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Abstract To what extent the Asian summer monsoon

(ASM) rainfall is predictable has been an important but

long-standing issue in climate science. Here we introduce a

predictable mode analysis (PMA) method to estimate pre-

dictability of the ASM rainfall. The PMA is an integral

approach combining empirical analysis, physical interpre-

tation and retrospective prediction. The empirical analysis

detects most important modes of variability; the interpre-

tation establishes the physical basis of prediction of the

modes; and the retrospective predictions with dynamical

models and physics-based empirical (P–E) model are used

to identify the ‘‘predictable’’ modes. Potential predictabil-

ity can then be estimated by the fractional variance

accounted for by the ‘‘predictable’’ modes. For the ASM

rainfall during June–July–August, we identify four major

modes of variability in the domain (20�S–40�N, 40�E–

160�E) during 1979–2010: (1) El Niño-La Nina developing

mode in central Pacific, (2) Indo-western Pacific monsoon-

ocean coupled mode sustained by a positive thermody-

namic feedback with the aid of background mean circula-

tion, (3) Indian Ocean dipole mode, and (4) a warming

trend mode. We show that these modes can be predicted

reasonably well by a set of P–E prediction models as well

as coupled models’ multi-model ensemble. The P–E and

dynamical models have comparable skills and comple-

mentary strengths in predicting ASM rainfall. Thus, the

four modes may be regarded as ‘‘predictable’’ modes, and

about half of the ASM rainfall variability may be predict-

able. This work not only provides a useful approach for

assessing seasonal predictability but also provides P–E

prediction tools and a spatial-pattern-bias correction

method to improve dynamical predictions. The proposed

PMA method can be applied to a broad range of climate

predictability and prediction problems.
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1 Introduction

Asian summer monsoon (ASM) rainfall provides the major

water resources to support over 60 % of the world popu-

lation and ecosystems, yet seasonal prediction of this var-

iability remains a long-standing challenge (e.g., Kang et al.

2004; Wang et al. 2004, 2005, 2008a, 2009a; Kang and

Shukla 2006; Lee et al. 2010, 2011a, b; Sohn et al. 2012

and many others). As shown in Fig. 1, the temporal cor-

relation coefficient (TCC) skill for June–July–August (JJA)
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precipitation prediction using four state-of-the-art climate

models’ multi-model ensemble (MME) even initialized on

June 1st is still limited: The area-averaged TCC skill over

the entire Asian-Australian monsoon (AAM) region (20�S–

40�N, 40�E–160�E) is only 0.31 over the past 32 years.

The prediction skill that is significant above 95 % confi-

dence level occurs only over the most predictable regions

of the tropical oceans. In spite of numerous previous

studies on the variability and predictability of the ASM

rainfall, outstanding questions remain unanswered con-

cerning the relative contributions of various drivers for

ASM rainfall variability, the reasons for the poor seasonal

prediction, and the predictability of the ASM rainfall.

The ASM rainfall variability has been studied primarily

on regional scales, such as Indian, East Asian, South China

Sea, western North Pacific (WNP) and maritime continent

(e.g., Kumar et al. 1999; Ding and Chan 2005; Wang et al.

2000, 2009b; Chang et al. 2004). Variability of regional

monsoons cannot be fully understood unless we understand

the variability of the full monsoon system. A few studies of

these regional monsoons as a whole emerged in the recent

decade. Lau and Wu (2001) studied the rainfall-SST co-

variability for the period of 1979–1998 using singular

value decomposition (SVD) analysis of the ASM rainfall

and global SST anomaly (SSTA). They found that the first

mode is a biennial mode; the second mode is associated

with La Nina development, and the third mode is related to

regional atmosphere-ocean interaction in the ASM region.

Since the AAM anomalies strongly depend on seasonal

cycle, Wang et al. (2003) assessed the seasonal evolution

of the entire AAM variability using season-reliant SVD

analysis of the AAM precipitation and tropical SSTA. They

revealed three factors that determine the AAM variability:

the remote forcing from the eastern-central Pacific, the off-

equatorial interaction between atmospheric Rossby waves

and underlying dipole SST anomalies, and the regulation of

the monsoon annual cycle on the atmospheric response. In

a following-up study, Wang et al. (2008b) further found

that although the Indian summer monsoon-ENSO rela-

tionship has weakened since late 1970s (Kumar et al.

1999), both the East Asian-WNP monsoon and Indonesian

monsoon have strengthened their relationship with ENSO

(Yun et al. 2010).

Besides ENSO, the Indian Ocean (IO) dipole (IOD) that

involves atmosphere-ocean interaction in the IO (Saji et al.

