overdetermined.) 011 the conslraint surfaces. the IIamiltonians define the 
Hamiltonian vector fields SR and S I .  These are defined by the standard IIamilton 
equations, wliich in this language arc 

i X ~ w R  = -dHR i x rwl  = -dH1 (A1.5) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi denotes the contraction of the 2-form with the vector field. The Hamiltonian 
vector fields are partially under-determined if there are gauges: we can always add to 
them a vector tangent to the gauge orbits. The integral lines of the vector field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXR 
are the motions of the R system, and so for the I system. 

Now we have to recall that the physical motions must be a motion for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6o2h dy- 
namical theories. What does this mean i n  the Hamiltonian picture that has been 
constructed? They are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq coordinates in the two spaces that have to be identified. 
Consider a motion in SR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, Let q( t )  be the projection of the motion on the q subspace 
of SR . This projection fixes the motion entirely: it is a solution of the Lagrange 
equations of the R theory. The question is: is there a motion in the I theory such that 
its projection on its q subspace is also q(t)? 

From a geometrical point of view, we have to consider the linear space with co- 
ordinates (pR,pl,q). This is a 3N-dimensional space, where N is the dimension of 
the configuration space. This is an appropriate space for the Hamiltonian dynam- 
ics of complex actions. This space will be denoted S. There is a natural projection 
from S to SR (namely (pR,pl,q) - ( p R . O , q )  ), and a similar one to SI. A motion 
( p R ( t ) , p ' ( t ) , q ( t ) )  in S, projeck to SR atid S' in such a way that both motions in 
turn project to the same motion in the configuration space. A motion in S such that 
both its projections satisfy tlie respective dynamical equations will be a solution of 
the Lagramge equations. 

Aii the structure in S" and in S! extends immediately to S, because we may puii 
back uR and W I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH R  and NI, by using the projections. More simply, everything is 
naturally defined everywhere in S. 

Theorem. A physical motion (a solution of the Lagrange equations) is given by a curve 
in S ,  such that its tangent A' satisfies both the equations 

iXwR = -dHn i X w l  = -dH' (A1.G) 

and stays on the constraint surface. 
I t  is clear that if both these equations are satisfied on S, then t~he projectioii of X 

in SR and S' will satisfy the respective Haniilt,on equations, and, by construction of 
S, their projection on the configuration space is the same. 

S is geometrically defined as follows. The two actions SR[q] and S'[q] define two 
different mappings from the cotangent space T#C of the configuration space C, to 
the tangent space T C .  Thus, we ma,y consider two cotangent structures over C, each 
one equipped with its own mapping on tlie taugent space. 

A t  this point I may reinsert the complex ~iumbers, and make use of t,he compactness 
of notation that. they allow. I use comples numhers i n  two different. ways. The first is 
to write complex equations simply as a compact form for a couple of real equations. 
The second is to use complex coordinat,es for the spaces introduced ir i  the previous 
section. The interplay of the t.wo uses of complex numbers simplifies tlie notation. 
The two equations (A1.G) of the previous section can be written as a single complex 
equation, by defining a complex 2-form 

w = w R + iw' (A1.7) 

We then have the following straightforward theorem. 

Node illat WR and W' are not, symp! iei due t.o !,!le fact khat, S is odd-dimensional. 

and complex Haiiiilt,oniaii 

H = H ~ + ~ H ' .  (A1.8) 
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Then (A1.6) becomes just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i,w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -dH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 then introduce complex variables I define 

z = p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR I  + i p .  

In terms of these variables, the complex 2-form w is 

(A l .9 )  

(Al.10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w I dz A dp. ( A l . l l )  

By recalling that there was originally an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi connecting the two theories, I may note 
that 

8L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz =  - (Al.12) 

The Hamiltonian theory is now defined by the formulae (A1.12), ( A I . I l ) ,  (A1.9). 
These equations are precisely the same equations that define the Hamiltonian theory 
of a real action. Thus, we reached tlie following result. 

The standard equafions of Hamiltonian mechanics can be used also Jor complex 
actions, wiihout eisible changes. 

However, one should not be confused by this apparent simplicity. Jn particular, w 
is not symplectic, (nor are its real and imaginary parts symplectic), the phase space 
S has three times the dimensions of the configurat.ion space, and so on. The following 
terminology may be useful. 1 denote the dyiiamical systems with a complex actioii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

complex dynamical system.s, t.lie phase space S as compler phase space. J denote zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi r)  as 
coniplez synrplcclic J o n  and z as complet momentum. This terminology, indeed. I r a  
more or less been used in the Asht,ekar formalism and is very natural; hut one should 
be careful not to be confused by it,: the complex phase space is not a complex space 
and is not the direct sum of the R and I phase spaces, t.he complex symplectic form 
is not symplectic ( i t  is presymplectic), and a complex momentum corresponds to a 
single real canonical coordinate. 

Finally, note that in general the complex Iiamilt.onia,n system (S,w, H ,  C) cannot 
be interpreted as a standard real Jlamilt,onian system we are dealing here with a 
genuine extension of standard IIaniiltonian mechanics. 

A particiilar case of a complex IIamilt,onian system is given when the imaginary 
part of the action has 110 effect on tlie Lag” equations. It is worth considering this 
case in detail because the Ashtekar lheory belongs to it. I n  tliis case, the dynamical 
system is physically equivalent to its real sector (the evolution in the configuration 
space is the same). But the IIamiltonian description that one get.s from the complex 
action is different from the €Iamiltoiiian descript,ion that one get.s from the real action 
(Ashtekar’s Hamiltonian theory is diRercnt than ADM theory). Tostudy this particular 
case, I consider, as a specific example, a one-dimensional harmonic oscillator 

(A1.13) 

and add to tliis action an imaginary part wit,li no effect on the Lagrange equations: 

S’[p] = / d l  $jq. ( A  I .  1 4 )  
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The R dynamical system is t.he well known one: the R phase space has coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(pR,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq), wit,Ii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR -  - 1 ? ( P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 + $ )  ( A  1.15) 

The I dynamical system has momentum 

and vanishing canonical Hamiltonian. The I phase space is the (pl,q) space, with the 
primary first class constraint 

c=p I - q = o  ( A  1.17) 

which defines a onedimensional constraint surface in SI. The restriction of the I 
symplectic form to the constraint surface vanishes, namely the single direction along 
the constraint surface is a gauge direction. 

The complex phase space S of the theory is the space (pR,pl, q ) .  The theory is 
defined by the complex symplectic form w = dpRdp + i dp'dq by the real Hamiltonian 
H R  (its complex part vanishes) and by tlie constraint (A1.17). The imaginary part of 
w vanishes in restricting to tlie constraint surface, so that only the real component of 
the Hamilton equatioii survives. The solution of (A1.9) that stays i i i  the constraint 
surface is unique 

( A  1.18) 

If we project the integral lilies of this vector field on the configuration space we have 
the motions of the oscillator. 

I now repeat the analysis iu terms of complex coordinates. The momentum is 
complex and is given by 

( A  1,19)  

The phase space S is the spare zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 ,  q), with three real dimensions, and tlie complex 
symplectic form on the phase space is w = dz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA dq. The Hamiltonian is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H = zz - i -  4. (A  1.20) 

m l ~  ~ ~-~..L..:..L , i n e  ConsLrauit is Z = t - 21~. The rest goes: as above. i i  is iifipoiiaiii, io iioie that iii 

this formulation rappears in the t,lieory oiily though the 'reality condition constraint'. 
The Hamiltonian is a liolomorphic fiinct,ion of L. 

111 general, wlicii the imagiiiary part. of the action has no effect on t,lie equations 
of motion, the I system is given by N constraints wliicli define an N-dimensional 
constraint surface which is a unique gauge orbit. Io the complex phase space these 
N const.raints define a 2N-dimensional surface which is isomorphic t,o t.he R phase 
space. These constraints are denoted as malily condifions and their constraint surface 
is denoted the real phase spnce. Note t,liat this 'real phase space' is not the R phase 
space, but it is isomorphic to it. 