1999; Webster et al. 1999) was also found to play a critical

role in affecting the Asian and global climate (Saji and

Yamagata 2003; Guan and Yamagata 2003; Ding et al.

2010). In addition, the WNP subtropical High-SST inter-

action provides a ‘‘delayed’’ impact of ENSO to East Asia

(Wang et al. 2000; Lau et al. 2005; Wang et al. 2013b). A

similar southeastern IO anticyclone-dipole SST interaction

plays an important role in the development and decay of

the IOD (Wang et al. 2003; Li et al. 2003).

How to determine the predictable part of total variance

and the predictability of seasonal variability using coupled

climate models remains an open issue. Several methods

have been proposed. Wang et al. (2007) proposed a so-

called ‘‘predictable mode analysis’’ (PMA) method to

estimate practically potential predictability of seasonal-to-

Fig. 1 The temporal correlation coefficient (TCC) skill for June–

July–August (JJA) precipitation prediction using the four coupled

models’ multi-model ensemble (MME) initiated from the first day of

June for the 32 years of 1979–2010. The dashed contour is the TCC

skill of 0.35 with statistically significance at 0.05 confidence level and

the solid contour is the TCC skill of 0.5. Blue box indicates the Asian-

Australian monsoon (AAM) region used in this study (20�S–40�N,

40�E–160�E) and the number in the upper-left corner of the blue box

is the averaged TCC skill over the AAM region
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interannual climate variability. Different from pure statis-

tical approach, it is an integral approach combining

empirical analysis, physical interpretation and retrospective

predictions. It produces both physical-based empirical

(P–E) forecast and estimation of the predictability. This

method has been applied to assess the predictability of the

upper-tropospheric circulation anomalies (Lee et al. 2011a;

Lee and Wang 2012) and Asian winter monsoon temper-

ature (Lee et al. 2013). The details of the PMA method is

described in Sect. 3. Another approach is the mean-square

error (MSE) method using multi-model simulations

(Kumar et al. 2007). The details of this method are

described in Sect. 6 and compared with PMA results.

Recently, an optimal projection method was proposed to

improve the skill of the dynamical model forecast (Jia et al.

2014). This method uses statistical optimization technique

to identify the most skillful or most predictable patterns

and then project forecast onto these patterns.

In spite of the considerable progress in understanding

the physical factors driving the ASM variability, it remains

unclear what the relative contributions of these factors are

and to what extent the combination of these factors can

predict ASM rainfall variability. How to better estimate

predictability limit for monsoon rainfall also remains a

difficult and controversial issue.

The major objectives of this study are to identify dom-

inant leading modes of the ASM variability that are

potentially most predictable (Sect. 4) and assess the skills

for predicting these dominant modes with P–E models and

the state-of-the-art dynamical models’ MME (Sect. 5).

Effort is also made to better estimate seasonal predict-

ability of the ASM rainfall in Sect. 6. Section 7 summa-

rizes major results and discusses limitations of the method.

2 Data and dynamical models

Several observed datasets are used in this study, including (1)

monthly mean SST from NOAA Extended Reconstructed

SST (ERSST, v3b) (Smith and Reynolds 2003); (2) monthly

mean precipitation from Global Precipitation Climatology

Project (GPCP, v2.2) datasets (Huffman et al. 2009); and (3)

monthly mean circulation data from National Centers for

Environmental Prediction–Department of Energy (NCEP–

DOE) Reanalysis 2 products (Kanamitsu et al. 2002). The

period from 1979 to 2010 is chosen in this study. Summer

(JJA) anomalies are calculated by the deviation of JJA mean

from the long-term climatology (1979–2010).

The present study uses four advanced atmosphere-

ocean-land coupled models including NCEP CFS version 2

(Saha et al. 2014), ABOM POAMA version 2.4 (Hudson

et al. 2011), GFDL CM version 2.1 (Delworth et al. 2006),

and FRCGC SINTEX-F model (Luo et al. 2005). To

compare with the P–E forecast, retrospective forecast with

early June initial condition was used for the available

period of 1979–2010 targeting 0-month lead JJA seasonal

prediction. The MME prediction was made by simple

average of the four individual models’ ensemble mean

anomalies after removing their own climatology.

3 Predictable mode analysis

The PMA method assumes that a few leading empirical

orthogonal function (EOF) modes of interannual variability

represent climate signal whereas the rest of higher modes

are largely unpredictable noises. Three criteria are pro-

posed to identify most ‘‘predictable’’ modes (Wang et al.

2007). First, the predictable modes together should explain

a significant portion of the total variability and be prefer-

ably statistically separable from other higher modes. Sec-

ond, the dynamical origins of these modes should be

understood reasonably well. Third, the dynamical models

and/or P–E prediction models (Wang et al. 2013b) should

be capable of predicting these major modes with fidelity.

The emphasis here is to derive the most predictable modes

based on observation and physical understanding and then

verified by models’ hindcast experiments.

The PMA is, therefore, an integral approach combining

empirical analysis, physical interpretation and retrospective

predictions. The empirical analysis detects most important

patterns of variability. The interpretation establishes the

physical basis for prediction of the empirical patterns, and

thus establishes P–E prediction models. The retrospective

predictions (hindcast) with P–E models and/or dynamical

models are used to identify the most ‘‘predictable’’ modes.

Once predictable modes are identified, the potential pre-

dictability can be estimated by the fractional variance

accounted for by the ‘‘predictable’’ leading modes by

assuming that the predictable modes can be predicted

perfectly. One of important advantages of the PMA is to

provide not only an estimation of the seasonal predict-

ability but also P–E prediction models and a spatial-pat-

tern-bias correction method to improve dynamical

predictions as will be shown in Sects. 5 and 6.

4 Origins of the major modes of ASM variability

Two methods are usually used to identify the leading

modes: SVD and EOF analysis. The SVD analysis is an

effective way to depict co-variability modes between two

geophysical fields (Bretherton et al. 1992). However, the

SVD modes are not orthogonal and thus difficult to be used

for reconstruction of the total variability; additionally, the

SVD modes of rainfall and SST can be largely governed by
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the SST variability in the tropics not by the rainfall vari-

ability. Thus, in this study, we use EOF analysis of rainfall

anomaly over the entire AAM region (20�S–40�N, 40�–

160�E) for the 32 years period of 1979–2010. The EOF

analysis is centered on the hypothesis that the ASM pre-

cipitation itself and the derived major modes can be used to

reconstruct the total variation of the precipitation without

consideration of SSTA.

The four leading EOF modes of the ASM rainfall

variability account for about 21.7, 9.5, 8.5 and 7.3 % of

the total variance, respectively (Fig. 2), and they together

can explain about 47 % of the total variance averaged

over the AAM monsoon region. To detect the primary

large scale drivers for each mode, we made correlation

maps of SSTA with reference to each principal compo-

nent (PC) along with the regressed 850 hPa winds

(Fig. 3). The first 4 leading EOF modes of precipitation

anomaly are associated with distinct SSTA and wind

anomaly patterns.

4.1 EOF1: ENSO developing mode

The first EOF mode is characterized by a sharp contrast

between prominent suppressed rainfall over the Philippine

Sea—equatorial western Pacific and enhanced rainfall over

the maritime continent (Fig. 2a). Two branches of

increased precipitation are evident in the tropical northern

and southern IO due to emanation of low-level low pres-

sure Rossby waves in response to the strong ascent over the

maritime continent. Associated with this mode, the overall

Indian summer monsoon and East Asian summer Monsoon

tend to be in phase; more precipitation over the East Asian

subtropical front and the southern and northern India but

not in the central India (Ganges River Valley).

The simultaneous correlation map with SST is charac-

terized by prominent SST cooling over the equatorial

central Pacific and SST warming over the western Pacific

as well as maritime continent (Fig. 3a). The lead/lag cor-

relation maps of SST with reference to the PC1 from the

Fig. 2 Spatial distribution of the first four leading EOF modes of JJA precipitation (a–d) and the associated principal components (PC) of each

mode (e, f). The GPCP data from 1979 to 2010 were used for the EOF analysis in the entire AAM domain
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previous spring to the following winter indicate that the

central Pacific cooling signifies a developing La Nina

(figure not shown). Thus, we name EOF1 as the ENSO

developing mode. How does the developing La Nina

induce the EOF 1 precipitation anomalies? The EOF 1

precipitation anomalies are associated with the anomalous

WNP anticyclone (WNPAC) (Fig. 3a). The central Pacific

cooling can stimulate the anomalous WNPAC by shifting

the normal Walker cell, thus reducing convection in the

equatorial western Pacific which extends northwestward to

South China Sea and northern Bay of Bengal (Fig. 3a). The

suppressed western Pacific convection can directly gener-

ate the WNPAC by northwestward emanation of

descending Rossby waves (Gill 1980). Meanwhile, the

central Pacific-induced above-normal precipitation over the

maritime continent can also enhance the WNPAC via

exciting equatorial Kelvin waves, which generates equa-

torial easterlies and off-equatorial anticyclonic shear vor-

ticity over the Philippine Sea. With the aid of friction and

moisture, this negative vorticity can induce boundary layer

divergence, which further suppresses convection and rein-

forces the WNPAC anomaly (Wang et al. 2013b).