1670 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAariicle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The analogy between tlie one-dimensional harmonic oscillator treated above and 

the Ashtekar theory is comp1et.e. Tlie identifications are 

(A1.21) 

(A1.22) 

(A1.23) 

(A1.24) 

(A1.25) 

Appendix 2. Maxwell 2: a smeared version 

Iu this appendix, a different version of the loop qiiant,ization of hlarwell theory is 
discussed. This version I IW certain advantages with respect to the version introduced 
i n  section 3, and is a model for tlie quantization of linearized gravity. 

Let me start by fixing a universal smearing function Jc (z )  wliich I choose as follows. 
I t  is smooth, it lias compact support. in a region of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc around zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, and its 
integral is one. In terms of this function, the 'smeared form factor' is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fr(a,z) = d3y Jc(u-z)A ' (a ,y) .  (A2.1) 

This is a real vector field with support on an +small tube around tlie loop 0 1 ,  and 
which points along the tangent of 0 1 .  The loop quant.iz.ation can be performed, by 
using the smeared form factor rather tlian tlie unsmeared one. Tlie smeared liolonomy 

J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L L  :- ""arlvaulr 15 

~ , ( o )  = exp (-i J t13.z ~ ~ [ c * , z ] ~ , ( z ) )  (A2.2) 

(cf (3.11)). The loop algebra to be quantized is tlie T,,E algebra. The qrrantization is 
achieved by picking the same space of loop functionals as i n  the unsmeared case (now 
I denote them "JcI)) and by defining the two operators 

(A2.3) 

(A2.4) 

Something curious is going on here: the smeared cla+cal loop algebra i n  wliich the 
iioionomy is smeared is quaniized by a n  unsmeared T operator and by a smeared 2, 
operator. The smeariug shifts from T to E i i i  going to tlie quautuni theory. It is easy 
to check thal. I he commutators reproduce (,lie correct Poissoii brackets. One should 
not be confused by the notation. wyliicli becomes a bit tricky because of tlie shift i n  
the position of c: Tis the operator that corresponds to  T, and E,  is the operator that 
corresponds to E .  

We may repeat tlie previous defiiiit.ioii of (he Ilamiltonian, and we discover now 
the eigenstates of tlie Haiiiilt~oninn have tlie same form as the states i n  (3.28) above, 
witli the form factor replaced by the smeared form factor. 
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Also the mapping to tlie Bargniann representation can be generalized to the present 
case. We have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

*<(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= /dp[A] exp (-i /d3zFf[a,z].4,(z)) *[A] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A2.5) 

Note that the same linear space of loop functions carries both the unsmeared 
representation and the smeared one. More precisely, i t  carries a one-parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) 

family of representations. The same loop function represents different physical states 
in two representations corresponding to a different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc. 

A direct advantage of the smeared formalism is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa simple definition of the scalar 
product. In fact, consider the loop states la,) that define the representation: 

*,(a) = (%I*). (A2.6) 

On these states, the action of the basic operators is 

(A2.7) 

( A M )  

We want to define the scalar product by using the reality conditions. The reality 
conditions follow from tlie fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and E are real. In tern18 of the unsmeared 
positive and negative frequency fields t.liey are +A(z) z +E(.). They can be written 
in terms of the smeared loop variables as 

(A2.9) B'" (z)  E liin -(7'e[7c,G,m] - 1) = /d3y f,(z - y) @(y). 

They are implemented in the quantum t,lieory as operator equat,ions (with the complex 
conjugation replaced by adjoint operation) if the adjoint operation is defined by the 
scalar product 

1 
6-0 c 

(@,ID,) = exp ( - ~ . ~ d 3 ~ ~ ~ [ ~ , ~ ] ~ ~ ~ [ D , z I )  . (A2.10) 

Since the smeared form factor is boonded and has compact support, the iiitegral is 
well defined and finite, and this equabion provides a consistent definition of the scalar 
product directly in loop space. 