4.2 EOF2: Indo-western Pacific monsoon-ocean

coupled mode

Differing from the EOF1 mode, the major loading of the

EOF2 mode is confined to the western Pacific (Fig. 2b).

Precipitation anomaly exhibits a prominent sandwich pat-

tern that consists of enhanced precipitation in the equatorial

western Pacific and the Meiyu/Baiu rain bands, and below-

normal precipitation over the subtropical WNP. Associated

with this mode, the Indian and East Asian Summer Mon-

soon tend to be out of phase. The rainfall over India is

largely suppressed except the Western Ghats, while more

precipitation occurs along the East Asian subtropical front

zone from Yangtze-Huaihe river valley, to Japan and

Korea. The western Japan is most prone to be impacted by

this mode with enhanced precipitation, associated with its

strong southerly wind component as well as anomalous

moisture transport in the northwestern flank of the WNPAC

(Fig. 3b).

The precipitation anomaly associated with EOF2 is

coupled to the anomalous WNPAC, and the associated

SSTA is characterized by a dipolar SSTA anomaly, i.e., the

cooling to the southeast of the WNPAC and the warming to

the southwest of anticyclone over the northern IO (Fig. 3b).

Wang et al. (2000, 2013b) argued that the mean north-

easterly winds are important for the maintenance of the

WNPAC through the local thermodynamic feedback (i.e.,

wind-evaporation-SST feedback). Xiang et al. (2013) fur-

ther pointed out that this mode is not only relying on the

background mean flows but also on mean precipitation.

Therefore the local atmosphere-ocean feedback can be

termed as the convection-wind-evaporation-SST feedback.

To the southwest of the anticyclone, the northern IO

warming can be a result of the atmospheric forcing asso-

ciated with the southwestward extension of the WNPAC

ridge, while the anticyclone-induced northern IO warming

in turn tends to increase local rainfall, which offsets the

suppression effect due to remote forcing from the WNPAC.

Thus, the atmosphere-ocean interaction and the resultant

northern IO warming indirectly contributes to maintenance

of the WNPAC (Wang et al. 2013b; Xiang et al. 2013). In

brief, this mode is supported by a positive thermodynamic

feedback between the WNPAC and underlying Indo-Paci-

fic SSTA dipole over the warm pool. Thus, it is referred to

as Indo-western Pacific monsoon-ocean coupled mode.

Fig. 3 The corresponding correlation maps of the four modes (a–

d) with the simultaneous SST and 850 hPa wind anomalies
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4.3 EOF3: the IOD mode

The third EOF mode yields the well-known IOD pattern

(Saji et al. 1999; Webster et al. 1999) with suppressed

precipitation over the southeast tropical IO and enhanced

precipitation in the west tropical IO (Fig. 2c). Conspicu-

ously increased precipitation in the South Asian monsoon

trough region extends from the Indian subcontinent to

southeastern China (Fig. 2c). Given that this mode

becomes more intense and frequent especially during the

recent decades (Abram et al. 2008), it may play an

increasing important role in shaping the East Asian

climate.

The SSTA associated with EOF3 shows an apparent

SST dipole pattern in the IO which is cohesive with the

dipolar precipitation anomaly (Fig. 3c), suggesting that the

emerging IOD may be the source of this mode. The time

series of this mode have a good correlation with the

modified IOD index (r = 0.77). The latter is defined by the

SSTA difference between the southeastern IO (Eq-10�S,

90�–130�E) minus central-western IO (10�S–10�N, 60�–

80�E), which is slightly different from that used by Saji

et al. (1999). The majority of the extreme cases of this

mode, such as year 1983, 1991, 1994, 1997, 2003, 2007,

2008, are consistent with the IOD positive phases (Fig. 2g).

Previous studies have extensively examined how the

IOD affects Asian and global climate (e.g., Saji and Ya-

magata 2003; Guan and Yamagata 2003). One possible

explanation for the enhanced South Asian precipitation is

attributed to the meridional asymmetry of the monsoonal

easterly shear during boreal summer, which can particu-

larly strengthen the northern branch of Rossby wave

response to the southeastern IO SST cooling, leading to an

intensified monsoon flow as well as convection (Wang and

Xie 1996; Wang et al. 2003; Xiang et al. 2011). Strikingly,

a simultaneous suppressed precipitation is found over the

WNP, with the excited anomalous high center over its

northwest near the southeastern China (Fig. 2c). We argue

that a key system that bridges this relatively weak WNPAC

and the IOD is the IOD-induced diabatic heating over

South Asia and its adjoining areas.

4.4 EOF4: the trend mode

The fourth mode represents an increasing trend of precip-

itation over the equatorial IO, Arabian Sea, and South

China but a decreasing trend over the Western Ghats of

India and western part of Indochina Peninsula (Fig. 2d, h)

associated with a warming in global tropics especially the

Indian and western Pacific Oceans (Fig. 3d). Recent studies

have shown that the ASM (as well as entire Northern

Hemispheric summer monsoon) rainfall has been intensi-

fied during the recent few decades (e.g., Wang et al. 2013a)

and the intensification may continue under future global

warming according to the projection by coupled models

that participated in the phase five of Coupled Model

Intercomparison Project (e.g., Lee and Wang 2014; Lee

et al. 2014; Wang et al. 2014).

5 Prediction of the major modes

In this section, we assess to what extent the four major

modes of the ASM variability can be predicted by a P–E

model and the state-of-the-art coupled models.

5.1 Prediction procedure

There are two steps for prediction of the ASM rainfall

variability. First, the four PCs are predicted, separately,

by using a set of P–E models (Sect. 5.2) and multi-cou-

pled models’ ensemble (Sect. 5.3). We also attempted to

build a hybrid P–E-dynamical prediction for each PC by

combining the P–E and dynamical prediction with equal

weight (Sect. 5.4). Second, we reconstruct the forecast

fields of ASM rainfall anomaly using linear combination

of the observed four EOFs’ spatial-pattern and the pre-

dicted PCs.

5.2 Prediction of ASM rainfall with P–E models

A P–E prediction model is made for each PC using linear

regression method. Figure 4 shows how to select predictors

for each PC. Following Wang et al. (2013b), two predictors

are used for PC1: May-minus-March SSTA over the central

Pacific (Fig. 4a) and April-to-May mean North Atlantic

Oscillation (NAO) index. The PC2, PC3 and PC4 used only

one predictor for each: They are, respectively, the April-to-

May mean zonal SSTA contrasts between Indian Ocean

and WNP (Fig. 4b), the May-minus-March zonal SSTA

difference between the western Indian Ocean and Maritime

continent (Fig. 4c), and the January-to-May mean SSTA

over the Indo-Pacific warm pool region (Fig. 4d). The cross

validation method was used to derive the model and make

an independent retrospective forecast (Michaelsen 1987).

To avoid over-fitting problem, we leave 3 years out pro-

gressively centered on a forecast target year from the

period 1979–2010 to train the model using data of the

remaining years and then apply the model to the forecast

years.

Red-dashed lines in Fig. 5 are the predicted PCs by the

P–E models in the cross-validated mode. The P–E models

are capable of capturing the observed PCs with the sig-

nificant TCC skills of 0.62, 0.72, 0.60 and 0.68 for the four

PCs, respectively. Thus, to a large extent we can regard the

four major modes as the predictable modes. It is worth
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mentioning that the skill scores for prediction of the PCs

are cross-validated but the EOF analysis was applied to the

entire period. Thus, the cross validation method used here

is not totally free from over-fitting.

Applying a linear combination of the predicted four PCs

and the observed EOFs, we can predict precipitation

anomalies over the entire AAM region. Figure 6a shows the

spatial distribution of the forecast skill calculated by the

TCC between the observed total field (including all modes

of variability) and the reconstructed prediction field just

using the first four EOF modes. The significantly high skill

is found over India, some parts of Middle East, Philippine,

the Maritime Continent, and the WNP. Over the East Asian

monsoon region, the skill is still limited. The area-averaged

TCC skill for the entire ASM domain is 0.36.

Figure 7 shows the time series of the pattern correlation

coefficient (PCC) skill for each year obtained using the P–E

model. The long-term mean of the PCC skill is 0.42. The

PCC skill shows large year-to-year variation with high skills

(over 0.6) in 1980, 1982, 1984, 1990, 1994, 1998, 2008 and

2010, and low skills (below 0.2) in 1989, 1996, 1997, 2000,

2003 and 2005. Future studies are required to understand

what causes the failure of prediction in these low skill years.

5.3 The dynamical models’ prediction

It has been noticed that dynamical climate models tend to

exhibit significant errors in capturing special distribution of

major modes of variability. Note that a slight shift of the

special pattern of variability in models can result in a

substantial drop in skill scores (e.g., Kang et al. 2004). Lee

et al. (2011a, 2013) also showed that coupled models have

considerable spatial errors in capturing the major EOF

modes of upper-tropospheric circulation and Asian winter

monsoon temperature variability, respectively. Thus, in this

study, we use models’ MME predicted four PCs and the

corresponding observed EOF patterns to make predictions.

This is equivalent to making a spatial-pattern bias correc-

tion for the dynamical prediction. As shown by the mid-

blue dashed line in Fig. 5, the MME predicts the first three

PCs with high fidelity but has difficulty in capturing the

increasing trend of the PC4. The TCC skills for the four

modes are 0.80, 0.68, 0.70 and 0.32, respectively.