Appendix 3. Maxwell 3: self duality; how to prefer left photons over right 
photons 

In this appendix, the loop quantiaation of the hlaxwell field obhined by starting 
from the self-dual, rather tlia,n the positive-frequency, connection is described. This 
form of the theory mimics tlie t.reat,inent of gravity. As st,ressed by Aslit.ekar, while 
the distinction between positive frequency and negative frequency is meaningless i n  
a generally covariant franiework, the dist,inction between self-dual and antiself-dual 
sector rem.niiis meaningful. This is one of the key reasons for wliicli t.lie quantization 
methods developed in section 3 may work also in the absence of Poincar6 invariance. 
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In order to mimic Aslitekar theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 choose as elementary variables the real electric 

field E" and the self-dual hfaxwell connection ,+lid> which is dcfined, up to a gauge 
that will be soon irrelevant, by 

(A3.1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are thc real electric and magnetic fields. The self-dual component of 
the field is formed by the positive frcquency components of the positive lrelicity sector 
pius the negaiive Frequency componene or" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe negaiive heiiciiy sector. i define the 
self-dual holonomy 

p b c a  Asd - ~a r d  = 
b c -  - Bo + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiE" 

qd[7] = exp ( J d 3 r F ~ [ ~ . ~ ] A ~ d ( z )  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(h3.2) 

In order to keep track of the two liclicities, it is convenient to split the form factor 
into its positive an negative helicit,y components. In terms of the startdard transverse 
unit basis vectors m(k)", in(k) '  and i.a, defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

p = k a  
m ( k ) , k "  = 0 m(k),m(k)(l = 0 m(k),rk.(k)' = 1 - (A3.3) 

it, is possih!e to define 

Ikl 

(A3.4) 

(A3.5) 

The Td, E" algebra can be quantized in ternis of the standard space of loop states, 
now denoted Qsd, and the usual loop operat,ors 

( i i 3 . 6 )  

( A 3 . 7 )  

Note that we have precisely the same space and the same operators as i n  the positive- 
frequency case. How does the theory know that now the same operators represent 
direrent observables? Tlie answer is that the reality conditions and the Ilamiltonian 
are different. 

Tlie reality conditions are now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B'(r)' = bo(.) - 2i d3y f,(z - y)Ea(y). (A3.8) 

In order to have these reality condilion implemented in the quantirm theory, we are 
forced to define the scalar product as 

J 

The classical Hamiltonian, written i n  terms of the basic variables. is 

N = d3s (DSd)? - 2iE,BSd ', (A3.10) J 
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The Schrodinger equation is 

A straightforward calculation shows that the vacuum is 

(A3.11) 

(A3.12) 

The n-photon states are given by the following loop functionals. The positive-helicity 
n-photon states are homogeneous polynomials (of degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF+ multiplied by the 
vacuum. The negative-helicity photons are Hermite polynomials in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF -  times the 
vacuum. Thus to work with a self-dual connection and a real electric field, produces 
a mixed representation, which is a Bargmann representation in the positive-helicity 
sector and a Schrodinger representation i n  the negative-helicity sector. This hybrid 
situation is not a consequence of the loop representation, but just of the fact that the 
variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe use are not symmetric under parity. 

More details on this mixed representation can be found in 1431. 

References 

(31 

141 

Ashtebr A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANew Perspectives in Canonical Greuity (Lecture Notes)  (Naples: Bibliopolis) 
Ashtekar A and R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS Tare 1990 Non-pertublive canonical graviry Lecture notes (Inter- 

University Center for Astronomy and Astrophysics Poona, India) 
Ashtelar A 1986 New variables for classical and quantum gravity Phyr. Re". Lett. 57 2244-7; 

1987 New Hamiltonian formulation of general ielativity P h y ~ .  Rev. D 36 158i-602 
Jacobsm T and Smolin L 1987 The left-handed spin connection K a variable for canonical 

gravity Phys. Lett. l96B 39-42 
Samuel J 1987 A Lagrangian basis for Ashtekar's reformulation of canonical gravity Pmmana 

J .  Phgs. 28  L429-32 
Jacobson T and Smolin L 1988 Covariant action for Ashtekar's form of canonical gravity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACloss. 