Figure 6b shows the TCC skill for the hindcast precip-

itation anomaly at each grid using the spatial patterns of the

observed EOFs and the predicted PCs by the MME. In

general, high skill is found over the tropical monsoon

region south of 25�N. It is further noted that the hindcast

with the MME’s four PCs and the corresponding observed

EOFs (0.39) has better skill than the MME’s original skill

(0.31) as shown in Fig. 1, suggesting the effectiveness of

correcting the biases in the models’ EOF spatial patterns.

The spatial similarity between the Figs. 1 and 6b indicates

that the coupled models’ MME skill basically comes from

the skill in prediction of the first four major modes of

interannual variations.

Fig. 4 Selection of predictors based on the correlation maps between

a EOF1 and May-minus-March SST anomaly (SSTA), b EOF2 and

April–May mean SSTA, c EOF3 and May-minus-March SSTA,

d EOF4 and January–May mean SSTA, and e April–May mean North

Atlantic Oscillation index (NAOI) and May-minus-March SSTA. The

green box is the area used for defining predictors
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Figure 7 shows the PCC skill for the hindcast precipi-

tation anomaly using the MME. The dynamical approach

has the high skill over 0.6 in 1984, 1990, 1994, 1998, 2004

and 2010 but completely fails to predict in 1979, 1980,

1986 and 2006. The long-term mean of the PCC skill is

0.43.

5.4 The hybrid empirical-dynamical prediction

It is noted that the MME has better skills for the first and

third PCs whereas the P–E model has better skills for the

second and fourth PCs, thus they are complimentary to each

other, providing a potential to improve the ASM rainfall

prediction by combining them together. The blue long-

dashed lines in Fig. 5 are the predicted PCs by combining

the P–E and dynamical prediction with equal weight. The

combined prediction has generally better skill than each

method alone. Figure 7 shows that the PCC skill of the

hybrid prediction (0.49) is higher and more stable than those

of individual empirical and dynamical model predictions

(0.42 and 0.43, respectively). The hybrid P–E and dynam-

ical prediction may be more useful than individual predic-

tions particularly over land regions of the AAM (Fig. 6c).

Note that use of weighted hybrid model can have better skill

but there is no guarantee that the weighting method is better

for actual prediction due to potentially over-fitting.

Although the hybrid model has a useful skill for the

AAM rainfall in general, prediction for land monsoon

rainfall, especially over the East Asian region, is still

limited. Figure 8 shows the normalized anomalies of

Indian summer monsoon rainfall (ISMR), East Asian

summer monsoon rainfall (EASMR), and WNP summer

monsoon rainfall (WNPSMR) obtained from observation,

P–E model, dynamical model prediction, and the hybrid

(a)

(b)

(c)

(d)

Fig. 5 The corresponding PC

of the first four EOF modes (a–

d) in observation (OBS),

empirical prediction (EmpM),

Multi-Model Ensemble (MME)

dynamical prediction, and

hybrid empirical-dynamical

prediction (COM) from 1979 to

2010. The numbers within the

parenthesis in the figure legend

indicate the TCC between the

observed and predicted PC
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prediction. The ISMR and EASMR are averaged in the

land region over 7.5�–27.5�N, 70�–90�E and 22.5�–40�N,

110�–140�E, respectively. The WNPSMR is averaged in

the entire region over 5�–20�N, 110�–160�E. The hybrid

model has a high skill for the WNPSMR (r = 0.68) and a

useful skill for the ISMR (r = 0.49) but a low skill for the

EASMR (r = 0.26). It is further noted that the dynamical

models’ MME has a better skill for the WNPSMR but the

P–E model has a better skill for the land monsoon rainfall

(ISMR and EASMR). It suggests that well-designed P–E

models are still useful for improving seasonal prediction of

land rainfall as demonstrated by several recent studies for

ISMR (e.g., Rajeevan et al. 2007), for EASMR (e.g., Sohn

et al. 2012; Wang et al. 2013b) and for the South China

monsoon (e.g., Yim et al. 2014).

6 Predictability of the ASM rainfall

6.1 The potentially attainable forecast skill estimated

by the PMA

Given the fact that the first four EOF modes can be skill-

fully predicted by the hybrid P–E and dynamical model, we

 

(a)

(b)

(c)

(d)

Fig. 6 The TCC skill for JJA

precipitation prediction using

the a P–E model (EmpM),

b MME’s first four modes

(MME4M), c hybrid empirical-

E-dynamical model (COM), and

d the observed first four modes

(OBS4M). For the observed

reference field, total anomaly

(i.e., all modes of variability) is

used whereas the predicted field

is reconstructed just by the first

four EOF modes. The dashed

contour is the TCC skill of 0.35

with statistically significance at

0.05 confidence level and the

solid contour is the skill of 0.5.

The number in the upper-left

corner of each panel indicates

the averaged TCC skill over the

entire region

Fig. 7 The pattern correlation coefficient (PCC) skill for JJA

precipitation prediction as a function of forecast year using 3-year out

cross-validated empirical prediction (EmpM), prediction with the

MME’s 4 modes (MME4M), and the hybrid empirical-E-dynamical

prediction (COM) over the entire AAM region. The potential

attainable forecast skill using observed four PCs (OBS4M) is also

compared. The numbers within the parenthesis in the figure legend

indicate the averaged PCC skill over the 32 years
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may estimate the potential attainable forecast skill for the

ASM rainfall using these most predictable modes. The

observed predictable part is reconstructed by the linear

combination of the first four predictable EOF modes. Here

we consider all EOF higher than the 4th mode as noise

parts mainly because these higher modes have small frac-

tional variances of\5 % and these modes are difficult to

interpret and predict. Assuming that the first four modes

can be predicted perfectly, the potentially attainable fore-

cast skill can be obtained from the correlation between the

observed total field and the reconstructed predictable part

(Refer Sect. 2.3 of Lee et al. 2013 for detail formulation).

Figure 6d shows the attainable TCC skill estimated by

the PMA. The area-averaged potentially attainable skill is

0.55. It is noted that there are still rooms to improve the

ASM rainfall prediction by improving the predictions of

the first four PCs, particularly over land region of the AAM

and East Asian monsoon region. Figure 7 further shows the

attainable PCC skill (black solid line) as a function of

forecast year. It is shown that the hybrid prediction reaches

the attainable skill in some years including 1990, 1998 and

2010. In general, the hybrid prediction has higher skills

when the attainable skill is higher. However, the hybrid

prediction has significantly less skill in some years than

attainable skill such as 1986, 2003 and 2005.

6.2 Comparison of the two approaches for estimation

of the ASM rainfall predictability

We have shown that the first four EOF modes are largely

predictable with the dynamical and empirical models. The

four modes together account for about 47 % of the total

interannual variance averaged over the AAM monsoon

region in observations. This portion of the variation may be

considered as the predictable part of the precipitation

variability, because the dynamic models’ MME and P–E

models can capture these four major modes reasonably

well but cannot skillfully capture the rest of the higher

modes. This suggests a new approach to estimate the

practical predictability of the tropical seasonal precipitation

in coupled climate models; i.e., we can quantify the

‘‘predictability’’ by the fractional variance that is accounted

(a)

(b)

(c)

Fig. 8 The normalized

anomalies of a Indian summer

monsoon land rainfall (ISMR),

b East Asian summer monsoon

land rainfall (EASMR), and

cWestern North Pacific summer

monsoon rainfall (WNPSMR)

obtained from observation,

empirical-E forecast (EmpM),

dynamical forecast (MME), and

the combined P–E-dynamical

forecast (COM). The numbers

within the parenthesis in the

figure legend indicate the TCC

between the observed and

predicted PC
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for by the sum of the most ‘‘predictable’’ modes in the

observations.

Figure 9a shows fractional signal variance estimated by

the PMA approach. Over the equatorial and subtropical

monsoon region, more than 40–60 % of total variability

can be predictable but the fractional signal variance over

the East Asian summer monsoon region is only about

15–20 %.

Another approach is the MSE method using multi-model

simulations previously suggested by Kumar et al. (2007).

They found that the expected value of the MSE of the

ensemble mean prediction using a single model can be

decomposed into three terms: the observed noise variance,

the noise variance of the ensemble mean of dynamical

model’s simulation, and model’s systematic errors associ-

ated with the signal variance. For large ensembles and a

dynamic model with no systematic error, MSE equals the

observed noise variance. However, the MSE for the

ensemble mean of dynamical model simulations is always

larger than the observed noise variance. It is obvious that

different models have different MSEs at each geographical

location and the smaller MSE is closer to the true value of

observed noise variance. Thus, the optimal estimate of the

noise variance can be obtained from the smallest MSE

among many models’ results at each geographical location.

The signal variance can be estimated by subtracting the

smallest MSE (which is the estimated internal variance)

from the observed total variance.