Quantwn Gnu.  5 583-94 
Capovilla R, Dell J and Jacolson T 1989 General relativity wit,houl a melric Phys. Rev. Lett. 63 

2325-8; 1991 A pure spin-connection formillation of gravity Class. Quantum Gras. 8 59- i3  
Lamberti W, Kozameh C and Newmnn E T 1991 t l o l o w n i i e r  and Einstein equations Aun.  

Phys. to appear 
Ashlehr A. Bombelli Land Reiita 0 1091 Analyris. Geometry and Alechnnies: ZOO I'eeer~ alter 

Lagronge ed M Francaviglia and D Holm (Amsterdam: North Holland) 
Rovelli C and Smoliii L 1090 Loop representation for quantum general wlativity Nucl. Phys. B 
331 80; 1988 Phys. Rev. Lett. 61 1155 

Gliozzi F and Virasora M A I980 Nucl. Phys. B 164 141  
Smolin L Personal comnunication 
Samuel J 1988 Gravitational instailom from the Ashtekar variable Class. Quanlt lm Grau. 5 

CapovillaR, Dell J and Jacobr;on T I990 Gravitational instamtons as SU(2) gauge fields Class. 

Tome C G 1900 Perturbations of gravitational inst,antons Pkyr. Rev. D 41 3620-1 
Tome C G 1990 On the linewization stability of the conforuidly (anti)self dual Einslein qua 

lions, J .  Math. Phyr.; 19W A ropologicd ficld theory of gravitational instantons Phys. Lett. 
B 

L123-5 

Qaantvm G n u .  7 L1-3 

- 
[IS] 

[16] 

Ashtekar A and Pullin J 1990 Bianchi cosmolopjes: A new descliption Pioc. Phys. Soc. Isrocl 

Kodama H 1988 Specialization of Ashtekar's formalism to Bianchi cosmology Prog. Theor. Phys. 
9 65-76 

80 102440; I990 Holomorphic savehinctim of the universe Phyr. Re". D 42 251845 



le74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReview arf icle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Goldberg J N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1988 A Hnmiltonirul appmnch to the strong gravity limit Gcn. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARel. Grau. 20 

Husain V and Smolin L 1989 Exactly solvable quantum cosmologies from two Killing field 

Husain V and Pullin J 1 W  Quantum theory of spacetimes with one Killing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvector field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMod. 

Ashtekar A ,  Mazur P and Torre C G 1987 BRST structure of general rclaLivity in lerms of new 

Ashtekar A, Jacobson T and Smolin L 1988 A new characterization of half-flat solutions to 

Robinson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD C I988 New Prrspertives in Canonical Gravity (Leclrrc Notes)  ed A Ashtekar 

Mason L J and Newman E T 1989 A connection between Einstein and Yang-Milk equations 

AshtekK A, Romano J D and Tate R S 1989 New variables for gravity: Inclusion of matter 

Jacobsm T 1988 Fermions in canonical gravity Class. Qvonlum Gmv. 5 L143-8 
Jambson T 1988 New variables for canonical supergravity Class. Quantum Grau. 5 923-35 
Bengtsson I 1989 Yang-RliUs theory and general relativity in three and four dimensions Phys. 

Witten E 1988 (2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l)-dimensional gravity as an exactly soluble system N u c l .  Phya. B 311 

Gonzalez G and Pullin J 1991 BRST quantization of (2 t 1) gravity Phyr. Rev. D 
Husain V and Kuchai I< 1990 General covariance, the new variables and dynamics without 

Smolin L 1991 The G -+ 0 linlit of Euclidmn general relativity in preparction 
Giannopoulos A and Daftardar V 1990 The direct evaluation of the Aahleknr variables for any 

Rcnteln P and Sniolin L 1989 A lattice approach to spinorid quantum gravity Class. Quantum 

Renieln P 10SOSomeresulls ofSU(2) spinorid lattice gravity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClass. Quantum G n u .  7 493-502 
Husain V 1988The Gjqcwton - C O  limit of quantum gravity Class. Qnantum Gmu. 5 575-82 
Ashtehr A ,  Balachandmn A P and Jo S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 1989 The CP-problem in quantum gravity lnt. J .  