Figure 9b shows the fractional signal variance estimated

by the MSE method using the four coupled models. It is

noted that the predictability estimated by the MSE is sig-

nificantly less than that by the PMA, probably due to the

large systematic errors of the current coupled models in

predicting the boreal summer precipitation. Since internal

variance estimated by the MSE includes models’ system-

atic errors by definition, the MSE estimation strongly

depends on the quality and numbers of the models being

used. The comparison between the PMA and MSE

approach in estimating the ASM rainfall predictability

indicates that the PMA may be a more useful tool for the

estimation of potential predictability.

7 Summary and discussion

We have identified four major modes of ASM rainfall

variability and discussed their respective causes of the

variability. The four modes are ENSO developing mode in

central Pacific, Indo-western Pacific monsoon-ocean cou-

pled mode, IOD and warming trend mode, which can

explain about 47 % of the total variance in the AAM

domain (Figs. 2, 3, 4). These findings provide dynamical

insights about the physical processes that control the ASM

rainfall variability and their relative contributions to the

total variability of the ASM rainfall.

We have also shown that the four modes can be, to a

large extent, predictable with the P–E models and with the

MME of four state-of-the-art dynamical models (Fig. 5).

The four models’ MME has a better skill for the first and

third modes while the P–E model has a better skill for the

second and fourth mode. The two approaches are thus

complimentary, providing a potential to improve the ASM

rainfall prediction by combining the P–E model and

dynamical predictions (Fig. 6). The combined dynamical-

P–E prediction model (by equal weighting) obtains a

32-year averaged pattern correlation skill of 0.49 (Fig. 7).

The combined hybrid model has a high skill for the

WNPSMR with the temporal correlation skill (r) of 0.68

(a) (b)

Fig. 9 Fractional signal variance (the predictable part of total

variance) obtained from a predictable mode analysis (PMA) using the

observed four EOF modes and b mean-square error (MSE) method

using multiple dynamical model predictions for the 32 years of

1979–2010. The dashed (solid) contour represents 12 % (25 %) that

are corresponding to the TCC of 0.35 (0.5)
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and a useful skill for the ISM land rainfall (r = 0.49) but a

low skill for the EASM land rainfall (r = 0.26). It is also

noted that dynamical models’ MME has a better skill for

the WNPSMR but the P–E model has a better skill for the

ISM and EASM land rainfall.

The four major EOF modes of the JJA rainfall anomaly

over the entire AAM region are identified as most ‘‘pre-

dictable’’ mode for a number of reasons. First, the four

modes explain a significant portion of total variability

(47 %). Second, the dynamical origins and processes

governing the variability of each mode are generally

understood. Third, the P–E model and dynamical climate

models are capable of predicting the temporal variation of

these modes. Results in Fig. 10 indicate that the coupled

models’ MME skill basically comes from the skill in pre-

diction of the first four major modes of interannual varia-

tions and the contribution from the residual higher modes

for the MME prediction is insignificant or moderate

depending on region (Fig. 10c).

One can estimate the ‘‘predictability’’ by the fractional

variance that is accounted for by the sum of all ‘‘predict-

able’’ modes in the observations assuming that these pre-

dictable modes can be perfectly predicted. The PMA

estimates that more than 40–60 % of total variability can

be predictable over the equatorial and subtropical monsoon

region, but the fractional signal variance over the EASM

region is only about 15–20 % (Fig. 9a).

The results here show that the PMA may provide a

useful approach for estimating the seasonal predictability

in comparison to the conventional approach based on

dynamical models’ ensemble simulation. The conventional

MSE approach strongly depends on the quality and num-

bers of the models being used.

It is worth noting that the predictable modes identified

may vary over longer, say multi-decadal, time scales. In

addition, the trend mode (Fig. 2h) may play a more impor-

tant role in future due to increasing greenhouse gases. Thus,

the predictability limitmay vary not only on interannual time

scale (Fig. 7) but also on multi-decadal to long-term time

scale. The present work has examined only 0-month lead

predictability. It would be interesting to study the prediction

skill as a function of the forecast lead. The recent results also

suggest that separate prediction of the early and late summer

monsoon precipitation might be more fruitful (Wang et al.

2009c; Rajagopalan and Molnar 2012).

The underlying assumption of the PMA analysis is that

a few leading EOF modes of interannual variability rep-

resent climate signals whereas the rest of them are

unpredictable climate noises. In some cases, the predict-

able and unpredictable modes are not necessarily sepa-

rated clearly, which may induce uncertainties in the

estimation of the predictability. The most challenging and

interesting part of the analysis is physical understanding.

It should also be realized that uncertainties exist con-

cerning the identification of predictable modes as identi-

fication of the most predictable modes relies on the quality

of the dynamical models or P–E models. Since the ana-

lysis starts with EOF analysis and the some predictable

modes may not be reflected by the leading EOF modes, it

is not guaranteed that the method will be identical to the

predictable modes.
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