M'it,tcn E 1988 Comtnrrn, Moth. Pkpr. 117 353 
Jacobson T 1988 Supempace in tlie self-dual representation of quantum gravity Contempomry 

Jacobson T and Smolin L 1988 Nionpwturbatiw quantum geometries Nucl .  Phyr. B 299 295- 

\%'!?eeler I A !9CS _Ra!!ellr R c n ~ o , ! ! r ~ s  1867 rd C De\%'!!! artd. 1 p Wh~c!er {New VQ~::  Ben. 

DeWitt B 1067 Phyr. Rev. D 160 1113 
Kuchai I< 1981 Quantum Gravity 2: An OJord Symposium ed C J Isham, R Penmse and D W 

Isham C J 1984 Relativity Groups and Topology 11, Les Iloueker 1883 ed B S De\Vitt and R 

Aslitekar A and Rovelli C 1991 Quantum Faraday lines; loop representation of tlie RIaxweU 

Aslktckar A, Rovelli C andSinolin L 1991 Gravitons and knots Syrocuse and Pittsburgh preprint 
A s l i t e h  A ,  Rove& C and S m d i n  L 1991 The linearization of theloop rr-presentation ofquantum 

gravily in prcporat ion 
Gambhii R and Tria- A 1981 Phgs. Rea. D 23 553; 1983 Lett. Nuovo Cimcnto 38 '19i; 19884 

Phys. Reu. Lett. 53 2359: 1986 Nucl. Phyr. B 278 436; 1989 Phyr. Rev. D 39 3127 
Gambini R 1990 Loop space representation of quantum general relativity ant1 I he group of loops 

Preprint Univnsity of hlontevidea 
Mandelrtam S 1962 Ann. Pbyr. 19 1 
Polyakov A M 1979 PhyJ. Lett. 82B 2.17; ID79 S v c l .  Phyr. B 104 171 
Makwnko Yu RI and Migdal A A 1970 Phya. Lett. 88B 135 

881-91 

reductions of general relativity A'uucf. Phys. B 327 205-38 

Phya. Lett. A 5 733 

variables Phys. Rev. D 30 2955-62 

Einstein's equation Commun. Mnlh. Phya. 115 63148 

(Naples: Bibliopolis) 

Commun. Moth. Phys. 121 659-68 

Phys. Rev. D 40 2572-87 

Lett. 220B 51-3 

46-78 

dynamics Preprint GniveniLy &Gt& 

metric using the algebraic computing system STENSOR preprint Imperial TP/89-90/11 

Gmv. a 275-94 

Thew. P h p .  A 4 149S51.1 

Mothematics 71 ed I Iscnberg (Providence. RI: Ainrrican Matliemal,ird Society) p 99 

345 

jamin) 

Sciama (Oxford: Oxford University Press) 

Stora (Amsterdam: North Holland) 

theory Svraeerc preprint 



Review zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarficle IF75 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[47l 

Nambu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 1979 Phys.  Lett. B O B  372 
Gliozzi F, Regge T and Virasoro M A 1079 Phya. Lett. 81B 178 
Virasoro M A 1979 Phyr .  Lett. 82B 436 
Jevicki A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASak i ta  B 1980 P6ys. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARev. D 22 467 
Sakita B 1983 Collective field theory Field Theory i n  E l e m e n t a r y  Por l i c l r r  ed B Kursunoglu 

Wilson I< 1974 Phys. Rev.  D 10 247 
Kogut J and Suskind L 1975 Phya. Rev. D 11 395 

and A Perlmutter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(New York: Plenum) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c ..CL d:"A r C--"--...--&-A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.̂.̂ "..._ ..L-".....A,,..--.:-- ,-. " " " . -La .  vvrv ,.,,""I. " - 1  D,--'.." 
I--.a" " 6.-...." Y'.'.,.."'.. C...".l.""J'.".YW ',=* . . " Y L , t c ~  I.CYI Y.CI.,,"- 

magnet ic I n t e r m t i o n 8  a t  Nigh Energy  ed R Balian and C H Llewelly~~Smith (Amsterdam: 
North 13olland) 

Bargmann V 1962 PTOC. Nat. Aead. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASci. (USA) 48 199 
Jauch J M 1968 Foundetions of Qzantum Mechanics (New York: Addison Wesley) pp 215-9 
Ashtelar A 1986 J .  Math. Phys. 27 824 
Rovelli C 1988 New Perspect ives in Canon ica l  Gravity (Lecttrm Notes) (Naples: Bibliopolis) 
Rowlli C 1989 The continuum limit of the Wilson loop representation of Yang-Mills theories 

Brandt R A, Neri F and Sato h? 1979 Phys. Rev. D 24 879 
Rovelli C and Smolin L 1900 Loop mpresentation for lattice gauge theory Pi t l iburgh  and Syra- 

Briigmann B 1990 The method of loops applied to lattice gauge theory Phya. Rev. D in print 
Ashtekar A, Husain V, Rovelli C, Samupl J and Smolin L 1989 (2 t 1) quantum gravity as a 

Miao Li I988 Loop quantization of Chern Simon theories Sissa prepr in t  
Loll R 1990 A new quantum reprwentation for canonical gravity and SU(2) Yang-Mills theory 

Prepr in t  Bonn University BONN-HE-90-02 
Raper  D A formalism for quantising general relativity using non-local variable Class. Q w n t n m  

Gmu. 7 111-34; 1990 Hermitian operators on quantum -nerd relativity loop space Class. 
Q%antnm Gmv. 7 651-61 

Manojlovic N 1990 Alternative loop variables for canonical gravity Class. Q u a n t u m  GTW. 7 
16-45 

iu'ayak C i990 T i e  imp space represeniation oi ii -t 1) quanLum gravity physical observaih 
and the issue of t ime  P w p r i n t  

Aldaya V and Navarro-Salas J I991 Phys. Lett. 25DB 249 
Rovelli C 1991 What is observable in clacsical and quantum gravity? Class. Q a a n t u m  Gvm. to 

Rovelli C 1991 it Time in quantum gravity: an hypothesis Phys. Rev. D 43 442 
Coldberg J, Rovelli C and Newman E T 1991 On the Hamiltonian syst,em with first class 

Komar A 1987 Phys. REV. D 18 1881, 1887,3617 
Rowlli C I990 Quantum mechanics witlimit time: a model Phys. Reo. D 42 263846 
Blencowe M P 1990 The Hamiltonian constraint in quantum gravity N d .  Phys. B 341 213 
I<auUman L H 1987 Formol knot theory and On knots (Princeton: Princeton University Press) 
Kodama I i  1990 Holomorphic wavefuncI,ion of the universe Phy8. Reu. D 42 2548-65 
Bliigmann B and Pullin J Personal communication 
Rovelli C and Smolin L in preparation 
Husain V 1988 Hamiltonian constraint of qnantum general relativity Nucl. Phys. B 313 ill-24 
Briigmann B and Pullin J 1090 Intersecting N loop solutions of the HahilLonian constraint of 

Penrose R and Rindler W 1986 Spinors o d  Spacr t ims "012 (Cambridge: Cambridge University 

Rovclli C 1991 Quantum refemrice systems Class. Q w n t u m  Gmu. 8 31i 

unpublished no tes  

Cude prepr int  

toy model for the 3t1 theory Class. QiLantum Grou. LIS5-93 

appear 

constraints Pit lsbvrgh Univevaity p repr in t  

quantum gravity Syracuse University prepr int  

P E S )  


